run_glue.py 24.6 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
thomwolf's avatar
thomwolf committed
16
""" Finetuning the library models for sequence classification on GLUE (Bert, XLM, XLNet)."""
thomwolf's avatar
thomwolf committed
17
18
19
20

from __future__ import absolute_import, division, print_function

import argparse
thomwolf's avatar
thomwolf committed
21
import glob
thomwolf's avatar
thomwolf committed
22
23
24
25
26
27
28
29
30
import logging
import os
import random

import numpy as np
import torch
from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler,
                              TensorDataset)
from torch.utils.data.distributed import DistributedSampler
thomwolf's avatar
thomwolf committed
31
from tensorboardX import SummaryWriter
thomwolf's avatar
thomwolf committed
32
from tqdm import tqdm, trange
thomwolf's avatar
thomwolf committed
33

thomwolf's avatar
thomwolf committed
34
35
36
37
38
from pytorch_transformers import (WEIGHTS_NAME, BertConfig,
                                  BertForSequenceClassification, BertTokenizer,
                                  XLMConfig, XLMForSequenceClassification,
                                  XLMTokenizer, XLNetConfig,
                                  XLNetForSequenceClassification,
thomwolf's avatar
thomwolf committed
39
                                  XLNetTokenizer)
thomwolf's avatar
thomwolf committed
40
41
42

from pytorch_transformers import AdamW, WarmupLinearSchedule

thomwolf's avatar
thomwolf committed
43
44
from utils_glue import (compute_metrics, convert_examples_to_features,
                        output_modes, processors)
thomwolf's avatar
thomwolf committed
45
46
47

logger = logging.getLogger(__name__)

thomwolf's avatar
thomwolf committed
48
ALL_MODELS = sum((tuple(conf.pretrained_config_archive_map.keys()) for conf in (BertConfig, XLNetConfig, XLMConfig)), ())
49
50

MODEL_CLASSES = {
thomwolf's avatar
thomwolf committed
51
52
53
    'bert': (BertConfig, BertForSequenceClassification, BertTokenizer),
    'xlnet': (XLNetConfig, XLNetForSequenceClassification, XLNetTokenizer),
    'xlm': (XLMConfig, XLMForSequenceClassification, XLMTokenizer),
54
}
thomwolf's avatar
thomwolf committed
55

thomwolf's avatar
thomwolf committed
56
57
58
59
60
61
62
63
64

def set_seed(args):
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if args.n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)


thomwolf's avatar
thomwolf committed
65
def train(args, train_dataset, model, tokenizer):
thomwolf's avatar
thomwolf committed
66
67
68
69
    """ Train the model """
    if args.local_rank in [-1, 0]:
        tb_writer = SummaryWriter()

thomwolf's avatar
thomwolf committed
70
    args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
71
72
    train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
    train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size)
thomwolf's avatar
thomwolf committed
73

thomwolf's avatar
thomwolf committed
74
    if args.max_steps > 0:
thomwolf's avatar
thomwolf committed
75
        t_total = args.max_steps
thomwolf's avatar
thomwolf committed
76
77
        args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
    else:
thomwolf's avatar
thomwolf committed
78
        t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
thomwolf's avatar
thomwolf committed
79

thomwolf's avatar
thomwolf committed
80
    # Prepare optimizer and schedule (linear warmup and decay)
thomwolf's avatar
thomwolf committed
81
    no_decay = ['bias', 'LayerNorm.weight']
thomwolf's avatar
thomwolf committed
82
    optimizer_grouped_parameters = [
thomwolf's avatar
thomwolf committed
83
84
        {'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], 'weight_decay': args.weight_decay},
        {'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
thomwolf's avatar
thomwolf committed
85
        ]
thomwolf's avatar
thomwolf committed
86
87
    optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
    scheduler = WarmupLinearSchedule(optimizer, warmup_steps=args.warmup_steps, t_total=t_total)
thomwolf's avatar
thomwolf committed
88
89
    if args.fp16:
        try:
thomwolf's avatar
thomwolf committed
90
            from apex import amp
thomwolf's avatar
thomwolf committed
91
92
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
thomwolf's avatar
thomwolf committed
93
        model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
thomwolf's avatar
thomwolf committed
94
95
96

