modeling_transfo_xl.py 61.2 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
# coding=utf-8
# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HugginFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch Transformer XL model.
    Directly adapted from https://github.com/kimiyoung/transformer-xl.
    In particular https://github.com/kimiyoung/transformer-xl/blob/master/pytorch/mem_transformer.py
"""

import os
import copy
import json
import math
import logging
import tarfile
import tempfile
import shutil
import collections

import torch
import torch.nn as nn
from torch.nn import CrossEntropyLoss
from torch.nn.parameter import Parameter

from .modeling import BertLayerNorm as LayerNorm
from .file_utils import cached_path

logger = logging.getLogger(__name__)

PRETRAINED_MODEL_ARCHIVE_MAP = {
    'transfo-xl': "https://s3.amazonaws.com/models.huggingface.co/bert/transfo-xl.tar.gz",
}
CONFIG_NAME = 'transfo_xl_config.json'
WEIGHTS_NAME = 'pytorch_model.bin'

class TransfoXLConfig(object):
    """Configuration class to store the configuration of a `TransfoXLModel`.
    """
    def __init__(self,
                 vocab_size_or_config_json_file=267735,
                 cutoffs=[20000, 40000, 200000],
                 d_model=410,
                 d_embed=410,
                 d_head=41,
                 d_inner=2100,
                 div_val=1.0,
                 pre_lnorm=False,
                 n_layer=16,
                 n_head=10,
                 tgt_len=150,
                 ext_len=0,
                 mem_len=150,
                 same_length=False,
                 attn_type=0,
                 clamp_len=-1,
                 sample_softmax=-1,
                 adaptive=True,
                 tied=True,
                 dropout=0.1,
                 dropatt=0.0,
                 init="normal",
                 init_range=0.01,
                 proj_init_std=0.01,
                 init_std=0.02):
        """Constructs TransfoXLConfig.

        Args:
            vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `TransfoXLModel` or a configuration json file.
            cutoffs: cutoffs for the adaptive softmax
            d_model: Dimensionality of the model's hidden states.
            d_embed: Dimensionality of the embeddings
            d_head: Dimensionality of the model's heads.
            div_val: divident value for adapative input and softmax
            pre_lnorm: apply LayerNorm to the input instead of the output
            d_inner: Inner dimension in FF
            n_layer: Number of hidden layers in the Transformer encoder.
            n_head: Number of attention heads for each attention layer in
                the Transformer encoder.
            tgt_len: number of tokens to predict
            ext_len: length of the extended context
            mem_len: length of the retained previous heads
            same_length: use the same attn length for all tokens
            attn_type: attention type. 0 for Transformer-XL, 1 for Shaw et al, 2 for Vaswani et al, 3 for Al Rfou et al.
            clamp_len: use the same pos embeddings after clamp_len
            sample_softmax: number of samples in sampled softmax
            adaptive: use adaptive softmax
            tied: tie the word embedding and softmax weights
            dropout: The dropout probabilitiy for all fully connected
                layers in the embeddings, encoder, and pooler.
            dropatt: The dropout ratio for the attention probabilities.
            embd_pdrop: The dropout ratio for the embeddings.
            init: parameter initializer to use
            init_range: parameters initialized by U(-init_range, init_range).
            proj_init_std: parameters initialized by N(0, init_std)
            init_std: parameters initialized by N(0, init_std)
        """
        if isinstance(vocab_size_or_config_json_file, str):
            with open(vocab_size_or_config_json_file, "r", encoding='utf-8') as reader:
                json_config = json.loads(reader.read())
            for key, value in json_config.items():
                self.__dict__[key] = value
        elif isinstance(vocab_size_or_config_json_file, int):
            self.vocab_size = vocab_size_or_config_json_file
            self.cutoffs = []
            self.cutoffs.extend(cutoffs)
            self.tie_projs = [False] + [True] * len(self.cutoffs)
            self.d_model = d_model
            self.d_embed = d_embed
            self.d_head = d_head
            self.d_inner = d_inner
            self.div_val = div_val
            self.pre_lnorm = pre_lnorm
            self.n_layer = n_layer
            self.n_head = n_head
            self.tgt_len = tgt_len
            self.ext_len = ext_len
            self.mem_len = mem_len
            self.same_length = same_length
            self.attn_type = attn_type
            self.clamp_len = clamp_len
            self.sample_softmax = sample_softmax
            self.adaptive = adaptive
            self.tied = tied
            self.dropout = dropout
            self.dropatt = dropatt
            self.init = init
            self.init_range = init_range
            self.proj_init_std = proj_init_std
            self.init_std = init_std
        else:
            raise ValueError("First argument must be either a vocabulary size (int)"
                             "or the path to a pretrained model config file (str)")

    @property
    def total_num_embeddings(self):
        return self.vocab_size + self.n_special + self.n_ctx

    @classmethod
    def from_dict(cls, json_object):
        """Constructs a `TransfoXLConfig` from a Python dictionary of parameters."""
        config = TransfoXLConfig(vocab_size_or_config_json_file=-1)
        for key, value in json_object.items():
            config.__dict__[key] = value
        return config

    @classmethod
    def from_json_file(cls, json_file):
        """Constructs a `TransfoXLConfig` from a json file of parameters."""
        with open(json_file, "r", encoding='utf-8') as reader:
            text = reader.read()
        return cls.from_dict(json.loads(text))

    def __repr__(self):
        return str(self.to_json_string())

    def to_dict(self):
        """Serializes this instance to a Python dictionary."""
        output = copy.deepcopy(self.__dict__)
        return output

    def to_json_string(self):
        """Serializes this instance to a JSON string."""
        return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n"


class PositionalEmbedding(nn.Module):
    def __init__(self, demb):
        super(PositionalEmbedding, self).__init__()

        self.demb = demb

        inv_freq = 1 / (10000 ** (torch.arange(0.0, demb, 2.0) / demb))
        self.register_buffer('inv_freq', inv_freq)

    def forward(self, pos_seq, bsz=None):
        sinusoid_inp = torch.ger(pos_seq, self.inv_freq)
        pos_emb = torch.cat([sinusoid_inp.sin(), sinusoid_inp.cos()], dim=-1)

        if bsz is not None:
            return pos_emb[:,None,:].expand(-1, bsz, -1)
        else:
            return pos_emb[:,None,:]


class PositionwiseFF(nn.Module):
    def __init__(self, d_model, d_inner, dropout, pre_lnorm=False):
        super(PositionwiseFF, self).__init__()

        self.d_model = d_model
        self.d_inner = d_inner
        self.dropout = dropout

        self.CoreNet = nn.Sequential(
            nn.Linear(d_model, d_inner), nn.ReLU(inplace=True),
            nn.Dropout(dropout),
            nn.Linear(d_inner, d_model),
            nn.Dropout(dropout),
        )

        self.layer_norm = nn.LayerNorm(d_model)

        self.pre_lnorm = pre_lnorm

    def forward(self, inp):
        if self.pre_lnorm:
            ##### layer normalization + positionwise feed-forward
            core_out = self.CoreNet(self.layer_norm(inp))

            ##### residual connection
            output = core_out + inp
        else:
            ##### positionwise feed-forward
            core_out = self.CoreNet(inp)

