modeling_transfo_xl.py 55.2 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team.
thomwolf's avatar
thomwolf committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch Transformer XL model.
17
    Adapted from https://github.com/kimiyoung/transformer-xl.
thomwolf's avatar
thomwolf committed
18
19
20
    In particular https://github.com/kimiyoung/transformer-xl/blob/master/pytorch/mem_transformer.py
"""

21
22
from __future__ import absolute_import, division, print_function, unicode_literals

thomwolf's avatar
thomwolf committed
23
24
25
26
27
28
import os
import copy
import json
import math
import logging
import collections
thomwolf's avatar
thomwolf committed
29
30
import sys
from io import open
thomwolf's avatar
thomwolf committed
31
32
33

import torch
import torch.nn as nn
34
import torch.nn.functional as F
thomwolf's avatar
thomwolf committed
35
36
37
38
from torch.nn import CrossEntropyLoss
from torch.nn.parameter import Parameter

from .modeling import BertLayerNorm as LayerNorm
thomwolf's avatar
thomwolf committed
39
from .modeling_transfo_xl_utilities import ProjectedAdaptiveLogSoftmax, sample_logits
40
from .file_utils import cached_path
41
from .model_utils import CONFIG_NAME, WEIGHTS_NAME, PretrainedConfig, PreTrainedModel
thomwolf's avatar
thomwolf committed
42
43
44
45

logger = logging.getLogger(__name__)

PRETRAINED_MODEL_ARCHIVE_MAP = {
46
47
48
    'transfo-xl-wt103': "https://s3.amazonaws.com/models.huggingface.co/bert/transfo-xl-wt103-pytorch_model.bin",
}
PRETRAINED_CONFIG_ARCHIVE_MAP = {
thomwolf's avatar
thomwolf committed
49
    'transfo-xl-wt103': "https://s3.amazonaws.com/models.huggingface.co/bert/transfo-xl-wt103-config.json",
thomwolf's avatar
thomwolf committed
50
}
51

52
53
54
55
56
def build_tf_to_pytorch_map(model, config):
    """ A map of modules from TF to PyTorch.
        This time I use a map to keep the PyTorch model as identical to the original PyTorch model as possible.
    """
    tf_to_pt_map = {}
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83

    if hasattr(model, 'transformer'):
        # We are loading in a TransfoXLLMHeadModel => we will load also the Adaptive Softmax
        tf_to_pt_map.update({
            "transformer/adaptive_softmax/cutoff_0/cluster_W": model.crit.cluster_weight,
            "transformer/adaptive_softmax/cutoff_0/cluster_b": model.crit.cluster_bias})
        for i, (out_l, proj_l, tie_proj) in enumerate(zip(
                                model.crit.out_layers,
                                model.crit.out_projs,
                                config.tie_projs)):
            layer_str = "transformer/adaptive_softmax/cutoff_%d/" % i
            if config.tie_weight:
                tf_to_pt_map.update({
                    layer_str + 'b': out_l.bias})
            else:
                raise NotImplementedError
                # I don't think this is implemented in the TF code
                tf_to_pt_map.update({
                    layer_str + 'lookup_table': out_l.weight,
                    layer_str + 'b': out_l.bias})
            if not tie_proj:
                tf_to_pt_map.update({
                    layer_str + 'proj': proj_l
                    })
        # Now load the rest of the transformer
        model = model.transformer

thomwolf's avatar
thomwolf committed
84
    # Embeddings
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
    for i, (embed_l, proj_l) in enumerate(zip(model.word_emb.emb_layers, model.word_emb.emb_projs)):
        layer_str = "transformer/adaptive_embed/cutoff_%d/" % i
        tf_to_pt_map.update({
            layer_str + 'lookup_table': embed_l.weight,
            layer_str + 'proj_W': proj_l
            })

    # Transformer blocks
    for i, b in enumerate(model.layers):
        layer_str = "transformer/layer_%d/" % i
        tf_to_pt_map.update({
            layer_str + "rel_attn/LayerNorm/gamma": b.dec_attn.layer_norm.weight,
            layer_str + "rel_attn/LayerNorm/beta": b.dec_attn.layer_norm.bias,
            layer_str + "rel_attn/o/kernel": b.dec_attn.o_net.weight,
            layer_str + "rel_attn/qkv/kernel": b.dec_attn.qkv_net.weight,
            layer_str + "rel_attn/r/kernel": b.dec_attn.r_net.weight,
            layer_str + "ff/LayerNorm/gamma": b.pos_ff.layer_norm.weight,
            layer_str + "ff/LayerNorm/beta": b.pos_ff.layer_norm.bias,
            layer_str + "ff/layer_1/kernel": b.pos_ff.CoreNet[0].weight,
            layer_str + "ff/layer_1/bias": b.pos_ff.CoreNet[0].bias,
            layer_str + "ff/layer_2/kernel": b.pos_ff.CoreNet[3].weight,
            layer_str + "ff/layer_2/bias": b.pos_ff.CoreNet[3].bias,
        })

    # Relative positioning biases
    if config.untie_r:
        r_r_list = []
        r_w_list = []
        for b in model.layers:
            r_r_list.append(b.dec_attn.r_r_bias)
            r_w_list.append(b.dec_attn.r_w_bias)
    else:
        r_r_list = [model.r_r_bias]
        r_w_list = [model.r_w_bias]
    tf_to_pt_map.update({
        'transformer/r_r_bias': r_r_list,
        'transformer/r_w_bias': r_w_list})
    return tf_to_pt_map

def load_tf_weights_in_transfo_xl(model, config, tf_path):
    """ Load tf checkpoints in a pytorch model
    """
127
128
129
    try:
        import numpy as np
        import tensorflow as tf
thomwolf's avatar
thomwolf committed
130
    except ImportError:
131
132
133
        print("Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see "
            "https://www.tensorflow.org/install/ for installation instructions.")
        raise
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
    # Build TF to PyTorch weights loading map
    tf_to_pt_map = build_tf_to_pytorch_map(model, config)

    # Load weights from TF model
    init_vars = tf.train.list_variables(tf_path)
    tf_weights = {}
    for name, shape in init_vars:
        print("Loading TF weight {} with shape {}".format(name, shape))
        array = tf.train.load_variable(tf_path, name)
        tf_weights[name] = array

    for name, pointer in tf_to_pt_map.items():
        assert name in tf_weights
        array = tf_weights[name]
        # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
        # which are not required for using pretrained model
        if 'kernel' in name or 'proj' in name:
            array = np.transpose(array)
        if ('r_r_bias' in name or 'r_w_bias' in name) and len(pointer) > 1:
            # Here we will split the TF weigths
            assert len(pointer) == array.shape[0]
            for i, p_i in enumerate(pointer):
                arr_i = array[i, ...]
                try:
                    assert p_i.shape == arr_i.shape
                except AssertionError as e:
                    e.args += (p_i.shape, arr_i.shape)
                    raise
                print("Initialize PyTorch weight {} for layer {}".format(name, i))
                p_i.data = torch.from_numpy(arr_i)
        else:
            try:
                assert pointer.shape == array.shape
            except AssertionError as e:
                e.args += (pointer.shape, array.shape)
                raise
            print("Initialize PyTorch weight {}".format(name))
            pointer.data = torch.from_numpy(array)
        tf_weights.pop(name, None)
        tf_weights.pop(name + '/Adam', None)
        tf_weights.pop(name + '/Adam_1', None)

    print("Weights not copied to PyTorch model: {}".format(', '.join(tf_weights.keys())))
    return model


180
class TransfoXLConfig(PretrainedConfig):
thomwolf's avatar
thomwolf committed
181
182
    """Configuration class to store the configuration of a `TransfoXLModel`.
    """
183
184
    pretrained_config_archive_map = PRETRAINED_CONFIG_ARCHIVE_MAP

thomwolf's avatar
thomwolf committed
185
186
187
    def __init__(self,
                 vocab_size_or_config_json_file=267735,
                 cutoffs=[20000, 40000, 200000],
thomwolf's avatar
thomwolf committed
188
189
190
191
192
193
                 d_model=1024,
                 d_embed=1024,
                 n_head=16,
                 d_head=64,
                 d_inner=4096,
                 div_val=4,
thomwolf's avatar
thomwolf committed
194
                 pre_lnorm=False,
thomwolf's avatar
thomwolf committed
195
                 n_layer=18,
196
                 tgt_len=128,
thomwolf's avatar
thomwolf committed
197
                 ext_len=0,
198
199
200
201
                 mem_len=1600,
                 clamp_len=1000,
                 same_length=True,
                 proj_share_all_but_first=True,
thomwolf's avatar
thomwolf committed
202
203
204
                 attn_type=0,
                 sample_softmax=-1,
                 adaptive=True,
thomwolf's avatar
thomwolf committed
205
                 tie_weight=True,
thomwolf's avatar
thomwolf committed
206
207
                 dropout=0.1,
                 dropatt=0.0,
thomwolf's avatar
thomwolf committed
208
                 untie_r=True,
thomwolf's avatar
thomwolf committed
209
210
211
                 init="normal",
                 init_range=0.01,
                 proj_init_std=0.01,
thomwolf's avatar
thomwolf committed
212
213
                 init_std=0.02,
                 **kwargs):
thomwolf's avatar
thomwolf committed
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
        """Constructs TransfoXLConfig.

