run_classifier.py 25.6 KB
Newer Older
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2018 The Google AI Language Team Authors and The HugginFace Inc. team.
3
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""BERT finetuning runner."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

22
23
import csv
import os
24
25
import logging
import argparse
VictorSanh's avatar
VictorSanh committed
26
import random
thomwolf's avatar
thomwolf committed
27
from tqdm import tqdm, trange
thomwolf's avatar
thomwolf committed
28
29

import numpy as np
VictorSanh's avatar
VictorSanh committed
30
import torch
31
32
33
from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler
from torch.utils.data.distributed import DistributedSampler

34
from pytorch_pretrained_bert.tokenization import BertTokenizer
thomwolf's avatar
thomwolf committed
35
from pytorch_pretrained_bert.modeling import BertForSequenceClassification
36
from pytorch_pretrained_bert.optimization import BertAdam, warmup_linear
37
from pytorch_pretrained_bert.file_utils import PYTORCH_PRETRAINED_BERT_CACHE
38

39
logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s -   %(message)s',
40
41
42
                    datefmt = '%m/%d/%Y %H:%M:%S',
                    level = logging.INFO)
logger = logging.getLogger(__name__)
43

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

class InputExample(object):
    """A single training/test example for simple sequence classification."""

    def __init__(self, guid, text_a, text_b=None, label=None):
        """Constructs a InputExample.

        Args:
            guid: Unique id for the example.
            text_a: string. The untokenized text of the first sequence. For single
            sequence tasks, only this sequence must be specified.
            text_b: (Optional) string. The untokenized text of the second sequence.
            Only must be specified for sequence pair tasks.
            label: (Optional) string. The label of the example. This should be
            specified for train and dev examples, but not for test examples.
        """
        self.guid = guid
        self.text_a = text_a
        self.text_b = text_b
        self.label = label


class InputFeatures(object):
    """A single set of features of data."""

    def __init__(self, input_ids, input_mask, segment_ids, label_id):
        self.input_ids = input_ids
        self.input_mask = input_mask
        self.segment_ids = segment_ids
        self.label_id = label_id
thomwolf's avatar
thomwolf committed
74

75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93

class DataProcessor(object):
    """Base class for data converters for sequence classification data sets."""

    def get_train_examples(self, data_dir):
        """Gets a collection of `InputExample`s for the train set."""
        raise NotImplementedError()

    def get_dev_examples(self, data_dir):
        """Gets a collection of `InputExample`s for the dev set."""
        raise NotImplementedError()

    def get_labels(self):
        """Gets the list of labels for this data set."""
        raise NotImplementedError()

    @classmethod
    def _read_tsv(cls, input_file, quotechar=None):
        """Reads a tab separated value file."""
94
        with open(input_file, "r", encoding='utf-8') as f:
95
96
97
98
99
            reader = csv.reader(f, delimiter="\t", quotechar=quotechar)
            lines = []
            for line in reader:
                lines.append(line)
            return lines
thomwolf's avatar
thomwolf committed
100
101


VictorSanh's avatar
wip  
VictorSanh committed
102
103
104
105
106
class MrpcProcessor(DataProcessor):
    """Processor for the MRPC data set (GLUE version)."""

    def get_train_examples(self, data_dir):
        """See base class."""
thomwolf's avatar
thomwolf committed
107
        logger.info("LOOKING AT {}".format(os.path.join(data_dir, "train.tsv")))
VictorSanh's avatar
wip  
VictorSanh committed
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

    def get_dev_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")

    def get_labels(self):
        """See base class."""
        return ["0", "1"]

    def _create_examples(self, lines, set_type):
        """Creates examples for the training and dev sets."""
        examples = []
        for (i, line) in enumerate(lines):
            if i == 0:
                continue
            guid = "%s-%s" % (set_type, i)
127
128
129
            text_a = line[3]
            text_b = line[4]
            label = line[0]
VictorSanh's avatar
wip  
VictorSanh committed
130
131
132
133
            examples.append(
                InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
        return examples

134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158

class MnliProcessor(DataProcessor):
    """Processor for the MultiNLI data set (GLUE version)."""