            ##### residual connection + layer normalization
            output = self.layer_norm(inp + core_out)

        return output

class MultiHeadAttn(nn.Module):
    def __init__(self, n_head, d_model, d_head, dropout, dropatt=0, 
                 pre_lnorm=False):
        super(MultiHeadAttn, self).__init__()

        self.n_head = n_head
        self.d_model = d_model
        self.d_head = d_head
        self.dropout = dropout

        self.q_net = nn.Linear(d_model, n_head * d_head, bias=False)
        self.kv_net = nn.Linear(d_model, 2 * n_head * d_head, bias=False)

        self.drop = nn.Dropout(dropout)
        self.dropatt = nn.Dropout(dropatt)
        self.o_net = nn.Linear(n_head * d_head, d_model, bias=False)

        self.layer_norm = nn.LayerNorm(d_model)

        self.scale = 1 / (d_head ** 0.5)

        self.pre_lnorm = pre_lnorm

    def forward(self, h, attn_mask=None, mems=None):
        ##### multihead attention
        # [hlen x bsz x n_head x d_head]

        if mems is not None:
            c = torch.cat([mems, h], 0)
        else:
            c = h

        if self.pre_lnorm:
            ##### layer normalization
            c = self.layer_norm(c)

        head_q = self.q_net(h)
        head_k, head_v = torch.chunk(self.kv_net(c), 2, -1)

        head_q = head_q.view(h.size(0), h.size(1), self.n_head, self.d_head)
        head_k = head_k.view(c.size(0), c.size(1), self.n_head, self.d_head)
        head_v = head_v.view(c.size(0), c.size(1), self.n_head, self.d_head)

        # [qlen x klen x bsz x n_head]
        attn_score = torch.einsum('ibnd,jbnd->ijbn', (head_q, head_k))
        attn_score.mul_(self.scale)
        if attn_mask is not None and attn_mask.any().item():
            if attn_mask.dim() == 2:
                attn_score.masked_fill_(attn_mask[None,:,:,None], -float('inf'))
            elif attn_mask.dim() == 3:
                attn_score.masked_fill_(attn_mask[:,:,:,None], -float('inf'))

        # [qlen x klen x bsz x n_head]
        attn_prob = F.softmax(attn_score, dim=1)
        attn_prob = self.dropatt(attn_prob)

        # [qlen x klen x bsz x n_head] + [klen x bsz x n_head x d_head] -> [qlen x bsz x n_head x d_head]
        attn_vec = torch.einsum('ijbn,jbnd->ibnd', (attn_prob, head_v))
        attn_vec = attn_vec.contiguous().view(
            attn_vec.size(0), attn_vec.size(1), self.n_head * self.d_head)

        ##### linear projection
        attn_out = self.o_net(attn_vec)
        attn_out = self.drop(attn_out)

        if self.pre_lnorm:
            ##### residual connection
            output = h + attn_out
        else:
            ##### residual connection + layer normalization
            output = self.layer_norm(h + attn_out)

        return output

class RelMultiHeadAttn(nn.Module):
    def __init__(self, n_head, d_model, d_head, dropout, dropatt=0,
                 tgt_len=None, ext_len=None, mem_len=None, pre_lnorm=False):
        super(RelMultiHeadAttn, self).__init__()

        self.n_head = n_head
        self.d_model = d_model
        self.d_head = d_head
        self.dropout = dropout

        self.qkv_net = nn.Linear(d_model, 3 * n_head * d_head, bias=False)

        self.drop = nn.Dropout(dropout)
        self.dropatt = nn.Dropout(dropatt)
        self.o_net = nn.Linear(n_head * d_head, d_model, bias=False)

        self.layer_norm = nn.LayerNorm(d_model)

        self.scale = 1 / (d_head ** 0.5)

        self.pre_lnorm = pre_lnorm

    def _parallelogram_mask(self, h, w, left=False):
        mask = torch.ones((h, w)).byte()
        m = min(h, w)
        mask[:m,:m] = torch.triu(mask[:m,:m])
        mask[-m:,-m:] = torch.tril(mask[-m:,-m:])

        if left:
            return mask
        else:
            return mask.flip(0)

    def _shift(self, x, qlen, klen, mask, left=False):
        if qlen > 1:
            zero_pad = torch.zeros((x.size(0), qlen-1, x.size(2), x.size(3)),
                                    device=x.device, dtype=x.dtype)
        else:
            zero_pad = torch.zeros(0, device=x.device, dtype=x.dtype)

        if left:
            mask = mask.flip(1)
            x_padded = torch.cat([zero_pad, x], dim=1).expand(qlen, -1, -1, -1)
        else:
            x_padded = torch.cat([x, zero_pad], dim=1).expand(qlen, -1, -1, -1)

        x = x_padded.masked_select(mask[:,:,None,None]) \
                    .view(qlen, klen, x.size(2), x.size(3))

        return x

    def _rel_shift(self, x, zero_triu=False):
        zero_pad = torch.zeros((x.size(0), 1, *x.size()[2:]),
                               device=x.device, dtype=x.dtype)
        x_padded = torch.cat([zero_pad, x], dim=1)

        x_padded = x_padded.view(x.size(1) + 1, x.size(0), *x.size()[2:])

        x = x_padded[1:].view_as(x)

        if zero_triu:
            ones = torch.ones((x.size(0), x.size(1)))
            x = x * torch.tril(ones, x.size(1) - x.size(0))[:,:,None,None]

        return x

    def forward(self, w, r, attn_mask=None, mems=None):
        raise NotImplementedError

class RelPartialLearnableMultiHeadAttn(RelMultiHeadAttn):
    def __init__(self, *args, **kwargs):
        super(RelPartialLearnableMultiHeadAttn, self).__init__(*args, **kwargs)

        self.r_net = nn.Linear(self.d_model, self.n_head * self.d_head, bias=False)

    def forward(self, w, r, r_w_bias, r_r_bias, attn_mask=None, mems=None):
        qlen, rlen, bsz = w.size(0), r.size(0), w.size(1)

        if mems is not None:
            cat = torch.cat([mems, w], 0)
            if self.pre_lnorm:
                w_heads = self.qkv_net(self.layer_norm(cat))
            else:
                w_heads = self.qkv_net(cat)
            r_head_k = self.r_net(r)

            w_head_q, w_head_k, w_head_v = torch.chunk(w_heads, 3, dim=-1)
            w_head_q = w_head_q[-qlen:]
        else:
            if self.pre_lnorm:
                w_heads = self.qkv_net(self.layer_norm(w))
            else:
                w_heads = self.qkv_net(w)
            r_head_k = self.r_net(r)

            w_head_q, w_head_k, w_head_v = torch.chunk(w_heads, 3, dim=-1)

        klen = w_head_k.size(0)

        w_head_q = w_head_q.view(qlen, bsz, self.n_head, self.d_head)           # qlen x bsz x n_head x d_head
        w_head_k = w_head_k.view(klen, bsz, self.n_head, self.d_head)           # qlen x bsz x n_head x d_head
        w_head_v = w_head_v.view(klen, bsz, self.n_head, self.d_head)           # qlen x bsz x n_head x d_head

        r_head_k = r_head_k.view(rlen, self.n_head, self.d_head)                # qlen x n_head x d_head

        #### compute attention score
        rw_head_q = w_head_q + r_w_bias                                         # qlen x bsz x n_head x d_head
        AC = torch.einsum('ibnd,jbnd->ijbn', (rw_head_q, w_head_k))             # qlen x klen x bsz x n_head

        rr_head_q = w_head_q + r_r_bias
        BD = torch.einsum('ibnd,jnd->ijbn', (rr_head_q, r_head_k))              # qlen x klen x bsz x n_head
        BD = self._rel_shift(BD)