    # Train!
    logger.info("***** Running training *****")
97
98
    logger.info("  Num examples = %d", len(train_dataset))
    logger.info("  Num Epochs = %d", args.num_train_epochs)
thomwolf's avatar
thomwolf committed
99
100
101
    logger.info("  Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
    logger.info("  Total train batch size (w. parallel, distributed & accumulation) = %d",
                   args.train_batch_size * args.gradient_accumulation_steps * (torch.distributed.get_world_size() if args.local_rank != -1 else 1))
102
    logger.info("  Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
thomwolf's avatar
thomwolf committed
103
    logger.info("  Total optimization steps = %d", t_total)
thomwolf's avatar
thomwolf committed
104
105

    global_step = 0
thomwolf's avatar
thomwolf committed
106
    tr_loss, logging_loss = 0.0, 0.0
thomwolf's avatar
thomwolf committed
107
    model.zero_grad()
thomwolf's avatar
thomwolf committed
108
    train_iterator = trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0])
thomwolf's avatar
thomwolf committed
109
    set_seed(args)  # Added here for reproductibility (even between python 2 and 3)
thomwolf's avatar
thomwolf committed
110
111
112
    for _ in train_iterator:
        epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])
        for step, batch in enumerate(epoch_iterator):
thomwolf's avatar
thomwolf committed
113
            model.train()
thomwolf's avatar
thomwolf committed
114
            batch = tuple(t.to(args.device) for t in batch)
115
116
            inputs = {'input_ids':      batch[0],
                      'attention_mask': batch[1],
thomwolf's avatar
thomwolf committed
117
                      'token_type_ids': batch[2] if args.model_type in ['bert', 'xlnet'] else None,  # XLM don't use segment_ids
118
119
                      'labels':         batch[3]}
            ouputs = model(**inputs)
thomwolf's avatar
thomwolf committed
120
            loss = ouputs[0]  # model outputs are always tuple in pytorch-transformers (see doc)
thomwolf's avatar
thomwolf committed
121
122
123
124
125
126

            if args.n_gpu > 1:
                loss = loss.mean() # mean() to average on multi-gpu parallel training
            if args.gradient_accumulation_steps > 1:
                loss = loss / args.gradient_accumulation_steps

thomwolf's avatar
thomwolf committed
127
128
129
            if args.fp16:
                with amp.scale_loss(loss, optimizer) as scaled_loss:
                    scaled_loss.backward()
thomwolf's avatar
thomwolf committed
130
                torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
thomwolf's avatar
thomwolf committed
131
132
            else:
                loss.backward()
thomwolf's avatar
thomwolf committed
133
                torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
thomwolf's avatar
thomwolf committed
134
135
136

            tr_loss += loss.item()
            if (step + 1) % args.gradient_accumulation_steps == 0:
thomwolf's avatar
thomwolf committed
137
                scheduler.step()  # Update learning rate schedule
thomwolf's avatar
thomwolf committed
138
                optimizer.step()
thomwolf's avatar
thomwolf committed
139
                model.zero_grad()
thomwolf's avatar
thomwolf committed
140
                global_step += 1
thomwolf's avatar
thomwolf committed
141

thomwolf's avatar
thomwolf committed
142
                if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
thomwolf's avatar
thomwolf committed
143
                    # Log metrics
thomwolf's avatar
thomwolf committed
144
                    if args.local_rank == -1 and args.evaluate_during_training:  # Only evaluate when single GPU otherwise metrics may not average well
thomwolf's avatar
thomwolf committed
145
                        results = evaluate(args, model, tokenizer)
thomwolf's avatar
thomwolf committed
146
147
                        for key, value in results.items():
                            tb_writer.add_scalar('eval_{}'.format(key), value, global_step)
thomwolf's avatar
thomwolf committed
148
                    tb_writer.add_scalar('lr', scheduler.get_lr()[0], global_step)
thomwolf's avatar
thomwolf committed
149
150
                    tb_writer.add_scalar('loss', (tr_loss - logging_loss)/args.logging_steps, global_step)
                    logging_loss = tr_loss
thomwolf's avatar
thomwolf committed
151
152
153
154
155
156
157
158
159