        Args:
            vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `TransfoXLModel` or a configuration json file.
            cutoffs: cutoffs for the adaptive softmax
            d_model: Dimensionality of the model's hidden states.
            d_embed: Dimensionality of the embeddings
            d_head: Dimensionality of the model's heads.
            div_val: divident value for adapative input and softmax
            pre_lnorm: apply LayerNorm to the input instead of the output
            d_inner: Inner dimension in FF
            n_layer: Number of hidden layers in the Transformer encoder.
            n_head: Number of attention heads for each attention layer in
                the Transformer encoder.
            tgt_len: number of tokens to predict
            ext_len: length of the extended context
            mem_len: length of the retained previous heads
            same_length: use the same attn length for all tokens
232
            proj_share_all_but_first: True to share all but first projs, False not to share.
thomwolf's avatar
thomwolf committed
233
234
235
236
            attn_type: attention type. 0 for Transformer-XL, 1 for Shaw et al, 2 for Vaswani et al, 3 for Al Rfou et al.
            clamp_len: use the same pos embeddings after clamp_len
            sample_softmax: number of samples in sampled softmax
            adaptive: use adaptive softmax
thomwolf's avatar
thomwolf committed
237
            tie_weight: tie the word embedding and softmax weights
thomwolf's avatar
thomwolf committed
238
239
240
            dropout: The dropout probabilitiy for all fully connected
                layers in the embeddings, encoder, and pooler.
            dropatt: The dropout ratio for the attention probabilities.
thomwolf's avatar
thomwolf committed
241
            untie_r: untie relative position biases
thomwolf's avatar
thomwolf committed
242
243
244
245
246
247
            embd_pdrop: The dropout ratio for the embeddings.
            init: parameter initializer to use
            init_range: parameters initialized by U(-init_range, init_range).
            proj_init_std: parameters initialized by N(0, init_std)
            init_std: parameters initialized by N(0, init_std)
        """
thomwolf's avatar
thomwolf committed
248
249
        super(TransfoXLConfig, self).__init__(**kwargs)

thomwolf's avatar
thomwolf committed
250
251
        if isinstance(vocab_size_or_config_json_file, str) or (sys.version_info[0] == 2
                        and isinstance(vocab_size_or_config_json_file, unicode)):
thomwolf's avatar
thomwolf committed
252
253
254
255
256
            with open(vocab_size_or_config_json_file, "r", encoding='utf-8') as reader:
                json_config = json.loads(reader.read())
            for key, value in json_config.items():
                self.__dict__[key] = value
        elif isinstance(vocab_size_or_config_json_file, int):
thomwolf's avatar
thomwolf committed
257
            self.n_token = vocab_size_or_config_json_file
thomwolf's avatar
thomwolf committed
258
259
            self.cutoffs = []
            self.cutoffs.extend(cutoffs)
thomwolf's avatar
thomwolf committed
260
            self.tie_weight = tie_weight
261
262
263
264
            if proj_share_all_but_first:
                self.tie_projs = [False] + [True] * len(self.cutoffs)
            else:
                self.tie_projs = [False] + [False] * len(self.cutoffs)
thomwolf's avatar
thomwolf committed
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
            self.d_model = d_model
            self.d_embed = d_embed
            self.d_head = d_head
            self.d_inner = d_inner
            self.div_val = div_val
            self.pre_lnorm = pre_lnorm
            self.n_layer = n_layer
            self.n_head = n_head
            self.tgt_len = tgt_len
            self.ext_len = ext_len
            self.mem_len = mem_len
            self.same_length = same_length
            self.attn_type = attn_type
            self.clamp_len = clamp_len
            self.sample_softmax = sample_softmax
            self.adaptive = adaptive
            self.dropout = dropout
            self.dropatt = dropatt
thomwolf's avatar
thomwolf committed
283
            self.untie_r = untie_r
thomwolf's avatar
thomwolf committed
284
285
286
287
288
289
290
291
292
            self.init = init
            self.init_range = init_range
            self.proj_init_std = proj_init_std
            self.init_std = init_std
        else:
            raise ValueError("First argument must be either a vocabulary size (int)"
                             "or the path to a pretrained model config file (str)")


thomwolf's avatar
thomwolf committed
293

thomwolf's avatar
thomwolf committed
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
class PositionalEmbedding(nn.Module):
    def __init__(self, demb):
        super(PositionalEmbedding, self).__init__()

        self.demb = demb

        inv_freq = 1 / (10000 ** (torch.arange(0.0, demb, 2.0) / demb))
        self.register_buffer('inv_freq', inv_freq)

    def forward(self, pos_seq, bsz=None):
        sinusoid_inp = torch.ger(pos_seq, self.inv_freq)
        pos_emb = torch.cat([sinusoid_inp.sin(), sinusoid_inp.cos()], dim=-1)

        if bsz is not None:
            return pos_emb[:,None,:].expand(-1, bsz, -1)
        else:
            return pos_emb[:,None,:]


thomwolf's avatar
thomwolf committed
313

thomwolf's avatar
thomwolf committed
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
class PositionwiseFF(nn.Module):
    def __init__(self, d_model, d_inner, dropout, pre_lnorm=False):
        super(PositionwiseFF, self).__init__()

        self.d_model = d_model
        self.d_inner = d_inner
        self.dropout = dropout

        self.CoreNet = nn.Sequential(
            nn.Linear(d_model, d_inner), nn.ReLU(inplace=True),
            nn.Dropout(dropout),
            nn.Linear(d_inner, d_model),
            nn.Dropout(dropout),
        )

thomwolf's avatar
thomwolf committed
329
        self.layer_norm = LayerNorm(d_model)
thomwolf's avatar
thomwolf committed
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348

        self.pre_lnorm = pre_lnorm

    def forward(self, inp):
        if self.pre_lnorm:
            ##### layer normalization + positionwise feed-forward
            core_out = self.CoreNet(self.layer_norm(inp))

            ##### residual connection
            output = core_out + inp
        else:
            ##### positionwise feed-forward
            core_out = self.CoreNet(inp)

            ##### residual connection + layer normalization
            output = self.layer_norm(inp + core_out)

        return output

thomwolf's avatar
thomwolf committed
349
350


thomwolf's avatar
thomwolf committed
351
352
class MultiHeadAttn(nn.Module):
    def __init__(self, n_head, d_model, d_head, dropout, dropatt=0, 
thomwolf's avatar
thomwolf committed
353
                 pre_lnorm=False, r_r_bias=None, r_w_bias=None, output_attentions=False):
thomwolf's avatar
thomwolf committed
354
355
        super(MultiHeadAttn, self).__init__()

thomwolf's avatar
thomwolf committed
356
        self.output_attentions = output_attentions
thomwolf's avatar
thomwolf committed
357
358
359
360
361
362
363
364
365
366
367
368
        self.n_head = n_head
        self.d_model = d_model
        self.d_head = d_head
        self.dropout = dropout

        self.q_net = nn.Linear(d_model, n_head * d_head, bias=False)
        self.kv_net = nn.Linear(d_model, 2 * n_head * d_head, bias=False)

        self.drop = nn.Dropout(dropout)
        self.dropatt = nn.Dropout(dropatt)
        self.o_net = nn.Linear(n_head * d_head, d_model, bias=False)

thomwolf's avatar
thomwolf committed
369
        self.layer_norm = LayerNorm(d_model)
thomwolf's avatar
thomwolf committed
370
371
372
373
374

        self.scale = 1 / (d_head ** 0.5)

        self.pre_lnorm = pre_lnorm

thomwolf's avatar
thomwolf committed
375
376
377
378
379
380
381
        if r_r_bias is None or r_w_bias is None: # Biases are not shared
            self.r_r_bias = nn.Parameter(torch.Tensor(self.n_head, self.d_head))
            self.r_w_bias = nn.Parameter(torch.Tensor(self.n_head, self.d_head))
        else:
            self.r_r_bias = r_r_bias
            self.r_w_bias = r_w_bias

thomwolf's avatar
thomwolf committed
382
    def forward(self, h, attn_mask=None, mems=None, head_mask=None):
thomwolf's avatar
thomwolf committed
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
        ##### multihead attention
        # [hlen x bsz x n_head x d_head]

        if mems is not None:
            c = torch.cat([mems, h], 0)
        else:
            c = h

        if self.pre_lnorm:
            ##### layer normalization
            c = self.layer_norm(c)

        head_q = self.q_net(h)
        head_k, head_v = torch.chunk(self.kv_net(c), 2, -1)

        head_q = head_q.view(h.size(0), h.size(1), self.n_head, self.d_head)
        head_k = head_k.view(c.size(0), c.size(1), self.n_head, self.d_head)
        head_v = head_v.view(c.size(0), c.size(1), self.n_head, self.d_head)

