modeling_transfo_xl.py 56.1 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# coding=utf-8
# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HugginFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch Transformer XL model.
17
    Adapted from https://github.com/kimiyoung/transformer-xl.
thomwolf's avatar
thomwolf committed
18
19
20
21
22
23
24
25
26
27
28
29
    In particular https://github.com/kimiyoung/transformer-xl/blob/master/pytorch/mem_transformer.py
"""

import os
import copy
import json
import math
import logging
import tarfile
import tempfile
import shutil
import collections
thomwolf's avatar
thomwolf committed
30
31
import sys
from io import open
thomwolf's avatar
thomwolf committed
32
33
34

import torch
import torch.nn as nn
35
import torch.nn.functional as F
thomwolf's avatar
thomwolf committed
36
37
38
39
from torch.nn import CrossEntropyLoss
from torch.nn.parameter import Parameter

from .modeling import BertLayerNorm as LayerNorm
thomwolf's avatar
thomwolf committed
40
from .modeling_transfo_xl_utilities import ProjectedAdaptiveLogSoftmax, sample_logits
thomwolf's avatar
thomwolf committed
41
42
43
44
45
from .file_utils import cached_path

logger = logging.getLogger(__name__)

PRETRAINED_MODEL_ARCHIVE_MAP = {
46
47
48
    'transfo-xl-wt103': "https://s3.amazonaws.com/models.huggingface.co/bert/transfo-xl-wt103-pytorch_model.bin",
}
PRETRAINED_CONFIG_ARCHIVE_MAP = {
thomwolf's avatar
thomwolf committed
49
    'transfo-xl-wt103': "https://s3.amazonaws.com/models.huggingface.co/bert/transfo-xl-wt103-config.json",
thomwolf's avatar
thomwolf committed
50
}
thomwolf's avatar
thomwolf committed
51
CONFIG_NAME = 'config.json'
thomwolf's avatar
thomwolf committed
52
WEIGHTS_NAME = 'pytorch_model.bin'
53
TF_WEIGHTS_NAME = 'model.ckpt'
thomwolf's avatar
thomwolf committed
54

55
56
57
58
59
def build_tf_to_pytorch_map(model, config):
    """ A map of modules from TF to PyTorch.
        This time I use a map to keep the PyTorch model as identical to the original PyTorch model as possible.
    """
    tf_to_pt_map = {}
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86

    if hasattr(model, 'transformer'):
        # We are loading in a TransfoXLLMHeadModel => we will load also the Adaptive Softmax
        tf_to_pt_map.update({
            "transformer/adaptive_softmax/cutoff_0/cluster_W": model.crit.cluster_weight,
            "transformer/adaptive_softmax/cutoff_0/cluster_b": model.crit.cluster_bias})
        for i, (out_l, proj_l, tie_proj) in enumerate(zip(
                                model.crit.out_layers,
                                model.crit.out_projs,
                                config.tie_projs)):
            layer_str = "transformer/adaptive_softmax/cutoff_%d/" % i
            if config.tie_weight:
                tf_to_pt_map.update({
                    layer_str + 'b': out_l.bias})
            else:
                raise NotImplementedError
                # I don't think this is implemented in the TF code
                tf_to_pt_map.update({
                    layer_str + 'lookup_table': out_l.weight,
                    layer_str + 'b': out_l.bias})
            if not tie_proj:
                tf_to_pt_map.update({
                    layer_str + 'proj': proj_l
                    })
        # Now load the rest of the transformer
        model = model.transformer

thomwolf's avatar
thomwolf committed
87
    # Embeddings
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
    for i, (embed_l, proj_l) in enumerate(zip(model.word_emb.emb_layers, model.word_emb.emb_projs)):
        layer_str = "transformer/adaptive_embed/cutoff_%d/" % i
        tf_to_pt_map.update({
            layer_str + 'lookup_table': embed_l.weight,
            layer_str + 'proj_W': proj_l
            })

    # Transformer blocks
    for i, b in enumerate(model.layers):
        layer_str = "transformer/layer_%d/" % i
        tf_to_pt_map.update({
            layer_str + "rel_attn/LayerNorm/gamma": b.dec_attn.layer_norm.weight,
            layer_str + "rel_attn/LayerNorm/beta": b.dec_attn.layer_norm.bias,
            layer_str + "rel_attn/o/kernel": b.dec_attn.o_net.weight,
            layer_str + "rel_attn/qkv/kernel": b.dec_attn.qkv_net.weight,
            layer_str + "rel_attn/r/kernel": b.dec_attn.r_net.weight,
            layer_str + "ff/LayerNorm/gamma": b.pos_ff.layer_norm.weight,
            layer_str + "ff/LayerNorm/beta": b.pos_ff.layer_norm.bias,
            layer_str + "ff/layer_1/kernel": b.pos_ff.CoreNet[0].weight,
            layer_str + "ff/layer_1/bias": b.pos_ff.CoreNet[0].bias,
            layer_str + "ff/layer_2/kernel": b.pos_ff.CoreNet[3].weight,
            layer_str + "ff/layer_2/bias": b.pos_ff.CoreNet[3].bias,
        })