                if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
                    # Save model checkpoint
                    output_dir = os.path.join(args.output_dir, 'checkpoint-{}'.format(global_step))
                    if not os.path.exists(output_dir):
                        os.makedirs(output_dir)
                    model_to_save = model.module if hasattr(model, 'module') else model  # Take care of distributed/parallel training
                    model_to_save.save_pretrained(output_dir)
                    torch.save(args, os.path.join(output_dir, 'training_args.bin'))
thomwolf's avatar
thomwolf committed
160
                    logger.info("Saving model checkpoint to %s", output_dir)
thomwolf's avatar
thomwolf committed
161

thomwolf's avatar
thomwolf committed
162
            if args.max_steps > 0 and global_step > args.max_steps:
thomwolf's avatar
thomwolf committed
163
                epoch_iterator.close()
thomwolf's avatar
thomwolf committed
164
165
                break
        if args.max_steps > 0 and global_step > args.max_steps:
thomwolf's avatar
thomwolf committed
166
            train_iterator.close()
thomwolf's avatar
thomwolf committed
167
            break
thomwolf's avatar
thomwolf committed
168

thomwolf's avatar
thomwolf committed
169
170
171
    if args.local_rank in [-1, 0]:
        tb_writer.close()

thomwolf's avatar
thomwolf committed
172
173
174
    return global_step, tr_loss / global_step


thomwolf's avatar
thomwolf committed
175
def evaluate(args, model, tokenizer, prefix=""):
thomwolf's avatar
thomwolf committed
176
177
178
179
180
181
182
183
184
185
186
    # Loop to handle MNLI double evaluation (matched, mis-matched)
    eval_task_names = ("mnli", "mnli-mm") if args.task_name == "mnli" else (args.task_name,)
    eval_outputs_dirs = (args.output_dir, args.output_dir + '-MM') if args.task_name == "mnli" else (args.output_dir,)

    results = {}
    for eval_task, eval_output_dir in zip(eval_task_names, eval_outputs_dirs):
        eval_dataset = load_and_cache_examples(args, eval_task, tokenizer, evaluate=True)

        if not os.path.exists(eval_output_dir) and args.local_rank in [-1, 0]:
            os.makedirs(eval_output_dir)

thomwolf's avatar
thomwolf committed
187
        args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
thomwolf's avatar
thomwolf committed
188
189
190
191
192
        # Note that DistributedSampler samples randomly
        eval_sampler = SequentialSampler(eval_dataset) if args.local_rank == -1 else DistributedSampler(eval_dataset)
        eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)

        # Eval!
thomwolf's avatar
thomwolf committed
193
        logger.info("***** Running evaluation {} *****".format(prefix))
thomwolf's avatar
thomwolf committed
194
195
        logger.info("  Num examples = %d", len(eval_dataset))
        logger.info("  Batch size = %d", args.eval_batch_size)
thomwolf's avatar
thomwolf committed
196
        eval_loss = 0.0
thomwolf's avatar
thomwolf committed
197
198
199
200
        nb_eval_steps = 0
        preds = None
        out_label_ids = None
        for batch in tqdm(eval_dataloader, desc="Evaluating"):
thomwolf's avatar
thomwolf committed
201
            model.eval()
thomwolf's avatar
thomwolf committed
202
203
204
205
206
207
208
209
210
211
            batch = tuple(t.to(args.device) for t in batch)

            with torch.no_grad():
                inputs = {'input_ids':      batch[0],
                          'attention_mask': batch[1],
                          'token_type_ids': batch[2] if args.model_type in ['bert', 'xlnet'] else None,  # XLM don't use segment_ids
                          'labels':         batch[3]}
                outputs = model(**inputs)
                tmp_eval_loss, logits = outputs[:2]