        # [qlen x klen x bsz x n_head]
        attn_score = AC + BD
        attn_score.mul_(self.scale)

        #### compute attention probability
        if attn_mask is not None and attn_mask.any().item():
            if attn_mask.dim() == 2:
                attn_score = attn_score.float().masked_fill(
                    attn_mask[None,:,:,None], -float('inf')).type_as(attn_score)
            elif attn_mask.dim() == 3:
                attn_score = attn_score.float().masked_fill(
                    attn_mask[:,:,:,None], -float('inf')).type_as(attn_score)

        # [qlen x klen x bsz x n_head]
        attn_prob = F.softmax(attn_score, dim=1)
        attn_prob = self.dropatt(attn_prob)

        #### compute attention vector
        attn_vec = torch.einsum('ijbn,jbnd->ibnd', (attn_prob, w_head_v))

        # [qlen x bsz x n_head x d_head]
        attn_vec = attn_vec.contiguous().view(
            attn_vec.size(0), attn_vec.size(1), self.n_head * self.d_head)

        ##### linear projection
        attn_out = self.o_net(attn_vec)
        attn_out = self.drop(attn_out)

        if self.pre_lnorm:
            ##### residual connection
            output = w + attn_out
        else:
            ##### residual connection + layer normalization
            output = self.layer_norm(w + attn_out)

        return output

class RelLearnableMultiHeadAttn(RelMultiHeadAttn):
    def __init__(self, *args, **kwargs):
        super(RelLearnableMultiHeadAttn, self).__init__(*args, **kwargs)

    def forward(self, w, r_emb, r_w_bias, r_bias, attn_mask=None, mems=None):
        # r_emb: [klen, n_head, d_head], used for term B
        # r_w_bias: [n_head, d_head], used for term C
        # r_bias: [klen, n_head], used for term D

        qlen, bsz = w.size(0), w.size(1)

        if mems is not None:
            cat = torch.cat([mems, w], 0)
            if self.pre_lnorm:
                w_heads = self.qkv_net(self.layer_norm(cat))
            else:
                w_heads = self.qkv_net(cat)
            w_head_q, w_head_k, w_head_v = torch.chunk(w_heads, 3, dim=-1)

            w_head_q = w_head_q[-qlen:]
        else:
            if self.pre_lnorm:
                w_heads = self.qkv_net(self.layer_norm(w))
            else:
                w_heads = self.qkv_net(w)
            w_head_q, w_head_k, w_head_v = torch.chunk(w_heads, 3, dim=-1)

        klen = w_head_k.size(0)

        w_head_q = w_head_q.view(qlen, bsz, self.n_head, self.d_head)
        w_head_k = w_head_k.view(klen, bsz, self.n_head, self.d_head)
        w_head_v = w_head_v.view(klen, bsz, self.n_head, self.d_head)

        if klen > r_emb.size(0):
            r_emb_pad = r_emb[0:1].expand(klen-r_emb.size(0), -1, -1)
            r_emb = torch.cat([r_emb_pad, r_emb], 0)
            r_bias_pad = r_bias[0:1].expand(klen-r_bias.size(0), -1)
            r_bias = torch.cat([r_bias_pad, r_bias], 0)
        else:
            r_emb = r_emb[-klen:]
            r_bias = r_bias[-klen:]

        #### compute attention score
        rw_head_q = w_head_q + r_w_bias[None]                                   # qlen x bsz x n_head x d_head

        AC = torch.einsum('ibnd,jbnd->ijbn', (rw_head_q, w_head_k))             # qlen x klen x bsz x n_head
        B_ = torch.einsum('ibnd,jnd->ijbn', (w_head_q, r_emb))                  # qlen x klen x bsz x n_head
        D_ = r_bias[None, :, None]                                              # 1    x klen x 1   x n_head
        BD = self._rel_shift(B_ + D_)

        # [qlen x klen x bsz x n_head]
        attn_score = AC + BD
        attn_score.mul_(self.scale)

        #### compute attention probability
        if attn_mask is not None and attn_mask.any().item():
            if attn_mask.dim() == 2:
                attn_score.masked_fill_(attn_mask[None,:,:,None], -float('inf'))
            elif attn_mask.dim() == 3:
                attn_score.masked_fill_(attn_mask[:,:,:,None], -float('inf'))

        # [qlen x klen x bsz x n_head]
        attn_prob = F.softmax(attn_score, dim=1)
        attn_prob = self.dropatt(attn_prob)

        #### compute attention vector
        attn_vec = torch.einsum('ijbn,jbnd->ibnd', (attn_prob, w_head_v))

        # [qlen x bsz x n_head x d_head]
        attn_vec = attn_vec.contiguous().view(
            attn_vec.size(0), attn_vec.size(1), self.n_head * self.d_head)

        ##### linear projection
        attn_out = self.o_net(attn_vec)
        attn_out = self.drop(attn_out)

        if self.pre_lnorm:
            ##### residual connection
            output = w + attn_out
        else:
            ##### residual connection + layer normalization
            output = self.layer_norm(w + attn_out)

        return output

class DecoderLayer(nn.Module):
    def __init__(self, n_head, d_model, d_head, d_inner, dropout, **kwargs):
        super(DecoderLayer, self).__init__()

        self.dec_attn = MultiHeadAttn(n_head, d_model, d_head, dropout, **kwargs)
        self.pos_ff = PositionwiseFF(d_model, d_inner, dropout, 
                                     pre_lnorm=kwargs.get('pre_lnorm'))

    def forward(self, dec_inp, dec_attn_mask=None, mems=None):

        output = self.dec_attn(dec_inp, attn_mask=dec_attn_mask,
                               mems=mems)
        output = self.pos_ff(output)

        return output

class RelLearnableDecoderLayer(nn.Module):
    def __init__(self, n_head, d_model, d_head, d_inner, dropout,
                 **kwargs):
        super(RelLearnableDecoderLayer, self).__init__()

        self.dec_attn = RelLearnableMultiHeadAttn(n_head, d_model, d_head, dropout,
                                         **kwargs)
        self.pos_ff = PositionwiseFF(d_model, d_inner, dropout, 
                                     pre_lnorm=kwargs.get('pre_lnorm'))

    def forward(self, dec_inp, r_emb, r_w_bias, r_bias, dec_attn_mask=None, mems=None):

        output = self.dec_attn(dec_inp, r_emb, r_w_bias, r_bias,
                               attn_mask=dec_attn_mask,
                               mems=mems)
        output = self.pos_ff(output)

        return output

class RelPartialLearnableDecoderLayer(nn.Module):
    def __init__(self, n_head, d_model, d_head, d_inner, dropout,
                 **kwargs):
        super(RelPartialLearnableDecoderLayer, self).__init__()

        self.dec_attn = RelPartialLearnableMultiHeadAttn(n_head, d_model,
                            d_head, dropout, **kwargs)
        self.pos_ff = PositionwiseFF(d_model, d_inner, dropout, 
                                     pre_lnorm=kwargs.get('pre_lnorm'))

    def forward(self, dec_inp, r, r_w_bias, r_r_bias, dec_attn_mask=None, mems=None):