    def get_train_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

    def get_dev_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "dev_matched.tsv")),
            "dev_matched")

    def get_labels(self):
        """See base class."""
        return ["contradiction", "entailment", "neutral"]

    def _create_examples(self, lines, set_type):
        """Creates examples for the training and dev sets."""
        examples = []
        for (i, line) in enumerate(lines):
            if i == 0:
                continue
159
            guid = "%s-%s" % (set_type, line[0])
160
161
            text_a = line[8]
            text_b = line[9]
162
            label = line[-1]
163
164
165
            examples.append(
                InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
        return examples
thomwolf's avatar
thomwolf committed
166

167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189

class ColaProcessor(DataProcessor):
    """Processor for the CoLA data set (GLUE version)."""

    def get_train_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

    def get_dev_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")

    def get_labels(self):
        """See base class."""
        return ["0", "1"]

    def _create_examples(self, lines, set_type):
        """Creates examples for the training and dev sets."""
        examples = []
        for (i, line) in enumerate(lines):
            guid = "%s-%s" % (set_type, i)
190
191
            text_a = line[3]
            label = line[1]
192
193
194
            examples.append(
                InputExample(guid=guid, text_a=text_a, text_b=None, label=label))
        return examples
thomwolf's avatar
thomwolf committed
195
196
197


def convert_examples_to_features(examples, label_list, max_seq_length, tokenizer):
198
199
    """Loads a data file into a list of `InputBatch`s."""

200
    label_map = {label : i for i, label in enumerate(label_list)}
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

    features = []
    for (ex_index, example) in enumerate(examples):
        tokens_a = tokenizer.tokenize(example.text_a)

        tokens_b = None
        if example.text_b:
            tokens_b = tokenizer.tokenize(example.text_b)
            # Modifies `tokens_a` and `tokens_b` in place so that the total
            # length is less than the specified length.
            # Account for [CLS], [SEP], [SEP] with "- 3"
            _truncate_seq_pair(tokens_a, tokens_b, max_seq_length - 3)
        else:
            # Account for [CLS] and [SEP] with "- 2"
            if len(tokens_a) > max_seq_length - 2:
216
                tokens_a = tokens_a[:(max_seq_length - 2)]
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235

        # The convention in BERT is:
        # (a) For sequence pairs:
        #  tokens:   [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]
        #  type_ids: 0   0  0    0    0     0       0 0    1  1  1  1   1 1
        # (b) For single sequences:
        #  tokens:   [CLS] the dog is hairy . [SEP]
        #  type_ids: 0   0   0   0  0     0 0
        #
        # Where "type_ids" are used to indicate whether this is the first
        # sequence or the second sequence. The embedding vectors for `type=0` and
        # `type=1` were learned during pre-training and are added to the wordpiece
        # embedding vector (and position vector). This is not *strictly* necessary
        # since the [SEP] token unambigiously separates the sequences, but it makes
        # it easier for the model to learn the concept of sequences.
        #
        # For classification tasks, the first vector (corresponding to [CLS]) is
        # used as as the "sentence vector". Note that this only makes sense because
        # the entire model is fine-tuned.
236
237
        tokens = ["[CLS]"] + tokens_a + ["[SEP]"]
        segment_ids = [0] * len(tokens)
238
239

        if tokens_b:
240
241
            tokens += tokens_b + ["[SEP]"]
            segment_ids += [1] * (len(tokens_b) + 1)
242
243
244
245
246
247
248
249

        input_ids = tokenizer.convert_tokens_to_ids(tokens)

        # The mask has 1 for real tokens and 0 for padding tokens. Only real
        # tokens are attended to.
        input_mask = [1] * len(input_ids)