thomwolf's avatar
thomwolf committed
212
                eval_loss += tmp_eval_loss.mean().item()
thomwolf's avatar
thomwolf committed
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
            nb_eval_steps += 1
            if preds is None:
                preds = logits.detach().cpu().numpy()
                out_label_ids = inputs['labels'].detach().cpu().numpy()
            else:
                preds = np.append(preds, logits.detach().cpu().numpy(), axis=0)
                out_label_ids = np.append(out_label_ids, inputs['labels'].detach().cpu().numpy(), axis=0)

        eval_loss = eval_loss / nb_eval_steps
        if args.output_mode == "classification":
            preds = np.argmax(preds, axis=1)
        elif args.output_mode == "regression":
            preds = np.squeeze(preds)
        result = compute_metrics(eval_task, preds, out_label_ids)
        results.update(result)

        output_eval_file = os.path.join(eval_output_dir, "eval_results.txt")
        with open(output_eval_file, "w") as writer:
thomwolf's avatar
thomwolf committed
231
            logger.info("***** Eval results {} *****".format(prefix))
thomwolf's avatar
thomwolf committed
232
233
234
235
236
237
238
            for key in sorted(result.keys()):
                logger.info("  %s = %s", key, str(result[key]))
                writer.write("%s = %s\n" % (key, str(result[key])))

    return results


thomwolf's avatar
thomwolf committed
239
def load_and_cache_examples(args, task, tokenizer, evaluate=False):
thomwolf's avatar
thomwolf committed
240
    processor = processors[task]()
241
242
243
244
    output_mode = output_modes[task]
    # Load data features from cache or dataset file
    cached_features_file = os.path.join(args.data_dir, 'cached_{}_{}_{}_{}'.format(
        'dev' if evaluate else 'train',
245
        list(filter(None, args.model_name_or_path.split('/'))).pop(),
thomwolf's avatar
thomwolf committed
246
247
        str(args.max_seq_length),
        str(task)))
thomwolf's avatar
thomwolf committed
248
    if os.path.exists(cached_features_file):
thomwolf's avatar
thomwolf committed
249
        logger.info("Loading features from cached file %s", cached_features_file)
thomwolf's avatar
thomwolf committed
250
251
        features = torch.load(cached_features_file)
    else:
252
253
254
        logger.info("Creating features from dataset file at %s", args.data_dir)
        label_list = processor.get_labels()
        examples = processor.get_dev_examples(args.data_dir) if evaluate else processor.get_train_examples(args.data_dir)
255
        features = convert_examples_to_features(examples, label_list, args.max_seq_length, tokenizer, output_mode,
256
            cls_token_at_end=bool(args.model_type in ['xlnet']),            # xlnet has a cls token at the end
257
            cls_token=tokenizer.cls_token,
258
259
260
261
262
            sep_token=tokenizer.sep_token,
            cls_token_segment_id=2 if args.model_type in ['xlnet'] else 1,
            pad_on_left=bool(args.model_type in ['xlnet']),                 # pad on the left for xlnet
            pad_token_segment_id=4 if args.model_type in ['xlnet'] else 0)
        if args.local_rank in [-1, 0]:
thomwolf's avatar
thomwolf committed
263
            logger.info("Saving features into cached file %s", cached_features_file)
thomwolf's avatar
thomwolf committed
264
265
            torch.save(features, cached_features_file)

266
267
268
269
270
271
272
273
274
275
276
    # Convert to Tensors and build dataset
    all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)
    all_input_mask = torch.tensor([f.input_mask for f in features], dtype=torch.long)
    all_segment_ids = torch.tensor([f.segment_ids for f in features], dtype=torch.long)
    if output_mode == "classification":
        all_label_ids = torch.tensor([f.label_id for f in features], dtype=torch.long)
    elif output_mode == "regression":
        all_label_ids = torch.tensor([f.label_id for f in features], dtype=torch.float)

    dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids)
    return dataset
thomwolf's avatar
thomwolf committed
277
278


thomwolf's avatar
thomwolf committed
279
280
281
282
283
284
def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
    parser.add_argument("--data_dir", default=None, type=str, required=True,
                        help="The input data dir. Should contain the .tsv files (or other data files) for the task.")
285
286
287
288
    parser.add_argument("--model_type", default=None, type=str, required=True,
                        help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()))
    parser.add_argument("--model_name_or_path", default=None, type=str, required=True,
                        help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(ALL_MODELS))
thomwolf's avatar
thomwolf committed
289
    parser.add_argument("--task_name", default=None, type=str, required=True,
290
                        help="The name of the task to train selected in the list: " + ", ".join(processors.keys()))
thomwolf's avatar
thomwolf committed
291
292
293
294
    parser.add_argument("--output_dir", default=None, type=str, required=True,
                        help="The output directory where the model predictions and checkpoints will be written.")