        output = self.dec_attn(dec_inp, r, r_w_bias, r_r_bias,
                               attn_mask=dec_attn_mask,
                               mems=mems)
        output = self.pos_ff(output)

        return output


class AdaptiveEmbedding(nn.Module):
    def __init__(self, n_token, d_embed, d_proj, cutoffs, div_val=1, 
                 sample_softmax=False):
        super(AdaptiveEmbedding, self).__init__()

        self.n_token = n_token
        self.d_embed = d_embed

        self.cutoffs = cutoffs + [n_token]
        self.div_val = div_val
        self.d_proj = d_proj

        self.emb_scale = d_proj ** 0.5

        self.cutoff_ends = [0] + self.cutoffs

        self.emb_layers = nn.ModuleList()
        self.emb_projs = nn.ParameterList()
        if div_val == 1:
            self.emb_layers.append(
                nn.Embedding(n_token, d_embed, sparse=sample_softmax>0)
            )
            if d_proj != d_embed:
                self.emb_projs.append(nn.Parameter(torch.Tensor(d_proj, d_embed)))
        else:
            for i in range(len(self.cutoffs)):
                l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i+1]
                d_emb_i = d_embed // (div_val ** i)
                self.emb_layers.append(nn.Embedding(r_idx-l_idx, d_emb_i))
                self.emb_projs.append(nn.Parameter(torch.Tensor(d_proj, d_emb_i)))

    def forward(self, inp):
        if self.div_val == 1:
            embed = self.emb_layers[0](inp)
            if self.d_proj != self.d_embed:
                embed  = F.linear(embed, self.emb_projs[0])
        else:
            param = next(self.parameters())
            inp_flat = inp.view(-1)
            emb_flat = torch.zeros([inp_flat.size(0), self.d_proj], 
                dtype=param.dtype, device=param.device)
            for i in range(len(self.cutoffs)):
                l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i + 1]

                mask_i = (inp_flat >= l_idx) & (inp_flat < r_idx)
                indices_i = mask_i.nonzero().squeeze()

                if indices_i.numel() == 0:
                    continue

                inp_i = inp_flat.index_select(0, indices_i) - l_idx
                emb_i = self.emb_layers[i](inp_i)
                emb_i = F.linear(emb_i, self.emb_projs[i])

                emb_flat.index_copy_(0, indices_i, emb_i)

            embed = emb_flat.view(*inp.size(), self.d_proj)

        embed.mul_(self.emb_scale)

        return embed

class MemTransformerLM(nn.Module):
    def __init__(self, n_token, n_layer, n_head, d_model, d_head, d_inner,
                 dropout, dropatt, tie_weight=True, d_embed=None, 
                 div_val=1, tie_projs=[False], pre_lnorm=False,
                 tgt_len=None, ext_len=None, mem_len=None, 
                 cutoffs=[], adapt_inp=False,
                 same_length=False, attn_type=0, clamp_len=-1, 
                 sample_softmax=-1):
        super(MemTransformerLM, self).__init__()
        self.n_token = n_token

        d_embed = d_model if d_embed is None else d_embed
        self.d_embed = d_embed
        self.d_model = d_model
        self.n_head = n_head
        self.d_head = d_head

        self.word_emb = AdaptiveEmbedding(n_token, d_embed, d_model, cutoffs, 
                                          div_val=div_val)

        self.drop = nn.Dropout(dropout)

        self.n_layer = n_layer

        self.tgt_len = tgt_len
        self.mem_len = mem_len
        self.ext_len = ext_len
        self.max_klen = tgt_len + ext_len + mem_len

        self.attn_type = attn_type

        self.layers = nn.ModuleList()
        if attn_type == 0: # the default attention
            for i in range(n_layer):
                self.layers.append(
                    RelPartialLearnableDecoderLayer(
                        n_head, d_model, d_head, d_inner, dropout,
                        tgt_len=tgt_len, ext_len=ext_len, mem_len=mem_len,
                        dropatt=dropatt, pre_lnorm=pre_lnorm)
                )
        elif attn_type == 1: # learnable embeddings
            for i in range(n_layer):
                self.layers.append(
                    RelLearnableDecoderLayer(
                        n_head, d_model, d_head, d_inner, dropout,
                        tgt_len=tgt_len, ext_len=ext_len, mem_len=mem_len,
                        dropatt=dropatt, pre_lnorm=pre_lnorm)
                )
        elif attn_type in [2, 3]: # absolute embeddings
            for i in range(n_layer):
                self.layers.append(
                    DecoderLayer(
                        n_head, d_model, d_head, d_inner, dropout,
                        dropatt=dropatt, pre_lnorm=pre_lnorm)
                )

        self.sample_softmax = sample_softmax
        # use sampled softmax
        if sample_softmax > 0:
            self.out_layer = nn.Linear(d_model, n_token)
            if tie_weight:
                self.out_layer.weight = self.word_emb.weight
            self.tie_weight = tie_weight
            self.sampler = LogUniformSampler(n_token, sample_softmax)

        # use adaptive softmax (including standard softmax)
        else:
            self.crit = ProjectedAdaptiveLogSoftmax(n_token, d_embed, d_model, 
                                                    cutoffs, div_val=div_val)

            if tie_weight:
                for i in range(len(self.crit.out_layers)):
                    self.crit.out_layers[i].weight = self.word_emb.emb_layers[i].weight

            if tie_projs:
                for i, tie_proj in enumerate(tie_projs):
                    if tie_proj and div_val == 1 and d_model != d_embed:
                        self.crit.out_projs[i] = self.word_emb.emb_projs[0]
                    elif tie_proj and div_val != 1:
                        self.crit.out_projs[i] = self.word_emb.emb_projs[i]

        self.same_length = same_length
        self.clamp_len = clamp_len

        self._create_params()

    def backward_compatible(self):
        self.sample_softmax = -1

    def _create_params(self):
        if self.attn_type == 0: # default attention
            self.pos_emb = PositionalEmbedding(self.d_model)
            self.r_w_bias = nn.Parameter(torch.Tensor(self.n_head, self.d_head))
            self.r_r_bias = nn.Parameter(torch.Tensor(self.n_head, self.d_head))
        elif self.attn_type == 1: # learnable
            self.r_emb = nn.Parameter(torch.Tensor(
                    self.n_layer, self.max_klen, self.n_head, self.d_head))
            self.r_w_bias = nn.Parameter(torch.Tensor(
                    self.n_layer, self.n_head, self.d_head))
            self.r_bias = nn.Parameter(torch.Tensor(
                    self.n_layer, self.max_klen, self.n_head))
        elif self.attn_type == 2: # absolute standard
            self.pos_emb = PositionalEmbedding(self.d_model)
        elif self.attn_type == 3: # absolute deeper SA
            self.r_emb = nn.Parameter(torch.Tensor(
                    self.n_layer, self.max_klen, self.n_head, self.d_head))

    def reset_length(self, tgt_len, ext_len, mem_len):
        self.tgt_len = tgt_len
        self.mem_len = mem_len
        self.ext_len = ext_len

    def init_mems(self):
        if self.mem_len > 0:
            mems = []
            param = next(self.parameters())
            for i in range(self.n_layer+1):
                empty = torch.empty(0, dtype=param.dtype, device=param.device)
                mems.append(empty)

            return mems
        else:
            return None

    def _update_mems(self, hids, mems, qlen, mlen):
        # does not deal with None
        if mems is None: return None