        # [qlen x klen x bsz x n_head]
        attn_score = torch.einsum('ibnd,jbnd->ijbn', (head_q, head_k))
        attn_score.mul_(self.scale)
        if attn_mask is not None and attn_mask.any().item():
            if attn_mask.dim() == 2:
                attn_score.masked_fill_(attn_mask[None,:,:,None], -float('inf'))
            elif attn_mask.dim() == 3:
                attn_score.masked_fill_(attn_mask[:,:,:,None], -float('inf'))

        # [qlen x klen x bsz x n_head]
        attn_prob = F.softmax(attn_score, dim=1)
        attn_prob = self.dropatt(attn_prob)

thomwolf's avatar
thomwolf committed
415
416
417
418
        # Mask heads if we want to
        if head_mask is not None:
            attn_prob = attn_prob * head_mask

thomwolf's avatar
thomwolf committed
419
420
421
422
423
424
425
426
427
428
429
        # [qlen x klen x bsz x n_head] + [klen x bsz x n_head x d_head] -> [qlen x bsz x n_head x d_head]
        attn_vec = torch.einsum('ijbn,jbnd->ibnd', (attn_prob, head_v))
        attn_vec = attn_vec.contiguous().view(
            attn_vec.size(0), attn_vec.size(1), self.n_head * self.d_head)

        ##### linear projection
        attn_out = self.o_net(attn_vec)
        attn_out = self.drop(attn_out)

        if self.pre_lnorm:
            ##### residual connection
thomwolf's avatar
thomwolf committed
430
            outputs = [h + attn_out]
thomwolf's avatar
thomwolf committed
431
432
        else:
            ##### residual connection + layer normalization
thomwolf's avatar
thomwolf committed
433
            outputs = [self.layer_norm(h + attn_out)]
thomwolf's avatar
thomwolf committed
434

thomwolf's avatar
thomwolf committed
435
436
437
438
        if self.output_attentions:
            outputs.append(attn_prob)

        return outputs
thomwolf's avatar
thomwolf committed
439
440
441

class RelMultiHeadAttn(nn.Module):
    def __init__(self, n_head, d_model, d_head, dropout, dropatt=0,
thomwolf's avatar
thomwolf committed
442
                 tgt_len=None, ext_len=None, mem_len=None, pre_lnorm=False,
thomwolf's avatar
thomwolf committed
443
                 r_r_bias=None, r_w_bias=None, output_attentions=False):
thomwolf's avatar
thomwolf committed
444
445
        super(RelMultiHeadAttn, self).__init__()

thomwolf's avatar
thomwolf committed
446
        self.output_attentions = output_attentions
thomwolf's avatar
thomwolf committed
447
448
449
450
451
452
453
454
455
456
457
        self.n_head = n_head
        self.d_model = d_model
        self.d_head = d_head
        self.dropout = dropout

        self.qkv_net = nn.Linear(d_model, 3 * n_head * d_head, bias=False)

        self.drop = nn.Dropout(dropout)
        self.dropatt = nn.Dropout(dropatt)
        self.o_net = nn.Linear(n_head * d_head, d_model, bias=False)

thomwolf's avatar
thomwolf committed
458
        self.layer_norm = LayerNorm(d_model)
thomwolf's avatar
thomwolf committed
459
460
461
462
463

        self.scale = 1 / (d_head ** 0.5)

        self.pre_lnorm = pre_lnorm

thomwolf's avatar
thomwolf committed
464
465
466
467
468
469
470
        if r_r_bias is None or r_w_bias is None: # Biases are not shared
            self.r_r_bias = nn.Parameter(torch.Tensor(self.n_head, self.d_head))
            self.r_w_bias = nn.Parameter(torch.Tensor(self.n_head, self.d_head))
        else:
            self.r_r_bias = r_r_bias
            self.r_w_bias = r_w_bias

thomwolf's avatar
thomwolf committed
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
    def _parallelogram_mask(self, h, w, left=False):
        mask = torch.ones((h, w)).byte()
        m = min(h, w)
        mask[:m,:m] = torch.triu(mask[:m,:m])
        mask[-m:,-m:] = torch.tril(mask[-m:,-m:])

        if left:
            return mask
        else:
            return mask.flip(0)

    def _shift(self, x, qlen, klen, mask, left=False):
        if qlen > 1:
            zero_pad = torch.zeros((x.size(0), qlen-1, x.size(2), x.size(3)),
                                    device=x.device, dtype=x.dtype)
        else:
            zero_pad = torch.zeros(0, device=x.device, dtype=x.dtype)

        if left:
            mask = mask.flip(1)
            x_padded = torch.cat([zero_pad, x], dim=1).expand(qlen, -1, -1, -1)
        else:
            x_padded = torch.cat([x, zero_pad], dim=1).expand(qlen, -1, -1, -1)

        x = x_padded.masked_select(mask[:,:,None,None]) \
                    .view(qlen, klen, x.size(2), x.size(3))

        return x

    def _rel_shift(self, x, zero_triu=False):
thomwolf's avatar
thomwolf committed
501
502
        zero_pad_shape = (x.size(0), 1) + x.size()[2:]
        zero_pad = torch.zeros(zero_pad_shape, device=x.device, dtype=x.dtype)
thomwolf's avatar
thomwolf committed
503
504
        x_padded = torch.cat([zero_pad, x], dim=1)

thomwolf's avatar
thomwolf committed
505
506
        x_padded_shape = (x.size(1) + 1, x.size(0)) + x.size()[2:]
        x_padded = x_padded.view(*x_padded_shape)
thomwolf's avatar
thomwolf committed
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524

        x = x_padded[1:].view_as(x)

        if zero_triu:
            ones = torch.ones((x.size(0), x.size(1)))
            x = x * torch.tril(ones, x.size(1) - x.size(0))[:,:,None,None]

        return x

    def forward(self, w, r, attn_mask=None, mems=None):
        raise NotImplementedError

class RelPartialLearnableMultiHeadAttn(RelMultiHeadAttn):
    def __init__(self, *args, **kwargs):
        super(RelPartialLearnableMultiHeadAttn, self).__init__(*args, **kwargs)

        self.r_net = nn.Linear(self.d_model, self.n_head * self.d_head, bias=False)

thomwolf's avatar
thomwolf committed
525
    def forward(self, w, r, attn_mask=None, mems=None, head_mask=None):
thomwolf's avatar
thomwolf committed
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
        qlen, rlen, bsz = w.size(0), r.size(0), w.size(1)

        if mems is not None:
            cat = torch.cat([mems, w], 0)
            if self.pre_lnorm:
                w_heads = self.qkv_net(self.layer_norm(cat))
            else:
                w_heads = self.qkv_net(cat)
            r_head_k = self.r_net(r)

            w_head_q, w_head_k, w_head_v = torch.chunk(w_heads, 3, dim=-1)
            w_head_q = w_head_q[-qlen:]
        else:
            if self.pre_lnorm:
                w_heads = self.qkv_net(self.layer_norm(w))
            else:
                w_heads = self.qkv_net(w)
            r_head_k = self.r_net(r)

            w_head_q, w_head_k, w_head_v = torch.chunk(w_heads, 3, dim=-1)

        klen = w_head_k.size(0)

        w_head_q = w_head_q.view(qlen, bsz, self.n_head, self.d_head)           # qlen x bsz x n_head x d_head
        w_head_k = w_head_k.view(klen, bsz, self.n_head, self.d_head)           # qlen x bsz x n_head x d_head
        w_head_v = w_head_v.view(klen, bsz, self.n_head, self.d_head)           # qlen x bsz x n_head x d_head

        r_head_k = r_head_k.view(rlen, self.n_head, self.d_head)                # qlen x n_head x d_head