    ## Other parameters
thomwolf's avatar
thomwolf committed
295
296
297
298
    parser.add_argument("--config_name", default="", type=str,
                        help="Pretrained config name or path if not the same as model_name")
    parser.add_argument("--tokenizer_name", default="", type=str,
                        help="Pretrained tokenizer name or path if not the same as model_name")
thomwolf's avatar
thomwolf committed
299
300
301
    parser.add_argument("--cache_dir", default="", type=str,
                        help="Where do you want to store the pre-trained models downloaded from s3")
    parser.add_argument("--max_seq_length", default=128, type=int,
302
303
                        help="The maximum total input sequence length after tokenization. Sequences longer "
                             "than this will be truncated, sequences shorter will be padded.")
thomwolf's avatar
thomwolf committed
304
305
306
307
    parser.add_argument("--do_train", action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_eval", action='store_true',
                        help="Whether to run eval on the dev set.")
thomwolf's avatar
thomwolf committed
308
309
    parser.add_argument("--evaluate_during_training", action='store_true',
                        help="Rul evaluation during training at each logging step.")
thomwolf's avatar
thomwolf committed
310
311
    parser.add_argument("--do_lower_case", action='store_true',
                        help="Set this flag if you are using an uncased model.")
thomwolf's avatar
thomwolf committed
312
313

    parser.add_argument("--per_gpu_train_batch_size", default=8, type=int,
314
                        help="Batch size per GPU/CPU for training.")
thomwolf's avatar
thomwolf committed
315
    parser.add_argument("--per_gpu_eval_batch_size", default=8, type=int,
316
                        help="Batch size per GPU/CPU for evaluation.")
thomwolf's avatar
thomwolf committed
317
318
319
320
    parser.add_argument('--gradient_accumulation_steps', type=int, default=1,
                        help="Number of updates steps to accumulate before performing a backward/update pass.")
    parser.add_argument("--learning_rate", default=5e-5, type=float,
                        help="The initial learning rate for Adam.")
thomwolf's avatar
thomwolf committed
321
322
    parser.add_argument("--weight_decay", default=0.0, type=float,
                        help="Weight deay if we apply some.")
thomwolf's avatar
thomwolf committed
323
324
    parser.add_argument("--adam_epsilon", default=1e-8, type=float,
                        help="Epsilon for Adam optimizer.")
thomwolf's avatar
thomwolf committed
325
326
    parser.add_argument("--max_grad_norm", default=1.0, type=float,
                        help="Max gradient norm.")
thomwolf's avatar
thomwolf committed
327
328
    parser.add_argument("--num_train_epochs", default=3.0, type=float,
                        help="Total number of training epochs to perform.")
thomwolf's avatar
thomwolf committed
329
330
    parser.add_argument("--max_steps", default=-1, type=int,
                        help="If > 0: set total number of training steps to perform. Override num_train_epochs.")
thomwolf's avatar
thomwolf committed
331
332
    parser.add_argument("--warmup_steps", default=0, type=int,
                        help="Linear warmup over warmup_steps.")
thomwolf's avatar
thomwolf committed
333

thomwolf's avatar
thomwolf committed
334
    parser.add_argument('--logging_steps', type=int, default=50,
thomwolf's avatar
thomwolf committed
335
                        help="Log every X updates steps.")
thomwolf's avatar
thomwolf committed
336
337
338
339
    parser.add_argument('--save_steps', type=int, default=50,
                        help="Save checkpoint every X updates steps.")
    parser.add_argument("--eval_all_checkpoints", action='store_true',
                        help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number")
thomwolf's avatar
thomwolf committed
340
341
342
343
    parser.add_argument("--no_cuda", action='store_true',
                        help="Avoid using CUDA when available")
    parser.add_argument('--overwrite_output_dir', action='store_true',
                        help="Overwrite the content of the output directory")
thomwolf's avatar
thomwolf committed
344
345
    parser.add_argument('--overwrite_cache', action='store_true',
                        help="Overwrite the cached training and evaluation sets")
thomwolf's avatar
thomwolf committed
346
347
348
349
    parser.add_argument('--seed', type=int, default=42,
                        help="random seed for initialization")