        # Zero-pad up to the sequence length.
250
251
252
253
        padding = [0] * (max_seq_length - len(input_ids))
        input_ids += padding
        input_mask += padding
        segment_ids += padding
254
255
256
257
258
259
260
261
262
263

        assert len(input_ids) == max_seq_length
        assert len(input_mask) == max_seq_length
        assert len(segment_ids) == max_seq_length

        label_id = label_map[example.label]
        if ex_index < 5:
            logger.info("*** Example ***")
            logger.info("guid: %s" % (example.guid))
            logger.info("tokens: %s" % " ".join(
264
                    [str(x) for x in tokens]))
265
266
267
268
269
270
271
            logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
            logger.info("input_mask: %s" % " ".join([str(x) for x in input_mask]))
            logger.info(
                    "segment_ids: %s" % " ".join([str(x) for x in segment_ids]))
            logger.info("label: %s (id = %d)" % (example.label, label_id))

        features.append(
thomwolf's avatar
thomwolf committed
272
273
274
275
                InputFeatures(input_ids=input_ids,
                              input_mask=input_mask,
                              segment_ids=segment_ids,
                              label_id=label_id))
276
    return features
thomwolf's avatar
thomwolf committed
277
278


279
280
281
282
283
284
285
286
287
288
289
290
291
292
def _truncate_seq_pair(tokens_a, tokens_b, max_length):
    """Truncates a sequence pair in place to the maximum length."""

    # This is a simple heuristic which will always truncate the longer sequence
    # one token at a time. This makes more sense than truncating an equal percent
    # of tokens from each, since if one sequence is very short then each token
    # that's truncated likely contains more information than a longer sequence.
    while True:
        total_length = len(tokens_a) + len(tokens_b)
        if total_length <= max_length:
            break
        if len(tokens_a) > len(tokens_b):
            tokens_a.pop()
        else:
VictorSanh's avatar
VictorSanh committed
293
294
            tokens_b.pop()

295
296
def accuracy(out, labels):
    outputs = np.argmax(out, axis=1)
thomwolf's avatar
thomwolf committed
297
    return np.sum(outputs == labels)
VictorSanh's avatar
WIP  
VictorSanh committed
298

299
def main():
300
301
302
303
304
305
306
307
    parser = argparse.ArgumentParser()

    ## Required parameters
    parser.add_argument("--data_dir",
                        default=None,
                        type=str,
                        required=True,
                        help="The input data dir. Should contain the .tsv files (or other data files) for the task.")
thomwolf's avatar
thomwolf committed
308
309
    parser.add_argument("--bert_model", default=None, type=str, required=True,
                        help="Bert pre-trained model selected in the list: bert-base-uncased, "
310
311
                        "bert-large-uncased, bert-base-cased, bert-large-cased, bert-base-multilingual-uncased, "
                        "bert-base-multilingual-cased, bert-base-chinese.")
312
313
314
315
316
317
318
319
320
    parser.add_argument("--task_name",
                        default=None,
                        type=str,
                        required=True,
                        help="The name of the task to train.")
    parser.add_argument("--output_dir",
                        default=None,
                        type=str,
                        required=True,
321
                        help="The output directory where the model predictions and checkpoints will be written.")
322
323
324
325
326
327
328
329
330
331
332
333
334
335

    ## Other parameters
    parser.add_argument("--max_seq_length",
                        default=128,
                        type=int,
                        help="The maximum total input sequence length after WordPiece tokenization. \n"
                             "Sequences longer than this will be truncated, and sequences shorter \n"
                             "than this will be padded.")
    parser.add_argument("--do_train",
                        action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_eval",
                        action='store_true',
                        help="Whether to run eval on the dev set.")
thomwolf's avatar
thomwolf committed
336
337
338
    parser.add_argument("--do_lower_case",
                        action='store_true',
                        help="Set this flag if you are using an uncased model.")
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
    parser.add_argument("--train_batch_size",
                        default=32,
                        type=int,
                        help="Total batch size for training.")
    parser.add_argument("--eval_batch_size",
                        default=8,
                        type=int,
                        help="Total batch size for eval.")
    parser.add_argument("--learning_rate",
                        default=5e-5,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--num_train_epochs",
                        default=3.0,
                        type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument("--warmup_proportion",
                        default=0.1,
                        type=float,
                        help="Proportion of training to perform linear learning rate warmup for. "
                             "E.g., 0.1 = 10%% of training.")
    parser.add_argument("--no_cuda",
                        action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
367
368
    parser.add_argument('--seed',
                        type=int,
VictorSanh's avatar
VictorSanh committed
369
370
                        default=42,
                        help="random seed for initialization")
371
372
373
    parser.add_argument('--gradient_accumulation_steps',
                        type=int,
                        default=1,
374
                        help="Number of updates steps to accumulate before performing a backward/update pass.")
thomwolf's avatar
thomwolf committed
375
376
377
378
    parser.add_argument('--fp16',
                        action='store_true',
                        help="Whether to use 16-bit float precision instead of 32-bit")
    parser.add_argument('--loss_scale',
379
380
381
382
                        type=float, default=0,
                        help="Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
                             "0 (default value): dynamic loss scaling.\n"
                             "Positive power of 2: static loss scaling value.\n")
thomwolf's avatar
thomwolf committed
383