        #### compute attention score
556
        rw_head_q = w_head_q + self.r_w_bias                                    # qlen x bsz x n_head x d_head
thomwolf's avatar
thomwolf committed
557
558
        AC = torch.einsum('ibnd,jbnd->ijbn', (rw_head_q, w_head_k))             # qlen x klen x bsz x n_head

thomwolf's avatar
thomwolf committed
559
        rr_head_q = w_head_q + self.r_r_bias
thomwolf's avatar
thomwolf committed
560
561
562
563
564
565
566
567
568
569
570
        BD = torch.einsum('ibnd,jnd->ijbn', (rr_head_q, r_head_k))              # qlen x klen x bsz x n_head
        BD = self._rel_shift(BD)

        # [qlen x klen x bsz x n_head]
        attn_score = AC + BD
        attn_score.mul_(self.scale)

        #### compute attention probability
        if attn_mask is not None and attn_mask.any().item():
            if attn_mask.dim() == 2:
                attn_score = attn_score.float().masked_fill(
571
                    attn_mask[None,:,:,None], -1e30).type_as(attn_score)
thomwolf's avatar
thomwolf committed
572
573
            elif attn_mask.dim() == 3:
                attn_score = attn_score.float().masked_fill(
574
                    attn_mask[:,:,:,None], -1e30).type_as(attn_score)
thomwolf's avatar
thomwolf committed
575
576
577
578
579

        # [qlen x klen x bsz x n_head]
        attn_prob = F.softmax(attn_score, dim=1)
        attn_prob = self.dropatt(attn_prob)

thomwolf's avatar
thomwolf committed
580
581
582
583
        # Mask heads if we want to
        if head_mask is not None:
            attn_prob = attn_prob * head_mask

thomwolf's avatar
thomwolf committed
584
585
586
587
588
589
590
591
592
593
594
595
596
        #### compute attention vector
        attn_vec = torch.einsum('ijbn,jbnd->ibnd', (attn_prob, w_head_v))

        # [qlen x bsz x n_head x d_head]
        attn_vec = attn_vec.contiguous().view(
            attn_vec.size(0), attn_vec.size(1), self.n_head * self.d_head)

        ##### linear projection
        attn_out = self.o_net(attn_vec)
        attn_out = self.drop(attn_out)

        if self.pre_lnorm:
            ##### residual connection
thomwolf's avatar
thomwolf committed
597
            outputs = [w + attn_out]
thomwolf's avatar
thomwolf committed
598
599
        else:
            ##### residual connection + layer normalization
thomwolf's avatar
thomwolf committed
600
            outputs = [self.layer_norm(w + attn_out)]
thomwolf's avatar
thomwolf committed
601

thomwolf's avatar
thomwolf committed
602
603
604
605
        if self.output_attentions:
            outputs.append(attn_prob)

        return outputs
thomwolf's avatar
thomwolf committed
606
607
608
609
610

class RelLearnableMultiHeadAttn(RelMultiHeadAttn):
    def __init__(self, *args, **kwargs):
        super(RelLearnableMultiHeadAttn, self).__init__(*args, **kwargs)

thomwolf's avatar
thomwolf committed
611
    def forward(self, w, r_emb, r_w_bias, r_bias, attn_mask=None, mems=None, head_mask=None):
thomwolf's avatar
thomwolf committed
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
        # r_emb: [klen, n_head, d_head], used for term B
        # r_w_bias: [n_head, d_head], used for term C
        # r_bias: [klen, n_head], used for term D

        qlen, bsz = w.size(0), w.size(1)

        if mems is not None:
            cat = torch.cat([mems, w], 0)
            if self.pre_lnorm:
                w_heads = self.qkv_net(self.layer_norm(cat))
            else:
                w_heads = self.qkv_net(cat)
            w_head_q, w_head_k, w_head_v = torch.chunk(w_heads, 3, dim=-1)

            w_head_q = w_head_q[-qlen:]
        else:
            if self.pre_lnorm:
                w_heads = self.qkv_net(self.layer_norm(w))
            else:
                w_heads = self.qkv_net(w)
            w_head_q, w_head_k, w_head_v = torch.chunk(w_heads, 3, dim=-1)

        klen = w_head_k.size(0)

        w_head_q = w_head_q.view(qlen, bsz, self.n_head, self.d_head)
        w_head_k = w_head_k.view(klen, bsz, self.n_head, self.d_head)
        w_head_v = w_head_v.view(klen, bsz, self.n_head, self.d_head)

        if klen > r_emb.size(0):
            r_emb_pad = r_emb[0:1].expand(klen-r_emb.size(0), -1, -1)
            r_emb = torch.cat([r_emb_pad, r_emb], 0)
            r_bias_pad = r_bias[0:1].expand(klen-r_bias.size(0), -1)
            r_bias = torch.cat([r_bias_pad, r_bias], 0)
        else:
            r_emb = r_emb[-klen:]
            r_bias = r_bias[-klen:]

        #### compute attention score
        rw_head_q = w_head_q + r_w_bias[None]                                   # qlen x bsz x n_head x d_head

        AC = torch.einsum('ibnd,jbnd->ijbn', (rw_head_q, w_head_k))             # qlen x klen x bsz x n_head
        B_ = torch.einsum('ibnd,jnd->ijbn', (w_head_q, r_emb))                  # qlen x klen x bsz x n_head
        D_ = r_bias[None, :, None]                                              # 1    x klen x 1   x n_head
        BD = self._rel_shift(B_ + D_)

        # [qlen x klen x bsz x n_head]
        attn_score = AC + BD
        attn_score.mul_(self.scale)

        #### compute attention probability
        if attn_mask is not None and attn_mask.any().item():
            if attn_mask.dim() == 2:
                attn_score.masked_fill_(attn_mask[None,:,:,None], -float('inf'))
            elif attn_mask.dim() == 3:
                attn_score.masked_fill_(attn_mask[:,:,:,None], -float('inf'))

        # [qlen x klen x bsz x n_head]
        attn_prob = F.softmax(attn_score, dim=1)
        attn_prob = self.dropatt(attn_prob)

thomwolf's avatar
thomwolf committed
672
673
674
        if head_mask is not None:
            attn_prob = attn_prob * head_mask

thomwolf's avatar
thomwolf committed
675
676
677
678
679
680
681
682
683
684
685
686
687
        #### compute attention vector
        attn_vec = torch.einsum('ijbn,jbnd->ibnd', (attn_prob, w_head_v))

        # [qlen x bsz x n_head x d_head]
        attn_vec = attn_vec.contiguous().view(
            attn_vec.size(0), attn_vec.size(1), self.n_head * self.d_head)

        ##### linear projection
        attn_out = self.o_net(attn_vec)
        attn_out = self.drop(attn_out)

        if self.pre_lnorm:
            ##### residual connection
thomwolf's avatar
thomwolf committed
688
            outputs = [w + attn_out]
thomwolf's avatar
thomwolf committed
689
690
        else:
            ##### residual connection + layer normalization
thomwolf's avatar
thomwolf committed
691
692
693
694
695
696
697
            outputs = [self.layer_norm(w + attn_out)]

        if self.output_attentions:
            outputs.append(attn_prob)

        return outputs

thomwolf's avatar
thomwolf committed
698
699
700
701
702
703
704
705
706
707


class DecoderLayer(nn.Module):
    def __init__(self, n_head, d_model, d_head, d_inner, dropout, **kwargs):
        super(DecoderLayer, self).__init__()

        self.dec_attn = MultiHeadAttn(n_head, d_model, d_head, dropout, **kwargs)
        self.pos_ff = PositionwiseFF(d_model, d_inner, dropout, 
                                     pre_lnorm=kwargs.get('pre_lnorm'))

thomwolf's avatar
thomwolf committed
708
    def forward(self, dec_inp, dec_attn_mask=None, mems=None, head_mask=None):
thomwolf's avatar
thomwolf committed
709

thomwolf's avatar
thomwolf committed
710
711
712
        attn_outputs = self.dec_attn(dec_inp, attn_mask=dec_attn_mask,
                               mems=mems, head_mask=head_mask)
        ff_output = self.pos_ff(attn_outputs[0])
thomwolf's avatar
thomwolf committed
713