    parser.add_argument('--fp16', action='store_true',
thomwolf's avatar
thomwolf committed
350
351
352
353
                        help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit")
    parser.add_argument('--fp16_opt_level', type=str, default='O1',
                        help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
                             "See details at https://nvidia.github.io/apex/amp.html")
thomwolf's avatar
thomwolf committed
354
    parser.add_argument("--local_rank", type=int, default=-1,
thomwolf's avatar
thomwolf committed
355
356
357
                        help="For distributed training: local_rank")
    parser.add_argument('--server_ip', type=str, default='', help="For distant debugging.")
    parser.add_argument('--server_port', type=str, default='', help="For distant debugging.")
thomwolf's avatar
thomwolf committed
358
359
    args = parser.parse_args()

thomwolf's avatar
thomwolf committed
360
361
362
    if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train and not args.overwrite_output_dir:
        raise ValueError("Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(args.output_dir))

thomwolf's avatar
thomwolf committed
363
364
365
366
367
368
369
370
371
372
373
    # Setup distant debugging if needed
    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
        ptvsd.wait_for_attach()

    # Setup CUDA, GPU & distributed training
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
thomwolf's avatar
thomwolf committed
374
        args.n_gpu = torch.cuda.device_count()
thomwolf's avatar
thomwolf committed
375
376
377
378
    else:  # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        torch.distributed.init_process_group(backend='nccl')
thomwolf's avatar
thomwolf committed
379
        args.n_gpu = 1
thomwolf's avatar
thomwolf committed
380
381
382
    args.device = device

    # Setup logging
thomwolf's avatar
thomwolf committed
383
384
385
    logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s -   %(message)s',
                        datefmt = '%m/%d/%Y %H:%M:%S',
                        level = logging.INFO if args.local_rank in [-1, 0] else logging.WARN)
thomwolf's avatar
thomwolf committed
386
    logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
thomwolf's avatar
thomwolf committed
387
                    args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16)
thomwolf's avatar
thomwolf committed
388

thomwolf's avatar
thomwolf committed
389
390
    # Set seed
    set_seed(args)
thomwolf's avatar
thomwolf committed
391
392

    # Prepare GLUE task
thomwolf's avatar
thomwolf committed
393
394
395
396
397
    args.task_name = args.task_name.lower()
    if args.task_name not in processors:
        raise ValueError("Task not found: %s" % (args.task_name))
    processor = processors[args.task_name]()
    args.output_mode = output_modes[args.task_name]
thomwolf's avatar
thomwolf committed
398
399
400
401
402
    label_list = processor.get_labels()
    num_labels = len(label_list)

    # Load pretrained model and tokenizer
    if args.local_rank not in [-1, 0]:
403
        torch.distributed.barrier()  # Make sure only the first process in distributed training will download model & vocab
thomwolf's avatar
thomwolf committed
404

405
    args.model_type = args.model_type.lower()
thomwolf's avatar
thomwolf committed
406
    config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
407
408
409
    config = config_class.from_pretrained(args.config_name if args.config_name else args.model_name_or_path, num_labels=num_labels, finetuning_task=args.task_name)
    tokenizer = tokenizer_class.from_pretrained(args.tokenizer_name if args.tokenizer_name else args.model_name_or_path, do_lower_case=args.do_lower_case)
    model = model_class.from_pretrained(args.model_name_or_path, from_tf=bool('.ckpt' in args.model_name_or_path), config=config)
thomwolf's avatar
thomwolf committed
410
411

    if args.local_rank == 0:
412
        torch.distributed.barrier()  # Make sure only the first process in distributed training will download model & vocab
thomwolf's avatar
thomwolf committed
413