        # mems is not None
        assert len(hids) == len(mems), 'len(hids) != len(mems)'

        # There are `mlen + qlen` steps that can be cached into mems
        # For the next step, the last `ext_len` of the `qlen` tokens
        # will be used as the extended context. Hence, we only cache
        # the tokens from `mlen + qlen - self.ext_len - self.mem_len`
        # to `mlen + qlen - self.ext_len`.
        with torch.no_grad():
            new_mems = []
            end_idx = mlen + max(0, qlen - 0 - self.ext_len)
            beg_idx = max(0, end_idx - self.mem_len)
            for i in range(len(hids)):

                cat = torch.cat([mems[i], hids[i]], dim=0)
                new_mems.append(cat[beg_idx:end_idx].detach())

        return new_mems

    def _forward(self, dec_inp, mems=None):
        qlen, bsz = dec_inp.size()

        word_emb = self.word_emb(dec_inp)

        mlen = mems[0].size(0) if mems is not None else 0
        klen = mlen + qlen
        if self.same_length:
            all_ones = word_emb.new_ones(qlen, klen)
            mask_len = klen - self.mem_len
            if mask_len > 0:
                mask_shift_len = qlen - mask_len
            else:
                mask_shift_len = qlen
            dec_attn_mask = (torch.triu(all_ones, 1+mlen)
                    + torch.tril(all_ones, -mask_shift_len)).byte()[:, :, None] # -1
        else:
            dec_attn_mask = torch.triu(
                word_emb.new_ones(qlen, klen), diagonal=1+mlen).byte()[:,:,None]

        hids = []
        if self.attn_type == 0: # default
            pos_seq = torch.arange(klen-1, -1, -1.0, device=word_emb.device, 
                                   dtype=word_emb.dtype)
            if self.clamp_len > 0:
                pos_seq.clamp_(max=self.clamp_len)
            pos_emb = self.pos_emb(pos_seq)

            core_out = self.drop(word_emb)
            pos_emb = self.drop(pos_emb)

            hids.append(core_out)
            for i, layer in enumerate(self.layers):
                mems_i = None if mems is None else mems[i]
                core_out = layer(core_out, pos_emb, self.r_w_bias,
                        self.r_r_bias, dec_attn_mask=dec_attn_mask, mems=mems_i)
                hids.append(core_out)
        elif self.attn_type == 1: # learnable
            core_out = self.drop(word_emb)
            hids.append(core_out)
            for i, layer in enumerate(self.layers):
                if self.clamp_len > 0:
                    r_emb = self.r_emb[i][-self.clamp_len :]
                    r_bias = self.r_bias[i][-self.clamp_len :]
                else:
                    r_emb, r_bias = self.r_emb[i], self.r_bias[i]

                mems_i = None if mems is None else mems[i]
                core_out = layer(core_out, r_emb, self.r_w_bias[i],
                        r_bias, dec_attn_mask=dec_attn_mask, mems=mems_i)
                hids.append(core_out)
        elif self.attn_type == 2: # absolute
            pos_seq = torch.arange(klen - 1, -1, -1.0, device=word_emb.device,
                                   dtype=word_emb.dtype)
            if self.clamp_len > 0:
                pos_seq.clamp_(max=self.clamp_len)
            pos_emb = self.pos_emb(pos_seq)

            core_out = self.drop(word_emb + pos_emb[-qlen:])

            hids.append(core_out)
            for i, layer in enumerate(self.layers):
                mems_i = None if mems is None else mems[i]
                if mems_i is not None and i == 0:
                    mems_i += pos_emb[:mlen]
                core_out = layer(core_out, dec_attn_mask=dec_attn_mask,
                                 mems=mems_i)
                hids.append(core_out)
        elif self.attn_type == 3:
            core_out = self.drop(word_emb)

            hids.append(core_out)
            for i, layer in enumerate(self.layers):
                mems_i = None if mems is None else mems[i]
                if mems_i is not None and mlen > 0:
                    cur_emb = self.r_emb[i][:-qlen]
                    cur_size = cur_emb.size(0)
                    if cur_size < mlen:
                        cur_emb_pad = cur_emb[0:1].expand(mlen-cur_size, -1, -1)
                        cur_emb = torch.cat([cur_emb_pad, cur_emb], 0)
                    else:
                        cur_emb = cur_emb[-mlen:]
                    mems_i += cur_emb.view(mlen, 1, -1)
                core_out += self.r_emb[i][-qlen:].view(qlen, 1, -1)

                core_out = layer(core_out, dec_attn_mask=dec_attn_mask,
                                 mems=mems_i)
                hids.append(core_out)

        core_out = self.drop(core_out)

        new_mems = self._update_mems(hids, mems, mlen, qlen)

        return core_out, new_mems

    def forward(self, data, target, *mems):
        # nn.DataParallel does not allow size(0) tensors to be broadcasted.
        # So, have to initialize size(0) mems inside the model forward.
        # Moreover, have to return new_mems to allow nn.DataParallel to piece
        # them together.
        if not mems: mems = self.init_mems()

        tgt_len = target.size(0)
        hidden, new_mems = self._forward(data, mems=mems)

        pred_hid = hidden[-tgt_len:]
        if self.sample_softmax > 0 and self.training:
            assert self.tie_weight
            logit = sample_logits(self.word_emb,
                self.out_layer.bias, target, pred_hid, self.sampler)
            loss = -F.log_softmax(logit, -1)[:, :, 0]
        else:
            loss = self.crit(pred_hid.view(-1, pred_hid.size(-1)), target.view(-1))
            loss = loss.view(tgt_len, -1)

        if new_mems is None:
            return [loss]
        else:
            return [loss] + new_mems


class TransfoXLPreTrainedModel(nn.Module):
    """ An abstract class to handle weights initialization and
        a simple interface for dowloading and loading pretrained models.
    """
    def __init__(self, config, *inputs, **kwargs):
        super(TransfoXLPreTrainedModel, self).__init__()
        if not isinstance(config, TransfoXLConfig):
            raise ValueError(
                "Parameter config in `{}(config)` should be an instance of class `TransfoXLConfig`. "
                "To create a model from a pretrained model use "
                "`model = {}.from_pretrained(PRETRAINED_MODEL_NAME)`".format(
                    self.__class__.__name__, self.__class__.__name__
                ))
        self.config = config

    def init_weight(weight):
        if self.config.init == 'uniform':
            nn.init.uniform_(weight, -self.config.init_range, self.config.init_range)
        elif self.config.init == 'normal':
            nn.init.normal_(weight, 0.0, self.config.init_std)

    def init_bias(bias):
        nn.init.constant_(bias, 0.0)