384
385
    args = parser.parse_args()

VictorSanh's avatar
WIP  
VictorSanh committed
386
387
388
389
390
    processors = {
        "cola": ColaProcessor,
        "mnli": MnliProcessor,
        "mrpc": MrpcProcessor,
    }
thomwolf's avatar
thomwolf committed
391

392
393
394
395
396
397
    num_labels_task = {
        "cola": 2,
        "mnli": 3,
        "mrpc": 2,
    }

thomwolf's avatar
thomwolf committed
398
399
400
401
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
402
        torch.cuda.set_device(args.local_rank)
thomwolf's avatar
thomwolf committed
403
404
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
thomwolf's avatar
thomwolf committed
405
406
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')
407
408
    logger.info("device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".format(
        device, n_gpu, bool(args.local_rank != -1), args.fp16))
thomwolf's avatar
thomwolf committed
409

410
411
412
    if args.gradient_accumulation_steps < 1:
        raise ValueError("Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format(
                            args.gradient_accumulation_steps))
thomwolf's avatar
thomwolf committed
413

414
    args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps
thomwolf's avatar
thomwolf committed
415

VictorSanh's avatar
VictorSanh committed
416
417
418
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
thomwolf's avatar
thomwolf committed
419
420
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)
thomwolf's avatar
thomwolf committed
421

VictorSanh's avatar
WIP  
VictorSanh committed
422
423
    if not args.do_train and not args.do_eval:
        raise ValueError("At least one of `do_train` or `do_eval` must be True.")
thomwolf's avatar
thomwolf committed
424

425
    if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train:
thomwolf's avatar
thomwolf committed
426
        raise ValueError("Output directory ({}) already exists and is not empty.".format(args.output_dir))
VictorSanh's avatar
WIP  
VictorSanh committed
427
428
429
    os.makedirs(args.output_dir, exist_ok=True)

    task_name = args.task_name.lower()
thomwolf's avatar
thomwolf committed
430

VictorSanh's avatar
WIP  
VictorSanh committed
431
432
433
434
    if task_name not in processors:
        raise ValueError("Task not found: %s" % (task_name))

    processor = processors[task_name]()
435
    num_labels = num_labels_task[task_name]
VictorSanh's avatar
WIP  
VictorSanh committed
436
437
    label_list = processor.get_labels()

thomwolf's avatar
thomwolf committed
438
    tokenizer = BertTokenizer.from_pretrained(args.bert_model, do_lower_case=args.do_lower_case)
thomwolf's avatar
thomwolf committed
439

VictorSanh's avatar
WIP  
VictorSanh committed
440
    train_examples = None
441
    num_train_optimization_steps = None
VictorSanh's avatar
WIP  
VictorSanh committed
442
443
    if args.do_train:
        train_examples = processor.get_train_examples(args.data_dir)
444
445
446
447
        num_train_optimization_steps = int(
            len(train_examples) / args.train_batch_size / args.gradient_accumulation_steps) * args.num_train_epochs
        if args.local_rank != -1:
            num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size()
thomwolf's avatar
thomwolf committed
448

thomwolf's avatar
thomwolf committed
449
    # Prepare model
450
    model = BertForSequenceClassification.from_pretrained(args.bert_model,
451
452
              cache_dir=PYTORCH_PRETRAINED_BERT_CACHE / 'distributed_{}'.format(args.local_rank),
              num_labels = num_labels)
thomwolf's avatar
thomwolf committed
453
454
    if args.fp16:
        model.half()
thomwolf's avatar
thomwolf committed
455
    model.to(device)
thomwolf's avatar
thomwolf committed
456
    if args.local_rank != -1:
thomwolf's avatar
thomwolf committed
457
458
459
460
461
        try:
            from apex.parallel import DistributedDataParallel as DDP
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")