thomwolf's avatar
thomwolf committed
714
715
716
        outputs = [ff_output] + attn_outputs[1:]

        return outputs
thomwolf's avatar
thomwolf committed
717
718
719
720
721
722
723
724
725
726
727

class RelLearnableDecoderLayer(nn.Module):
    def __init__(self, n_head, d_model, d_head, d_inner, dropout,
                 **kwargs):
        super(RelLearnableDecoderLayer, self).__init__()

        self.dec_attn = RelLearnableMultiHeadAttn(n_head, d_model, d_head, dropout,
                                         **kwargs)
        self.pos_ff = PositionwiseFF(d_model, d_inner, dropout, 
                                     pre_lnorm=kwargs.get('pre_lnorm'))

thomwolf's avatar
thomwolf committed
728
    def forward(self, dec_inp, r_emb, r_w_bias, r_bias, dec_attn_mask=None, mems=None, head_mask=None):
thomwolf's avatar
thomwolf committed
729

thomwolf's avatar
thomwolf committed
730
        attn_outputs = self.dec_attn(dec_inp, r_emb, r_w_bias, r_bias,
thomwolf's avatar
thomwolf committed
731
                               attn_mask=dec_attn_mask,
thomwolf's avatar
thomwolf committed
732
733
                               mems=mems, head_mask=head_mask)
        ff_output = self.pos_ff(attn_outputs[0])
thomwolf's avatar
thomwolf committed
734

thomwolf's avatar
thomwolf committed
735
736
737
        outputs = [ff_output] + attn_outputs[1:]

        return outputs
thomwolf's avatar
thomwolf committed
738
739
740
741
742
743
744
745
746
747
748

class RelPartialLearnableDecoderLayer(nn.Module):
    def __init__(self, n_head, d_model, d_head, d_inner, dropout,
                 **kwargs):
        super(RelPartialLearnableDecoderLayer, self).__init__()

        self.dec_attn = RelPartialLearnableMultiHeadAttn(n_head, d_model,
                            d_head, dropout, **kwargs)
        self.pos_ff = PositionwiseFF(d_model, d_inner, dropout, 
                                     pre_lnorm=kwargs.get('pre_lnorm'))

thomwolf's avatar
thomwolf committed
749
    def forward(self, dec_inp, r, dec_attn_mask=None, mems=None, head_mask=None):
thomwolf's avatar
thomwolf committed
750

thomwolf's avatar
thomwolf committed
751
        attn_outputs = self.dec_attn(dec_inp, r,
thomwolf's avatar
thomwolf committed
752
                               attn_mask=dec_attn_mask,
thomwolf's avatar
thomwolf committed
753
754
755
756
757
758
                               mems=mems, head_mask=head_mask)
        ff_output = self.pos_ff(attn_outputs[0])

        outputs = [ff_output] + attn_outputs[1:]

        return outputs
thomwolf's avatar
thomwolf committed
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817



class AdaptiveEmbedding(nn.Module):
    def __init__(self, n_token, d_embed, d_proj, cutoffs, div_val=1, 
                 sample_softmax=False):
        super(AdaptiveEmbedding, self).__init__()

        self.n_token = n_token
        self.d_embed = d_embed

        self.cutoffs = cutoffs + [n_token]
        self.div_val = div_val
        self.d_proj = d_proj

        self.emb_scale = d_proj ** 0.5

        self.cutoff_ends = [0] + self.cutoffs

        self.emb_layers = nn.ModuleList()
        self.emb_projs = nn.ParameterList()
        if div_val == 1:
            self.emb_layers.append(
                nn.Embedding(n_token, d_embed, sparse=sample_softmax>0)
            )
            if d_proj != d_embed:
                self.emb_projs.append(nn.Parameter(torch.Tensor(d_proj, d_embed)))
        else:
            for i in range(len(self.cutoffs)):
                l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i+1]
                d_emb_i = d_embed // (div_val ** i)
                self.emb_layers.append(nn.Embedding(r_idx-l_idx, d_emb_i))
                self.emb_projs.append(nn.Parameter(torch.Tensor(d_proj, d_emb_i)))

    def forward(self, inp):
        if self.div_val == 1:
            embed = self.emb_layers[0](inp)
            if self.d_proj != self.d_embed:
                embed  = F.linear(embed, self.emb_projs[0])
        else:
            param = next(self.parameters())
            inp_flat = inp.view(-1)
            emb_flat = torch.zeros([inp_flat.size(0), self.d_proj], 
                dtype=param.dtype, device=param.device)
            for i in range(len(self.cutoffs)):
                l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i + 1]

                mask_i = (inp_flat >= l_idx) & (inp_flat < r_idx)
                indices_i = mask_i.nonzero().squeeze()

                if indices_i.numel() == 0:
                    continue

                inp_i = inp_flat.index_select(0, indices_i) - l_idx
                emb_i = self.emb_layers[i](inp_i)
                emb_i = F.linear(emb_i, self.emb_projs[i])

                emb_flat.index_copy_(0, indices_i, emb_i)

thomwolf's avatar
thomwolf committed
818
819
            embed_shape = inp.size() + (self.d_proj,)
            embed = emb_flat.view(embed_shape)
thomwolf's avatar
thomwolf committed
820
821
822
823
824
825

        embed.mul_(self.emb_scale)

        return embed


826
class TransfoXLPreTrainedModel(PreTrainedModel):
827
828
829
    """ An abstract class to handle weights initialization and
        a simple interface for dowloading and loading pretrained models.
    """
830
831
832
833
834
835
    config_class = TransfoXLConfig
    pretrained_model_archive_map = PRETRAINED_MODEL_ARCHIVE_MAP
    load_tf_weights = load_tf_weights_in_transfo_xl
    base_model_prefix = "transformer"

    def _init_weight(self, weight):
836
837
838
839
        if self.config.init == 'uniform':
            nn.init.uniform_(weight, -self.config.init_range, self.config.init_range)
        elif self.config.init == 'normal':
            nn.init.normal_(weight, 0.0, self.config.init_std)
thomwolf's avatar
thomwolf committed
840

841
    def _init_bias(self, bias):
842
843
844
845
846
847
848
849
        nn.init.constant_(bias, 0.0)

    def init_weights(self, m):
        """ Initialize the weights.
        """
        classname = m.__class__.__name__
        if classname.find('Linear') != -1:
            if hasattr(m, 'weight') and m.weight is not None:
850
                self._init_weight(m.weight)
851
            if hasattr(m, 'bias') and m.bias is not None:
852
                self._init_bias(m.bias)
853
854
855
856
857
858
859
        elif classname.find('AdaptiveEmbedding') != -1:
            if hasattr(m, 'emb_projs'):
                for i in range(len(m.emb_projs)):
                    if m.emb_projs[i] is not None:
                        nn.init.normal_(m.emb_projs[i], 0.0, self.config.proj_init_std)
        elif classname.find('Embedding') != -1:
            if hasattr(m, 'weight'):
860
                self._init_weight(m.weight)
861
862
        elif classname.find('ProjectedAdaptiveLogSoftmax') != -1:
            if hasattr(m, 'cluster_weight') and m.cluster_weight is not None:
863
                self._init_weight(m.cluster_weight)
864
            if hasattr(m, 'cluster_bias') and m.cluster_bias is not None:
865
                self._init_bias(m.cluster_bias)
866
867
868
869
870
871
872
873
            if hasattr(m, 'out_projs'):
                for i in range(len(m.out_projs)):
                    if m.out_projs[i] is not None:
                        nn.init.normal_(m.out_projs[i], 0.0, self.config.proj_init_std)
        elif classname.find('LayerNorm') != -1:
            if hasattr(m, 'weight'):
                nn.init.normal_(m.weight, 1.0, self.config.init_std)
            if hasattr(m, 'bias') and m.bias is not None:
874
                self._init_bias(m.bias)
875
876
        elif classname.find('TransformerLM') != -1:
            if hasattr(m, 'r_emb'):
877
                self._init_weight(m.r_emb)
878
            if hasattr(m, 'r_w_bias'):
879
                self._init_weight(m.r_w_bias)
880
            if hasattr(m, 'r_r_bias'):
881
                self._init_weight(m.r_r_bias)
882
            if hasattr(m, 'r_bias'):
883
                self._init_bias(m.r_bias)
thomwolf's avatar
thomwolf committed
884

885
886
    def set_num_special_tokens(self, num_special_tokens):
        pass
thomwolf's avatar
thomwolf committed
887

888
889

class TransfoXLModel(TransfoXLPreTrainedModel):
thomwolf's avatar
thomwolf committed
890
891
892
893
894
895
896
897
898
899
    """Transformer XL model ("Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context").