    def init_weights(self, m):
        """ Initialize the weights.
        """
        classname = m.__class__.__name__
        if classname.find('Linear') != -1:
            if hasattr(m, 'weight') and m.weight is not None:
                self.init_weight(m.weight)
            if hasattr(m, 'bias') and m.bias is not None:
                self.init_bias(m.bias)
        elif classname.find('AdaptiveEmbedding') != -1:
            if hasattr(m, 'emb_projs'):
                for i in range(len(m.emb_projs)):
                    if m.emb_projs[i] is not None:
                        nn.init.normal_(m.emb_projs[i], 0.0, self.config.proj_init_std)
        elif classname.find('Embedding') != -1:
            if hasattr(m, 'weight'):
                self.init_weight(m.weight)
        elif classname.find('ProjectedAdaptiveLogSoftmax') != -1:
            if hasattr(m, 'cluster_weight') and m.cluster_weight is not None:
                self.init_weight(m.cluster_weight)
            if hasattr(m, 'cluster_bias') and m.cluster_bias is not None:
                self.init_bias(m.cluster_bias)
            if hasattr(m, 'out_projs'):
                for i in range(len(m.out_projs)):
                    if m.out_projs[i] is not None:
                        nn.init.normal_(m.out_projs[i], 0.0, self.config.proj_init_std)
        elif classname.find('LayerNorm') != -1:
            if hasattr(m, 'weight'):
                nn.init.normal_(m.weight, 1.0, self.config.init_std)
            if hasattr(m, 'bias') and m.bias is not None:
                self.init_bias(m.bias)
        elif classname.find('TransformerLM') != -1:
            if hasattr(m, 'r_emb'):
                self.init_weight(m.r_emb)
            if hasattr(m, 'r_w_bias'):
                self.init_weight(m.r_w_bias)
            if hasattr(m, 'r_r_bias'):
                self.init_weight(m.r_r_bias)
            if hasattr(m, 'r_bias'):
                self.init_bias(m.r_bias)

    def set_num_special_tokens(self, num_special_tokens):
        pass

    @classmethod
    def from_pretrained(cls, pretrained_model_name, num_special_tokens=0, state_dict=None, cache_dir=None,
                        *inputs, **kwargs):
        """
        Instantiate a TransfoXLPreTrainedModel from a pre-trained model file or a pytorch state dict.
        Download and cache the pre-trained model file if needed.

        Params:
            pretrained_model_name: either:
                - a str with the name of a pre-trained model to load selected in the list of:
                    . `transfo-xl`
                - a path or url to a pretrained model archive containing:
                    . `transfo_xl_config.json` a configuration file for the model
                    . `pytorch_model.bin` a PyTorch dump of a TransfoXLModel instance
            cache_dir: an optional path to a folder in which the pre-trained models will be cached.
            state_dict: an optional state dictionnary (collections.OrderedDict object) to use instead of pre-trained models
            *inputs, **kwargs: additional input for the specific Bert class
                (ex: num_labels for BertForSequenceClassification)
        """
        if pretrained_model_name in PRETRAINED_MODEL_ARCHIVE_MAP:
            archive_file = PRETRAINED_MODEL_ARCHIVE_MAP[pretrained_model_name]
        else:
            archive_file = pretrained_model_name
        # redirect to the cache, if necessary
        try:
            resolved_archive_file = cached_path(archive_file, cache_dir=cache_dir)
        except FileNotFoundError:
            logger.error(
                "Model name '{}' was not found in model name list ({}). "
                "We assumed '{}' was a path or url but couldn't find any file "
                "associated to this path or url.".format(
                    pretrained_model_name,
                    ', '.join(PRETRAINED_MODEL_ARCHIVE_MAP.keys()),
                    archive_file))
            return None
        if resolved_archive_file == archive_file:
            logger.info("loading archive file {}".format(archive_file))
        else:
            logger.info("loading archive file {} from cache at {}".format(
                archive_file, resolved_archive_file))
        tempdir = None
        if os.path.isdir(resolved_archive_file):
            serialization_dir = resolved_archive_file
        else:
            # Extract archive to temp dir
            tempdir = tempfile.mkdtemp()
            logger.info("extracting archive file {} to temp dir {}".format(
                resolved_archive_file, tempdir))
            with tarfile.open(resolved_archive_file, 'r:gz') as archive:
                archive.extractall(tempdir)
            serialization_dir = tempdir
        # Load config
        config_file = os.path.join(serialization_dir, CONFIG_NAME)
        config = TransfoXLConfig.from_json_file(config_file)
        logger.info("Model config {}".format(config))
        # Instantiate model.
        model = cls(config, *inputs, **kwargs)
        if state_dict is None:
            weights_path = os.path.join(serialization_dir, WEIGHTS_NAME)
            state_dict = torch.load(weights_path)

        old_keys = []
        new_keys = []
        for key in state_dict.keys():
            new_key = None
            if 'gamma' in key:
                new_key = key.replace('gamma', 'weight')
            if 'beta' in key:
                new_key = key.replace('beta', 'bias')
            if new_key:
                old_keys.append(key)
                new_keys.append(new_key)
        for old_key, new_key in zip(old_keys, new_keys):
            state_dict[new_key] = state_dict.pop(old_key)

        missing_keys = []
        unexpected_keys = []
        error_msgs = []
        # copy state_dict so _load_from_state_dict can modify it
        metadata = getattr(state_dict, '_metadata', None)
        state_dict = state_dict.copy()
        if metadata is not None:
            state_dict._metadata = metadata

        def load(module, prefix=''):
            local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {})
            module._load_from_state_dict(
                state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs)
            for name, child in module._modules.items():
                if child is not None:
                    load(child, prefix + name + '.')
        load(model.transformer if hasattr(model, 'transformer') else model, prefix='')
        if len(missing_keys) > 0:
            logger.info("Weights of {} not initialized from pretrained model: {}".format(
                model.__class__.__name__, missing_keys))
        if len(unexpected_keys) > 0:
            logger.info("Weights from pretrained model not used in {}: {}".format(
                model.__class__.__name__, unexpected_keys))
        if len(error_msgs) > 0:
            raise RuntimeError('Error(s) in loading state_dict for {}:\n\t{}'.format(
                               model.__class__.__name__, "\n\t".join(error_msgs)))
        # Add additional embeddings for special tokens if needed
        if num_special_tokens != config.n_special:
            model.set_num_special_tokens(num_special_tokens)
        if tempdir:
            # Clean up temp dir
            shutil.rmtree(tempdir)
        return model






###################




class TransfoXLLMHead(nn.Module):
    """ Language Model Head for the transformer """

    def __init__(self, model_embeddings_weights, config):
        super(TransfoXLLMHead, self).__init__()
        self.n_embd = config.n_embd
        self.set_embeddings_weights(model_embeddings_weights)

    def set_embeddings_weights(self, model_embeddings_weights):
        embed_shape = model_embeddings_weights.shape
        self.decoder = nn.Linear(embed_shape[1], embed_shape[0], bias=False)
        self.decoder.weight = model_embeddings_weights # Tied weights

    def forward(self, hidden_state):
        # Truncated Language modeling logits (we remove the last token)
        # h_trunc = h[:, :-1].contiguous().view(-1, self.n_embd)
        lm_logits = self.decoder(hidden_state)
        return lm_logits


class TransfoXLMultipleChoiceHead(nn.Module):
    """ Classifier Head for the transformer """

    def __init__(self, config):
        super(TransfoXLMultipleChoiceHead, self).__init__()
        self.n_embd = config.n_embd
        # self.multiple_choice_token = multiple_choice_token
        self.dropout = nn.Dropout2d(config.resid_pdrop)  # To reproduce the noise_shape parameter of TF implementation
        self.linear = nn.Linear(config.n_embd, 1)

        nn.init.normal_(self.linear.weight, std = 0.02)
        nn.init.normal_(self.linear.bias, 0)