462
        model = DDP(model)
thomwolf's avatar
thomwolf committed
463
    elif n_gpu > 1:
464
        model = torch.nn.DataParallel(model)
thomwolf's avatar
thomwolf committed
465

thomwolf's avatar
thomwolf committed
466
    # Prepare optimizer
467
468
    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
thomwolf's avatar
thomwolf committed
469
    optimizer_grouped_parameters = [
470
471
        {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
        {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
thomwolf's avatar
thomwolf committed
472
        ]
473
    if args.fp16:
thomwolf's avatar
thomwolf committed
474
475
476
477
478
479
        try:
            from apex.optimizers import FP16_Optimizer
            from apex.optimizers import FusedAdam
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")

480
481
482
483
484
485
486
487
488
489
490
491
492
        optimizer = FusedAdam(optimizer_grouped_parameters,
                              lr=args.learning_rate,
                              bias_correction=False,
                              max_grad_norm=1.0)
        if args.loss_scale == 0:
            optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
        else:
            optimizer = FP16_Optimizer(optimizer, static_loss_scale=args.loss_scale)

    else:
        optimizer = BertAdam(optimizer_grouped_parameters,
                             lr=args.learning_rate,
                             warmup=args.warmup_proportion,
493
                             t_total=num_train_optimization_steps)
thomwolf's avatar
thomwolf committed
494

thomwolf's avatar
thomwolf committed
495
    global_step = 0
Jade Abbott's avatar
Jade Abbott committed
496
    nb_tr_steps = 0
497
    tr_loss = 0
VictorSanh's avatar
WIP  
VictorSanh committed
498
499
500
501
502
503
    if args.do_train:
        train_features = convert_examples_to_features(
            train_examples, label_list, args.max_seq_length, tokenizer)
        logger.info("***** Running training *****")
        logger.info("  Num examples = %d", len(train_examples))
        logger.info("  Batch size = %d", args.train_batch_size)
504
        logger.info("  Num steps = %d", num_train_optimization_steps)
505
506
507
508
        all_input_ids = torch.tensor([f.input_ids for f in train_features], dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in train_features], dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in train_features], dtype=torch.long)
        all_label_ids = torch.tensor([f.label_id for f in train_features], dtype=torch.long)
509
510
511
512
513
514
515
516
        train_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids)
        if args.local_rank == -1:
            train_sampler = RandomSampler(train_data)
        else:
            train_sampler = DistributedSampler(train_data)
        train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size)

        model.train()
517
        for _ in trange(int(args.num_train_epochs), desc="Epoch"):
518
519
            tr_loss = 0
            nb_tr_examples, nb_tr_steps = 0, 0
520
521
522
            for step, batch in enumerate(tqdm(train_dataloader, desc="Iteration")):
                batch = tuple(t.to(device) for t in batch)
                input_ids, input_mask, segment_ids, label_ids = batch
523
                loss = model(input_ids, segment_ids, input_mask, label_ids)
thomwolf's avatar
thomwolf committed
524
525
                if n_gpu > 1:
                    loss = loss.mean() # mean() to average on multi-gpu.
526
527
                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps
528
529
530
531
532
533

                if args.fp16:
                    optimizer.backward(loss)
                else:
                    loss.backward()

534
                tr_loss += loss.item()
535
                nb_tr_examples += input_ids.size(0)
536
                nb_tr_steps += 1
thomwolf's avatar
thomwolf committed
537
                if (step + 1) % args.gradient_accumulation_steps == 0:
538
539
540
                    if args.fp16:
                        # modify learning rate with special warm up BERT uses
                        # if args.fp16 is False, BertAdam is used that handles this automatically
541
                        lr_this_step = args.learning_rate * warmup_linear(global_step/num_train_optimization_steps, args.warmup_proportion)
542
543
                        for param_group in optimizer.param_groups:
                            param_group['lr'] = lr_this_step
544
545
                    optimizer.step()
                    optimizer.zero_grad()
thomwolf's avatar
thomwolf committed
546
                    global_step += 1
thomwolf's avatar
thomwolf committed
547