thomwolf's avatar
thomwolf committed
414
    # Distributed and parallel training
thomwolf's avatar
thomwolf committed
415
    model.to(args.device)
thomwolf's avatar
thomwolf committed
416
    if args.local_rank != -1:
thomwolf's avatar
thomwolf committed
417
        model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank],
thomwolf's avatar
thomwolf committed
418
419
                                                          output_device=args.local_rank,
                                                          find_unused_parameters=True)
thomwolf's avatar
thomwolf committed
420
    elif args.n_gpu > 1:
thomwolf's avatar
thomwolf committed
421
422
        model = torch.nn.DataParallel(model)

thomwolf's avatar
thomwolf committed
423
424
    logger.info("Training/evaluation parameters %s", args)

425

thomwolf's avatar
thomwolf committed
426
    # Training
thomwolf's avatar
thomwolf committed
427
    if args.do_train:
428
        train_dataset = load_and_cache_examples(args, args.task_name, tokenizer, evaluate=False)
thomwolf's avatar
thomwolf committed
429
        global_step, tr_loss = train(args, train_dataset, model, tokenizer)
thomwolf's avatar
thomwolf committed
430
        logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)
thomwolf's avatar
thomwolf committed
431
432


thomwolf's avatar
thomwolf committed
433
    # Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained()
thomwolf's avatar
thomwolf committed
434
    if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
435
436
437
438
        # Create output directory if needed
        if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
            os.makedirs(args.output_dir)

thomwolf's avatar
thomwolf committed
439
        logger.info("Saving model checkpoint to %s", args.output_dir)
440
441
        # Save a trained model, configuration and tokenizer using `save_pretrained()`.
        # They can then be reloaded using `from_pretrained()`
thomwolf's avatar
thomwolf committed
442
443
        model_to_save = model.module if hasattr(model, 'module') else model  # Take care of distributed/parallel training
        model_to_save.save_pretrained(args.output_dir)
444
        tokenizer.save_pretrained(args.output_dir)
thomwolf's avatar
thomwolf committed
445
446

        # Good practice: save your training arguments together with the trained model
447
        torch.save(args, os.path.join(args.output_dir, 'training_args.bin'))
thomwolf's avatar
thomwolf committed
448

449
        # Load a trained model and vocabulary that you have fine-tuned
450
451
        model = model_class.from_pretrained(args.output_dir)
        tokenizer = tokenizer_class.from_pretrained(args.output_dir)
452
        model.to(args.device)
thomwolf's avatar
thomwolf committed
453

454

thomwolf's avatar
thomwolf committed
455
    # Evaluation
thomwolf's avatar
thomwolf committed
456
    results = {}
thomwolf's avatar
thomwolf committed
457
    if args.do_eval and args.local_rank in [-1, 0]:
thomwolf's avatar
thomwolf committed
458
        checkpoints = [args.output_dir]
thomwolf's avatar
thomwolf committed
459
        if args.eval_all_checkpoints:
thomwolf's avatar
thomwolf committed
460
461
            checkpoints = list(os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + '/**/' + WEIGHTS_NAME, recursive=True)))
            logging.getLogger("pytorch_transformers.modeling_utils").setLevel(logging.WARN)  # Reduce logging
thomwolf's avatar
thomwolf committed
462
463
        logger.info("Evaluate the following checkpoints: %s", checkpoints)
        for checkpoint in checkpoints:
464
            global_step = checkpoint.split('-')[-1] if len(checkpoints) > 1 else ""
thomwolf's avatar
thomwolf committed
465
            model = model_class.from_pretrained(checkpoint)
thomwolf's avatar
thomwolf committed
466
467
            model.to(args.device)
            result = evaluate(args, model, tokenizer, prefix=global_step)
thomwolf's avatar
thomwolf committed
468
469
470
            result = dict((k + '_{}'.format(global_step), v) for k, v in result.items())
            results.update(result)

thomwolf's avatar
thomwolf committed
471
    return results
thomwolf's avatar
thomwolf committed
472
473
474
475


if __name__ == "__main__":
    main()