    def forward(self, hidden_states, multiple_choice_token_mask):
        # Classification logits
        # hidden_states = hidden_states.view(-1, self.n_embd)
        # multiple_choice_token_mask = multiple_choice_token_mask.view(-1, 1).expand_as(hidden_states)
        multiple_choice_h = hidden_states * multiple_choice_token_mask.unsqueeze(-1)
        multiple_choice_h = multiple_choice_h.sum(dim=-2)
        # flat = x[..., 0].contiguous().view(-1)
        # multiple_choice_h = multiple_choice_h[flat == self.multiple_choice_token, :]
        # multiple_choice_h = multiple_choice_h.view(-1, x.size(1), self.n_embd, 1)
        # # This double transposition is there to replicate the behavior
        # # of the noise_shape argument in the tensorflow
        # # implementation.  For more details, see
        # # https://github.com/huggingface/pytorch-openai-transformer-lm/issues/11
        # multiple_choice_h = self.dropout(multiple_choice_h.transpose(1, 2)).transpose(1, 2)
        # multiple_choice_h = multiple_choice_h.contiguous().view(-1, self.n_embd)
        multiple_choice_logits = self.linear(multiple_choice_h).squeeze(-1)
        return multiple_choice_logits


class TransfoXLModel(TransfoXLPreTrainedModel):
    """OpenAI GPT model ("Improving Language Understanding by Generative Pre-Training").

    The main implementation difference between BERT and the OpenAI is the use, in OpenAI GPT, of a single embedding matrix
    to store the word, special ([SEP], [CLS]...) and position embeddings.
    The embeddings are ordered as follow in the word embeddings matrice:
        [0,                                                         ----------------------
         ...                                                        -> word embeddings
         config.vocab_size - 1,                                     ______________________
         config.vocab_size,
         ...                                                        -> special embeddings
         config.vocab_size + config.n_special - 1,                  ______________________
         config.vocab_size + config.n_special,
         ...                                                        -> position embeddings
         total_num_embeddings - 1]                                  ______________________

    where total_num_embeddings can be obtained as config.total_num_embeddings and is:
        total_num_embeddings = config.vocab_size + config.n_special + config.n_ctx
    You should use the associate indices to index the embeddings.

    The special embeddings ([SEP], [CLS]...) are not pre-trained and need to be trained during the fine-tuning if you use them.
    The number of special embeddings can be controled using the `set_num_special_tokens(num_special_tokens)` function.

    Params:
        config: a TransfoXLConfig class instance with the configuration to build a new model

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] (or more generally [d_1, ..., d_n, sequence_length]
            were d_1 ... d_n are arbitrary dimensions) with the word BPE token indices selected in the range [0, config.vocab_size[
        `position_ids`: an optional torch.LongTensor with the same shape as input_ids
            with the position indices (selected in the range [config.vocab_size + config.n_special, config.vocab_size + config.n_special + config.n_ctx - 1[.
        `token_type_ids`: an optional torch.LongTensor with the same shape as input_ids
            You can use it to add a third embedding (the previous two being the word and position embeddings)
            to each token in the sentence.

    Outputs:
        `hidden_states`: the encoded-hidden-states at the top of the model
            as a torch.FloatTensor of size [batch_size, sequence_length, hidden_size]
            (or more generally [d_1, ..., d_n, hidden_size] were d_1 ... d_n are the dimension of input_ids)

    Example usage:
    ```python
    # Already been converted into BPE token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])

    config = modeling_transfo_xl.TransfoXLConfig()

    model = modeling_transfo_xl.TransfoXLModel(config)
    hidden_states = model(input_ids)
    ```
    """
    def __init__(self, config):
        super(TransfoXLModel, self).__init__(config)
        total_embeddings_size = config.vocab_size + config.n_special + config.n_ctx
        self.embed = nn.Embedding(total_embeddings_size, config.n_embd)
        self.drop = nn.Dropout(config.embd_pdrop)
        block = Block(config.n_ctx, config, scale=True)
        self.h = nn.ModuleList([copy.deepcopy(block) for _ in range(config.n_layer)])

        self.apply(self.init_weights)
        # nn.init.normal_(self.embed.weight, std=0.02)

    def set_num_special_tokens(self, num_special_tokens):
        " Update input embeddings with new embedding matrice "
        # Update config
        self.config.n_special = num_special_tokens
        # # Build new embeddings and initialize
        old_embed = self.embed
        self.embed = nn.Embedding(self.config.total_num_embeddings, self.config.n_embd)
        # Initialize all new embeddings (in particular the special tokens)
        self.init_weights(self.embed)
        # Copy word and positional embeddings from the previous weights
        self.embed.weight.data[:self.config.vocab_size, :] = old_embed.weight.data[:self.config.vocab_size, :]
        self.embed.weight.data[-self.config.n_ctx:, :] = old_embed.weight.data[-self.config.n_ctx:, :]

    def forward(self, input_ids, position_ids=None, token_type_ids=None):
        if position_ids is None:
            start = self.config.vocab_size + self.config.n_special
            end = start + input_ids.size(-1)
            position_ids = torch.arange(start, end, dtype=torch.long, device=input_ids.device)
            position_ids = position_ids.unsqueeze(0).expand_as(input_ids)

        input_shape = input_ids.size()
        input_ids = input_ids.view(-1, input_ids.size(-1))
        position_ids = position_ids.view(-1, position_ids.size(-1))

        inputs_embeds = self.embed(input_ids)
        position_embeds = self.embed(position_ids)
        if token_type_ids is not None:
            token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1))
            token_type_embeds = self.embed(token_type_ids)
        else:
            token_type_embeds = 0
        # Add the position information to the input embeddings
        # h = e.sum(dim=2)
        hidden_states = inputs_embeds + position_embeds + token_type_embeds
        for block in self.h:
            hidden_states = block(hidden_states)
        return hidden_states.view(*input_shape, hidden_states.size(-1))

class TransfoXLLMHeadModel(TransfoXLPreTrainedModel):
    """OpenAI GPT model with a Language Modeling head ("Improving Language Understanding by Generative Pre-Training").

    There are two main implementation differences between BERT and the OpenAI GPT:
        - the use of an LM loss in OpenAI GPT which means the Transformer is trained to predict the NEXT token for each input token
            vs. predict the SAME token for BERT (i.e. you need to shift your labels to the right)
        - the use, in OpenAI GPT, of a single embedding matrix to store the word, special ([SEP], [CLS]...) and position embeddings.
    The embeddings are ordered as follow in the word embeddings matrice:
        [0,                                                         ----------------------
         ...                                                        -> word embeddings
         config.vocab_size - 1,                                     ______________________
         config.vocab_size,
         ...                                                        -> special embeddings
         config.vocab_size + config.n_special - 1,                  ______________________
         config.vocab_size + config.n_special,
         ...                                                        -> position embeddings
         total_num_embeddings - 1]                                  ______________________

    where total_num_embeddings can be obtained as config.total_num_embeddings and is:
        total_num_embeddings = config.vocab_size + config.n_special + config.n_ctx
    You should use these indices to index the word, special and position embeddings.

    The special embeddings ([SEP], [CLS]...) are not pre-trained and need to be trained during the fine-tuning if you use them.
    The number of special embeddings can be controled using the `set_num_special_tokens(num_special_tokens)` function.