    Transformer XL use a relative positioning (with sinusiodal patterns) and adaptive softmax inputs which means that:
    - you don't need to specify positioning embeddings indices
    - the tokens in the vocabulary have to be sorted to decreasing frequency.

    Params:
        config: a TransfoXLConfig class instance with the configuration to build a new model

    Inputs:
900
        `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
thomwolf's avatar
thomwolf committed
901
            with the token indices selected in the range [0, self.config.n_token[
thomwolf's avatar
thomwolf committed
902
903
904
        `mems`: optional memomry of hidden states from previous forward passes
            as a list (num layers) of hidden states at the entry of each layer
            each hidden states has shape [self.config.mem_len, bsz, self.config.d_model]
thomwolf's avatar
thomwolf committed
905
            Note that the first two dimensions are transposed in `mems` with regards to `input_ids` and `labels`
thomwolf's avatar
thomwolf committed
906
907
908
    Outputs:
        A tuple of (last_hidden_state, new_mems)
        `last_hidden_state`: the encoded-hidden-states at the top of the model
909
            as a torch.FloatTensor of size [batch_size, sequence_length, self.config.d_model]
thomwolf's avatar
thomwolf committed
910
911
        `new_mems`: list (num layers) of updated mem states at the entry of each layer
            each mem state is a torch.FloatTensor of size [self.config.mem_len, batch_size, self.config.d_model]
thomwolf's avatar
thomwolf committed
912
            Note that the first two dimensions are transposed in `mems` with regards to `input_ids` and `labels`
thomwolf's avatar
thomwolf committed
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928

    Example usage:
    ```python
    # Already been converted into BPE token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
    input_ids_next = torch.LongTensor([[53, 21, 1], [64, 23, 100]])

    config = TransfoXLConfig()

    model = TransfoXLModel(config)
    last_hidden_state, new_mems = model(input_ids)

    # Another time on input_ids_next using the memory:
    last_hidden_state, new_mems = model(input_ids_next, new_mems)
    ```
    """
929
930
    def __init__(self, config):
        super(TransfoXLModel, self).__init__(config)
thomwolf's avatar
thomwolf committed
931
932
933
        self.output_attentions = config.output_attentions
        self.output_hidden_states = config.output_hidden_states

934
935
936
937
938
939
940
941
942
        self.n_token = config.n_token

        self.d_embed = config.d_embed
        self.d_model = config.d_model
        self.n_head = config.n_head
        self.d_head = config.d_head

        self.word_emb = AdaptiveEmbedding(config.n_token, config.d_embed, config.d_model, config.cutoffs, 
                                          div_val=config.div_val)
thomwolf's avatar
thomwolf committed
943

944
        self.drop = nn.Dropout(config.dropout)
thomwolf's avatar
thomwolf committed
945

946
947
948
949
950
951
952
953
954
955
        self.n_layer = config.n_layer

        self.tgt_len = config.tgt_len
        self.mem_len = config.mem_len
        self.ext_len = config.ext_len
        self.max_klen = config.tgt_len + config.ext_len + config.mem_len

        self.attn_type = config.attn_type

        if not config.untie_r:
thomwolf's avatar
thomwolf committed
956
957
958
            self.r_w_bias = nn.Parameter(torch.Tensor(self.n_head, self.d_head))
            self.r_r_bias = nn.Parameter(torch.Tensor(self.n_head, self.d_head))

thomwolf's avatar
thomwolf committed
959
        self.layers = nn.ModuleList()
960
961
        if config.attn_type == 0: # the default attention
            for i in range(config.n_layer):
thomwolf's avatar
thomwolf committed
962
963
                self.layers.append(
                    RelPartialLearnableDecoderLayer(
964
965
966
967
                        config.n_head, config.d_model, config.d_head, config.d_inner, config.dropout,
                        tgt_len=config.tgt_len, ext_len=config.ext_len, mem_len=config.mem_len,
                        dropatt=config.dropatt, pre_lnorm=config.pre_lnorm,
                        r_w_bias=None if config.untie_r else self.r_w_bias,
thomwolf's avatar
thomwolf committed
968
969
                        r_r_bias=None if config.untie_r else self.r_r_bias,
                        output_attentions=self.output_attentions)
thomwolf's avatar
thomwolf committed
970
                )
971
972
        elif config.attn_type == 1: # learnable embeddings
            for i in range(config.n_layer):
thomwolf's avatar
thomwolf committed
973
974
                self.layers.append(
                    RelLearnableDecoderLayer(
975
976
977
978
                        config.n_head, config.d_model, config.d_head, config.d_inner, config.dropout,
                        tgt_len=config.tgt_len, ext_len=config.ext_len, mem_len=config.mem_len,
                        dropatt=config.dropatt, pre_lnorm=config.pre_lnorm,
                        r_w_bias=None if config.untie_r else self.r_w_bias,
thomwolf's avatar
thomwolf committed
979
980
                        r_r_bias=None if config.untie_r else self.r_r_bias,
                        output_attentions=self.output_attentions)
thomwolf's avatar
thomwolf committed
981
                )
982
983
        elif config.attn_type in [2, 3]: # absolute embeddings
            for i in range(config.n_layer):
thomwolf's avatar
thomwolf committed
984
985
                self.layers.append(
                    DecoderLayer(
986
987
988
                        config.n_head, config.d_model, config.d_head, config.d_inner, config.dropout,
                        dropatt=config.dropatt, pre_lnorm=config.pre_lnorm,
                        r_w_bias=None if config.untie_r else self.r_w_bias,
thomwolf's avatar
thomwolf committed
989
990
                        r_r_bias=None if config.untie_r else self.r_r_bias,
                        output_attentions=self.output_attentions)
thomwolf's avatar
thomwolf committed
991
992
                )

993
994
        self.same_length = config.same_length
        self.clamp_len = config.clamp_len
thomwolf's avatar
thomwolf committed
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007

        if self.attn_type == 0: # default attention
            self.pos_emb = PositionalEmbedding(self.d_model)
        elif self.attn_type == 1: # learnable
            self.r_emb = nn.Parameter(torch.Tensor(
                    self.n_layer, self.max_klen, self.n_head, self.d_head))
            self.r_bias = nn.Parameter(torch.Tensor(
                    self.n_layer, self.max_klen, self.n_head))
        elif self.attn_type == 2: # absolute standard
            self.pos_emb = PositionalEmbedding(self.d_model)
        elif self.attn_type == 3: # absolute deeper SA
            self.r_emb = nn.Parameter(torch.Tensor(
                    self.n_layer, self.max_klen, self.n_head, self.d_head))
thomwolf's avatar
thomwolf committed
1008

thomwolf's avatar
thomwolf committed
1009
        self.apply(self.init_weights)
thomwolf's avatar
thomwolf committed
1010

thomwolf's avatar
thomwolf committed
1011
1012
1013
    def backward_compatible(self):
        self.sample_softmax = -1

thomwolf's avatar
thomwolf committed
1014
1015
1016
1017
1018
    def reset_length(self, tgt_len, ext_len, mem_len):
        self.tgt_len = tgt_len
        self.mem_len = mem_len
        self.ext_len = ext_len

thomwolf's avatar
thomwolf committed
1019
1020
1021
1022
    def _prune_heads(self, heads):
        logger.info("Head pruning is not implemented for Transformer-XL model")
        pass

1023
    def init_mems(self, data):
thomwolf's avatar
thomwolf committed
1024
1025
1026
        if self.mem_len > 0:
            mems = []
            param = next(self.parameters())
1027
            for i in range(self.n_layer):
1028
1029
                empty = torch.zeros(self.mem_len, data.size(1), self.config.d_model,
                                    dtype=param.dtype, device=param.device)
thomwolf's avatar
thomwolf committed
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
                mems.append(empty)

            return mems
        else:
            return None

    def _update_mems(self, hids, mems, qlen, mlen):
        # does not deal with None
        if mems is None: return None