548
549
550
    # Save a trained model
    model_to_save = model.module if hasattr(model, 'module') else model  # Only save the model it-self
    output_model_file = os.path.join(args.output_dir, "pytorch_model.bin")
551
552
    if args.do_train:
        torch.save(model_to_save.state_dict(), output_model_file)
553
554
555

    # Load a trained model that you have fine-tuned
    model_state_dict = torch.load(output_model_file)
556
    model = BertForSequenceClassification.from_pretrained(args.bert_model, state_dict=model_state_dict, num_labels=num_labels)
557
    model.to(device)
558

559
    if args.do_eval and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
VictorSanh's avatar
WIP  
VictorSanh committed
560
561
562
        eval_examples = processor.get_dev_examples(args.data_dir)
        eval_features = convert_examples_to_features(
            eval_examples, label_list, args.max_seq_length, tokenizer)
VictorSanh's avatar
wip  
VictorSanh committed
563
564
565
        logger.info("***** Running evaluation *****")
        logger.info("  Num examples = %d", len(eval_examples))
        logger.info("  Batch size = %d", args.eval_batch_size)
566
567
568
569
        all_input_ids = torch.tensor([f.input_ids for f in eval_features], dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in eval_features], dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in eval_features], dtype=torch.long)
        all_label_ids = torch.tensor([f.label_id for f in eval_features], dtype=torch.long)
570
        eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids)
571
572
        # Run prediction for full data
        eval_sampler = SequentialSampler(eval_data)
573
574
575
        eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size)

        model.eval()
576
        eval_loss, eval_accuracy = 0, 0
VictorSanh's avatar
VictorSanh committed
577
        nb_eval_steps, nb_eval_examples = 0, 0
578
579
 
        for input_ids, input_mask, segment_ids, label_ids in tqdm(eval_dataloader, desc="Evaluating"):
580
            input_ids = input_ids.to(device)
thomwolf's avatar
thomwolf committed
581
            input_mask = input_mask.to(device)
582
            segment_ids = segment_ids.to(device)
583
            label_ids = label_ids.to(device)
584

585
            with torch.no_grad():
586
587
                tmp_eval_loss = model(input_ids, segment_ids, input_mask, label_ids)
                logits = model(input_ids, segment_ids, input_mask)
thomwolf's avatar
thomwolf committed
588
589
590

            logits = logits.detach().cpu().numpy()
            label_ids = label_ids.to('cpu').numpy()
591
592
            tmp_eval_accuracy = accuracy(logits, label_ids)

593
            eval_loss += tmp_eval_loss.mean().item()
594
            eval_accuracy += tmp_eval_accuracy
thomwolf's avatar
thomwolf committed
595

VictorSanh's avatar
VictorSanh committed
596
            nb_eval_examples += input_ids.size(0)
597
            nb_eval_steps += 1
VictorSanh's avatar
WIP  
VictorSanh committed
598

599
600
        eval_loss = eval_loss / nb_eval_steps
        eval_accuracy = eval_accuracy / nb_eval_examples
601
        loss = tr_loss/nb_tr_steps if args.do_train else None
602
603
604
        result = {'eval_loss': eval_loss,
                  'eval_accuracy': eval_accuracy,
                  'global_step': global_step,
605
                  'loss': loss}
VictorSanh's avatar
WIP  
VictorSanh committed
606
607

        output_eval_file = os.path.join(args.output_dir, "eval_results.txt")
VictorSanh's avatar
wip  
VictorSanh committed
608
609
        with open(output_eval_file, "w") as writer:
            logger.info("***** Eval results *****")
VictorSanh's avatar
WIP  
VictorSanh committed
610
            for key in sorted(result.keys()):
VictorSanh's avatar
wip  
VictorSanh committed
611
                logger.info("  %s = %s", key, str(result[key]))
VictorSanh's avatar
WIP  
VictorSanh committed
612
                writer.write("%s = %s\n" % (key, str(result[key])))
613

VictorSanh's avatar
WIP  
VictorSanh committed
614
615
if __name__ == "__main__":
    main()