    Params:
        config: a TransfoXLConfig class instance with the configuration to build a new model

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] (or more generally [d_1, ..., d_n, sequence_length]
            were d_1 ... d_n are arbitrary dimensions) with the word BPE token indices selected in the range [0, config.vocab_size[
        `position_ids`: an optional torch.LongTensor with the same shape as input_ids
            with the position indices (selected in the range [config.vocab_size + config.n_special, config.vocab_size + config.n_special + config.n_ctx - 1[.
        `token_type_ids`: an optional torch.LongTensor with the same shape as input_ids
            You can use it to add a third embedding (the previous two being the word and position embeddings)
            to each token in the sentence.
        `lm_labels`: optional language modeling labels: torch.LongTensor of shape [batch_size, sequence_length]
            with indices selected in [-1, 0, ..., vocab_size]. All labels set to -1 are ignored (masked), the loss
            is only computed for the labels set in [0, ..., vocab_size]

    Outputs:
        if `lm_labels` is not `None`:
            Outputs the language modeling loss.
        else:
            `lm_logits`: the language modeling logits as a torch.FloatTensor of size [batch_size, sequence_length, total_num_embeddings]
                (or more generally [d_1, ..., d_n, total_num_embeddings] were d_1 ... d_n are the dimension of input_ids)

    Example usage:
    ```python
    # Already been converted into BPE token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])

    config = modeling_transfo_xl.TransfoXLConfig()

    model = modeling_transfo_xl.TransfoXLLMHeadModel(config)
    lm_logits = model(input_ids)
    ```
    """
    def __init__(self, config):
        super(TransfoXLLMHeadModel, self).__init__(config)
        self.transformer = TransfoXLModel(config)
        self.lm_head = TransfoXLLMHead(self.transformer.embed.weight, config)
        self.apply(self.init_weights)

    def set_num_special_tokens(self, num_special_tokens):
        " Update input and output embeddings with new embedding matrice "
        self.transformer.set_num_special_tokens(num_special_tokens)
        self.lm_head.set_embeddings_weights(self.transformer.embed.weight)

    def forward(self, input_ids, position_ids=None, token_type_ids=None, lm_labels=None):
        hidden_states = self.transformer(input_ids, position_ids, token_type_ids)
        lm_logits = self.lm_head(hidden_states)
        if lm_labels is not None:
            loss_fct = CrossEntropyLoss(ignore_index=-1)
            loss = loss_fct(lm_logits.view(-1, lm_logits.size(-1)), lm_labels.view(-1))
            return loss
        return lm_logits

class TransfoXLDoubleHeadsModel(TransfoXLPreTrainedModel):
    """OpenAI GPT model with a Language Modeling and a Multiple Choice heads ("Improving Language Understanding by Generative Pre-Training").

    There are two main implementation differences between BERT and the OpenAI GPT:
        - the use of an LM loss in OpenAI GPT which means the Transformer is trained to predict the NEXT token for each input token
            vs. predict the SAME token for BERT (i.e. you need to shift your labels to the right)
        - the use, in OpenAI GPT, of a single embedding matrix to store the word, special ([SEP], [CLS]...) and position embeddings.
    The embeddings are ordered as follow in the word embeddings matrice:
        [0,                                                         ----------------------
         ...                                                        -> word embeddings
         config.vocab_size - 1,                                     ______________________
         config.vocab_size,
         ...                                                        -> special embeddings
         config.vocab_size + config.n_special - 1,                  ______________________
         config.vocab_size + config.n_special,
         ...                                                        -> position embeddings
         total_num_embeddings - 1]                                  ______________________

    where total_num_embeddings can be obtained as config.total_num_embeddings and is:
        total_num_embeddings = config.vocab_size + config.n_special + config.n_ctx
    You should use these indices to index the word, special and position embeddings.

    The special embeddings ([SEP], [CLS]...) are not pre-trained and need to be trained during the fine-tuning if you use them.
    The number of special embeddings can be controled using the `set_num_special_tokens(num_special_tokens)` function.

    Params:
        config: a TransfoXLConfig class instance with the configuration to build a new model

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, num_choices, sequence_length]
            with the word BPE token indices selected in the range [0, config.vocab_size[
        `multiple_choice_token_mask`: a torch.LongTensor of shape [batch_size, num_choices, sequence_length]
            with a value of 1 were the last hidden state is (usually the [CLS] token) and 0 otherwise.
        `position_ids`: an optional torch.LongTensor with the same shape as input_ids
            with the position indices (selected in the range [config.vocab_size + config.n_special,
            config.vocab_size + config.n_special + config.n_ctx - 1[.
        `token_type_ids`: an optional torch.LongTensor with the same shape as input_ids
            You can use it to add a third embedding (the previous two being the word and position embeddings)
            to each token in the sentence.
        `lm_labels`: optional language modeling labels: torch.LongTensor of shape [batch_size, num_choices, sequence_length]
            with indices selected in [-1, 0, ..., total_num_embeddings]. All labels set to -1 are ignored (masked), the loss
            is only computed for the labels set in [0, ..., total_num_embeddings]
        `multiple_choice_labels`: optional multiple choice labels: torch.LongTensor of shape [batch_size]
            with indices selected in [0, ..., num_choices].

    Outputs:
        if `lm_labels` and `multiple_choice_labels` are not `None`:
            Outputs a tuple of losses with the language modeling loss and the multiple choice loss.
        else: a tuple with
            `lm_logits`: the language modeling logits as a torch.FloatTensor of size [batch_size, num_choices, sequence_length, total_num_embeddings]
            `multiple_choice_logits`: the multiple choice logits as a torch.FloatTensor of size [batch_size, num_choices]

    Example usage:
    ```python
    # Already been converted into BPE token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
    multiple_choice_token_mask = torch.LongTensor([[0, 0, 1], [0, 1, 0]])

    config = modeling_transfo_xl.TransfoXLConfig()

    model = modeling_transfo_xl.TransfoXLLMHeadModel(config)
    lm_logits, multiple_choice_logits = model(input_ids, multiple_choice_token_mask)
    ```
    """
    def __init__(self, config):
        super(TransfoXLDoubleHeadsModel, self).__init__(config)
        self.transformer = TransfoXLModel(config)
        self.lm_head = TransfoXLLMHead(self.transformer.embed.weight, config)
        self.multiple_choice_head = TransfoXLMultipleChoiceHead(config)
        self.apply(self.init_weights)

    def set_num_special_tokens(self, num_special_tokens):
        " Update input and output embeddings with new embedding matrice "
        self.transformer.set_num_special_tokens(num_special_tokens)
        self.lm_head.set_embeddings_weights(self.transformer.embed.weight)

    def forward(self, input_ids, multiple_choice_token_mask, position_ids=None, token_type_ids=None,
                lm_labels=None, multiple_choice_labels=None):
        hidden_states = self.transformer(input_ids, position_ids, token_type_ids)
        lm_logits = self.lm_head(hidden_states)
        multiple_choice_logits = self.multiple_choice_head(hidden_states, multiple_choice_token_mask)
        losses = []
        if lm_labels is not None:
            loss_fct = CrossEntropyLoss(ignore_index=-1)
            losses.append(loss_fct(lm_logits.view(-1, lm_logits.size(-1)), lm_labels.view(-1)))
        if multiple_choice_labels is not None:
            loss_fct = CrossEntropyLoss()
            losses.append(loss_fct(multiple_choice_logits, multiple_choice_labels.view(-1)))
        if losses:
            return losses
        return lm_logits, multiple_choice_logits