        # mems is not None
        assert len(hids) == len(mems), 'len(hids) != len(mems)'

        # There are `mlen + qlen` steps that can be cached into mems
        # For the next step, the last `ext_len` of the `qlen` tokens
        # will be used as the extended context. Hence, we only cache
        # the tokens from `mlen + qlen - self.ext_len - self.mem_len`
        # to `mlen + qlen - self.ext_len`.
        with torch.no_grad():
            new_mems = []
            end_idx = mlen + max(0, qlen - 0 - self.ext_len)
            beg_idx = max(0, end_idx - self.mem_len)
            for i in range(len(hids)):

                cat = torch.cat([mems[i], hids[i]], dim=0)
                new_mems.append(cat[beg_idx:end_idx].detach())

        return new_mems

thomwolf's avatar
thomwolf committed
1059
    def _forward(self, dec_inp, mems=None, head_mask=None):
thomwolf's avatar
thomwolf committed
1060
1061
        qlen, bsz = dec_inp.size()

thomwolf's avatar
thomwolf committed
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
        # Prepare head mask if needed
        # 1.0 in head_mask indicate we keep the head
        # attention_probs has shape bsz x n_heads x N x N
        # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] (a head_mask for each layer)
        # and head_mask is converted to shape [num_hidden_layers x qlen x klen x bsz x n_head]
        if head_mask is not None:
            if head_mask.dim() == 1:
                head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(0).unsqueeze(0)
                head_mask = head_mask.expand(self.n_layer, -1, -1, -1, -1)
            elif head_mask.dim() == 2:
                head_mask = head_mask.unsqueeze(1).unsqueeze(1).unsqueeze(1)
            head_mask = head_mask.to(dtype=next(self.parameters()).dtype) # switch to fload if need + fp16 compatibility
        else:
            head_mask = [None] * self.n_layer

thomwolf's avatar
thomwolf committed
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
        word_emb = self.word_emb(dec_inp)

        mlen = mems[0].size(0) if mems is not None else 0
        klen = mlen + qlen
        if self.same_length:
            all_ones = word_emb.new_ones(qlen, klen)
            mask_len = klen - self.mem_len
            if mask_len > 0:
                mask_shift_len = qlen - mask_len
            else:
                mask_shift_len = qlen
            dec_attn_mask = (torch.triu(all_ones, 1+mlen)
                    + torch.tril(all_ones, -mask_shift_len)).byte()[:, :, None] # -1
        else:
            dec_attn_mask = torch.triu(
                word_emb.new_ones(qlen, klen), diagonal=1+mlen).byte()[:,:,None]

        hids = []
thomwolf's avatar
thomwolf committed
1095
        attentions = []
thomwolf's avatar
thomwolf committed
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
        if self.attn_type == 0: # default
            pos_seq = torch.arange(klen-1, -1, -1.0, device=word_emb.device, 
                                   dtype=word_emb.dtype)
            if self.clamp_len > 0:
                pos_seq.clamp_(max=self.clamp_len)
            pos_emb = self.pos_emb(pos_seq)

            core_out = self.drop(word_emb)
            pos_emb = self.drop(pos_emb)

            for i, layer in enumerate(self.layers):
1107
                hids.append(core_out)
thomwolf's avatar
thomwolf committed
1108
                mems_i = None if mems is None else mems[i]
thomwolf's avatar
thomwolf committed
1109
1110
1111
1112
1113
                layer_outputs = layer(core_out, pos_emb, dec_attn_mask=dec_attn_mask,
                                      mems=mems_i, head_mask=head_mask[i])
                core_out = layer_outputs[0]
                if self.output_attentions:
                    attentions.append(layer_outputs[1])
thomwolf's avatar
thomwolf committed
1114
1115
1116
        elif self.attn_type == 1: # learnable
            core_out = self.drop(word_emb)
            for i, layer in enumerate(self.layers):
1117
                hids.append(core_out)
thomwolf's avatar
thomwolf committed
1118
1119
1120
1121
1122
1123
1124
                if self.clamp_len > 0:
                    r_emb = self.r_emb[i][-self.clamp_len :]
                    r_bias = self.r_bias[i][-self.clamp_len :]
                else:
                    r_emb, r_bias = self.r_emb[i], self.r_bias[i]

                mems_i = None if mems is None else mems[i]
thomwolf's avatar
thomwolf committed
1125
1126
1127
1128
1129
1130
                layer_outputs = layer(core_out, r_emb, self.r_w_bias[i],
                                      r_bias, dec_attn_mask=dec_attn_mask,
                                      mems=mems_i, head_mask=head_mask[i])
                core_out = layer_outputs[0]
                if self.output_attentions:
                    attentions.append(layer_outputs[1])
thomwolf's avatar
thomwolf committed
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
        elif self.attn_type == 2: # absolute
            pos_seq = torch.arange(klen - 1, -1, -1.0, device=word_emb.device,
                                   dtype=word_emb.dtype)
            if self.clamp_len > 0:
                pos_seq.clamp_(max=self.clamp_len)
            pos_emb = self.pos_emb(pos_seq)

            core_out = self.drop(word_emb + pos_emb[-qlen:])

            for i, layer in enumerate(self.layers):
1141
                hids.append(core_out)
thomwolf's avatar
thomwolf committed
1142
1143
1144
                mems_i = None if mems is None else mems[i]
                if mems_i is not None and i == 0:
                    mems_i += pos_emb[:mlen]
thomwolf's avatar
thomwolf committed
1145
1146
1147
1148
1149
                layer_outputs = layer(core_out, dec_attn_mask=dec_attn_mask,
                                 mems=mems_i, head_mask=head_mask[i])
                core_out = layer_outputs[0]
                if self.output_attentions:
                    attentions.append(layer_outputs[1])
thomwolf's avatar
thomwolf committed
1150
1151
1152
1153
        elif self.attn_type == 3:
            core_out = self.drop(word_emb)

            for i, layer in enumerate(self.layers):
1154
                hids.append(core_out)
thomwolf's avatar
thomwolf committed
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
                mems_i = None if mems is None else mems[i]
                if mems_i is not None and mlen > 0:
                    cur_emb = self.r_emb[i][:-qlen]
                    cur_size = cur_emb.size(0)
                    if cur_size < mlen:
                        cur_emb_pad = cur_emb[0:1].expand(mlen-cur_size, -1, -1)
                        cur_emb = torch.cat([cur_emb_pad, cur_emb], 0)
                    else:
                        cur_emb = cur_emb[-mlen:]
                    mems_i += cur_emb.view(mlen, 1, -1)
                core_out += self.r_emb[i][-qlen:].view(qlen, 1, -1)

thomwolf's avatar
thomwolf committed
1167
1168
1169
1170
1171
                layer_outputs = layer(core_out, dec_attn_mask=dec_attn_mask,
                                      mems=mems_i, head_mask=head_mask[i])
                core_out = layer_outputs[0]
                if self.output_attentions:
                    attentions.append(layer_outputs[1])
thomwolf's avatar
thomwolf committed
1172
1173
1174
1175
1176

        core_out = self.drop(core_out)

        new_mems = self._update_mems(hids, mems, mlen, qlen)

thomwolf's avatar
thomwolf committed
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
        # We transpose back here to shape [bsz, len, hidden_dim]
        outputs = [core_out.transpose(0, 1).contiguous(), new_mems]
        if self.output_hidden_states:
            # Add last layer and transpose to library standard shape [bsz, len, hidden_dim]
            hids.append(core_out)
            hids = list(t.transpose(0, 1).contiguous() for t in hids)
            outputs.append(hids)
        if self.output_attentions:
            # Transpose to library standard shape [bsz, n_heads, query_seq_len, key_seq_len]
            attentions = list(t.permute(2, 3, 0, 1).contiguous() for t in attentions)
            outputs.append(attentions)
        return outputs  # last hidden state, new_mems, (all hidden states), (all attentions)

    def forward(self, input_ids, mems=None, head_mask=None):
thomwolf's avatar
thomwolf committed
1191
        """ Params:
1192
                input_ids :: [bsz, len]
thomwolf's avatar
thomwolf committed
1193
1194
1195
                mems :: optional mems from previous forwar passes (or init_mems)
                    list (num layers) of mem states at the entry of each layer
                        shape :: [self.config.mem_len, bsz, self.config.d_model]
thomwolf's avatar
thomwolf committed
1196
                    Note that the first two dimensions are transposed in `mems` with regards to `input_ids` and `labels`
thomwolf's avatar
thomwolf committed
1197
1198
1199
1200
1201
            Returns:
                tuple (last_hidden, new_mems) where:
                    new_mems: list (num layers) of mem states at the entry of each layer
                        shape :: [self.config.mem_len, bsz, self.config.d_model]
                    last_hidden: output of the last layer:
1202
                        shape :: [bsz, len, self.config.d_model]
thomwolf's avatar
thomwolf committed
1203
        """
1204
1205
1206
1207
        # the original code for Transformer-XL used shapes [len, bsz] but we want a unified interface in the library
        # so we transpose here from shape [bsz, len] to shape [len, bsz]
        input_ids = input_ids.transpose(0, 1).contiguous()

thomwolf's avatar
thomwolf committed
1208
1209
        if mems is None:
            mems = self.init_mems(input_ids)
thomwolf's avatar
thomwolf committed
1210
        outputs = self._forward(input_ids, mems=mems, head_mask=head_mask)
1211

thomwolf's avatar
thomwolf committed
1212
        return outputs  # last hidden state, new_mems, (all hidden states), (all attentions)
thomwolf's avatar
thomwolf committed
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229


class TransfoXLLMHeadModel(TransfoXLPreTrainedModel):
    """Transformer XL model ("Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context").

    This model add an (adaptive) softmax head on top of the TransfoXLModel

    Transformer XL use a relative positioning (with sinusiodal patterns) and adaptive softmax inputs which means that:
    - you don't need to specify positioning embeddings indices
    - the tokens in the vocabulary have to be sorted to decreasing frequency.

    Call self.tie_weights() if you update/load the weights of the transformer to keep the weights tied.

    Params:
        config: a TransfoXLConfig class instance with the configuration to build a new model

    Inputs:
1230
        `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
thomwolf's avatar
thomwolf committed
1231
            with the token indices selected in the range [0, self.config.n_token[
thomwolf's avatar
thomwolf committed
1232
1233
        `labels`: an optional torch.LongTensor of shape [batch_size, sequence_length]
            with the labels token indices selected in the range [0, self.config.n_token[
thomwolf's avatar
thomwolf committed
1234
1235
1236
        `mems`: an optional memory of hidden states from previous forward passes
            as a list (num layers) of hidden states at the entry of each layer
            each hidden states has shape [self.config.mem_len, bsz, self.config.d_model]
thomwolf's avatar
thomwolf committed
1237
            Note that the first two dimensions are transposed in `mems` with regards to `input_ids` and `labels`
thomwolf's avatar
thomwolf committed
1238
1239
1240
1241

    Outputs:
        A tuple of (last_hidden_state, new_mems)
        `softmax_output`: output of the (adaptive) softmax:
thomwolf's avatar
thomwolf committed
1242
            if labels is None:
1243
                Negative log likelihood of shape [batch_size, sequence_length] 
1244
            else:
1245
                log probabilities of tokens, shape [batch_size, sequence_length, n_tokens]
thomwolf's avatar
thomwolf committed
1246
1247
        `new_mems`: list (num layers) of updated mem states at the entry of each layer
            each mem state is a torch.FloatTensor of size [self.config.mem_len, batch_size, self.config.d_model]
thomwolf's avatar
thomwolf committed
1248
            Note that the first two dimensions are transposed in `mems` with regards to `input_ids` and `labels`
thomwolf's avatar
thomwolf committed
1249

thomwolf's avatar
thomwolf committed
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
    Example usage:
    ```python
    # Already been converted into BPE token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
    input_ids_next = torch.LongTensor([[53, 21, 1], [64, 23, 100]])

    config = TransfoXLConfig()

    model = TransfoXLModel(config)
    last_hidden_state, new_mems = model(input_ids)

    # Another time on input_ids_next using the memory:
1262
    last_hidden_state, new_mems = model(input_ids_next, mems=new_mems)
thomwolf's avatar
thomwolf committed
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
    ```
    """
    def __init__(self, config):
        super(TransfoXLLMHeadModel, self).__init__(config)
        self.transformer = TransfoXLModel(config)
        self.sample_softmax = config.sample_softmax
        # use sampled softmax
        if config.sample_softmax > 0:
            self.out_layer = nn.Linear(config.d_model, config.n_token)
            self.sampler = LogUniformSampler(config.n_token, config.sample_softmax)
        # use adaptive softmax (including standard softmax)
        else:
            self.crit = ProjectedAdaptiveLogSoftmax(config.n_token, config.d_embed, config.d_model, 
                                                    config.cutoffs, div_val=config.div_val)
        self.apply(self.init_weights)
        self.tie_weights()

    def tie_weights(self):
        """ Run this to be sure output and input (adaptive) softmax weights are tied """
        # sampled softmax
        if self.sample_softmax > 0:
            if self.config.tie_weight:
                self.out_layer.weight = self.transformer.word_emb.weight
        # adaptive softmax (including standard softmax)
        else:
            if self.config.tie_weight:
                for i in range(len(self.crit.out_layers)):
                    self.crit.out_layers[i].weight = self.transformer.word_emb.emb_layers[i].weight
            if self.config.tie_projs:
                for i, tie_proj in enumerate(self.config.tie_projs):
                    if tie_proj and self.config.div_val == 1 and self.config.d_model != self.config.d_embed:
                        self.crit.out_projs[i] = self.transformer.word_emb.emb_projs[0]
                    elif tie_proj and self.config.div_val != 1:
                        self.crit.out_projs[i] = self.transformer.word_emb.emb_projs[i]

    def reset_length(self, tgt_len, ext_len, mem_len):
        self.transformer.reset_length(tgt_len, ext_len, mem_len)

    def init_mems(self, data):
        return self.transformer.init_mems(data)

thomwolf's avatar
thomwolf committed
1304
    def forward(self, input_ids, labels=None, mems=None, head_mask=None):
thomwolf's avatar
thomwolf committed
1305
        """ Params:
1306
                input_ids :: [bsz, len]
thomwolf's avatar
thomwolf committed
1307
                labels :: [bsz, len]
thomwolf's avatar
thomwolf committed
1308
1309
1310
            Returns:
                tuple(softmax_output, new_mems) where:
                    new_mems: list (num layers) of hidden states at the entry of each layer
1311
                        shape :: [mem_len, bsz, self.config.d_model] :: Warning: shapes are transposed here w. regards to input_ids
thomwolf's avatar
thomwolf committed
1312
                    softmax_output: output of the (adaptive) softmax:
thomwolf's avatar
thomwolf committed
1313
                        if labels is None:
1314
                            Negative log likelihood of shape :: [bsz, len] 
thomwolf's avatar
thomwolf committed
1315
                        else:
1316
                            log probabilities of tokens, shape :: [bsz, len, n_tokens]
thomwolf's avatar
thomwolf committed
1317
        """
1318
1319
        bsz = input_ids.size(0)
        tgt_len = input_ids.size(1)
thomwolf's avatar
thomwolf committed
1320

thomwolf's avatar
thomwolf committed
1321
        transformer_outputs = self.transformer(input_ids, mems, head_mask)
thomwolf's avatar
thomwolf committed
1322

thomwolf's avatar
thomwolf committed
1323
        last_hidden = transformer_outputs[0]
1324
        pred_hid = last_hidden[:, -tgt_len:]
thomwolf's avatar
thomwolf committed
1325
        outputs = transformer_outputs[1:]
thomwolf's avatar
thomwolf committed
1326
        if self.sample_softmax > 0 and self.training:
thomwolf's avatar
thomwolf committed
1327
            assert self.config.tie_weight
thomwolf's avatar
thomwolf committed
1328
            logit = sample_logits(self.transformer.word_emb, self.out_layer.bias, labels, pred_hid, self.sampler)
1329
            softmax_output = -F.log_softmax(logit, -1)[:, :, 0]
thomwolf's avatar
thomwolf committed
1330
1331
1332
1333
            outputs = [softmax_output] + outputs
            if labels is not None:
                # TODO: This is not implemented
                raise NotImplementedError
thomwolf's avatar
thomwolf committed
1334
        else:
thomwolf's avatar
thomwolf committed
1335
1336
            softmax_output = self.crit(pred_hid.view(-1, pred_hid.size(-1)), labels)
            if labels is None:
1337
                softmax_output = softmax_output.view(bsz, tgt_len, -1)
thomwolf's avatar
thomwolf committed
1338
                outputs = [softmax_output] + outputs
thomwolf's avatar
thomwolf committed
1339
            else:
1340
                softmax_output = softmax_output.view(bsz, tgt_len)
thomwolf's avatar
thomwolf committed
1341
                outputs = [softmax_output, None] + outputs
thomwolf's avatar
thomwolf committed
1342

thomwolf's avatar
thomwolf committed
1343
        return outputs  # (loss), logits or None if labels is not None (speed up adaptive softmax), new_mems, (all hidden states), (all attentions)