    # Relative positioning biases
    if config.untie_r:
        r_r_list = []
        r_w_list = []
        for b in model.layers:
            r_r_list.append(b.dec_attn.r_r_bias)
            r_w_list.append(b.dec_attn.r_w_bias)
    else:
        r_r_list = [model.r_r_bias]
        r_w_list = [model.r_w_bias]
    tf_to_pt_map.update({
        'transformer/r_r_bias': r_r_list,
        'transformer/r_w_bias': r_w_list})
    return tf_to_pt_map

def load_tf_weights_in_transfo_xl(model, config, tf_path):
    """ Load tf checkpoints in a pytorch model
    """
130
131
132
    try:
        import numpy as np
        import tensorflow as tf
thomwolf's avatar
thomwolf committed
133
    except ImportError:
134
135
136
        print("Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see "
            "https://www.tensorflow.org/install/ for installation instructions.")
        raise
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
    # Build TF to PyTorch weights loading map
    tf_to_pt_map = build_tf_to_pytorch_map(model, config)

    # Load weights from TF model
    init_vars = tf.train.list_variables(tf_path)
    tf_weights = {}
    for name, shape in init_vars:
        print("Loading TF weight {} with shape {}".format(name, shape))
        array = tf.train.load_variable(tf_path, name)
        tf_weights[name] = array

    for name, pointer in tf_to_pt_map.items():
        assert name in tf_weights
        array = tf_weights[name]
        # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
        # which are not required for using pretrained model
        if 'kernel' in name or 'proj' in name:
            array = np.transpose(array)
        if ('r_r_bias' in name or 'r_w_bias' in name) and len(pointer) > 1:
            # Here we will split the TF weigths
            assert len(pointer) == array.shape[0]
            for i, p_i in enumerate(pointer):
                arr_i = array[i, ...]
                try:
                    assert p_i.shape == arr_i.shape
                except AssertionError as e:
                    e.args += (p_i.shape, arr_i.shape)
                    raise
                print("Initialize PyTorch weight {} for layer {}".format(name, i))
                p_i.data = torch.from_numpy(arr_i)
        else:
            try:
                assert pointer.shape == array.shape
            except AssertionError as e:
                e.args += (pointer.shape, array.shape)
                raise
            print("Initialize PyTorch weight {}".format(name))
            pointer.data = torch.from_numpy(array)
        tf_weights.pop(name, None)
        tf_weights.pop(name + '/Adam', None)
        tf_weights.pop(name + '/Adam_1', None)

    print("Weights not copied to PyTorch model: {}".format(', '.join(tf_weights.keys())))
    return model


thomwolf's avatar
thomwolf committed
183
184
185
186
187
188
class TransfoXLConfig(object):
    """Configuration class to store the configuration of a `TransfoXLModel`.
    """
    def __init__(self,
                 vocab_size_or_config_json_file=267735,
                 cutoffs=[20000, 40000, 200000],
thomwolf's avatar
thomwolf committed
189
190
191
192
193
194
                 d_model=1024,
                 d_embed=1024,
                 n_head=16,
                 d_head=64,
                 d_inner=4096,
                 div_val=4,
thomwolf's avatar
thomwolf committed
195
                 pre_lnorm=False,
thomwolf's avatar
thomwolf committed
196
                 n_layer=18,
197
                 tgt_len=128,
thomwolf's avatar
thomwolf committed
198
                 ext_len=0,
199
200
201
202
                 mem_len=1600,
                 clamp_len=1000,
                 same_length=True,
                 proj_share_all_but_first=True,
thomwolf's avatar
thomwolf committed
203
204
205
                 attn_type=0,
                 sample_softmax=-1,
                 adaptive=True,
thomwolf's avatar
thomwolf committed
206
                 tie_weight=True,
thomwolf's avatar
thomwolf committed
207
208
                 dropout=0.1,
                 dropatt=0.0,
thomwolf's avatar
thomwolf committed
209
                 untie_r=True,
thomwolf's avatar
thomwolf committed
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
                 init="normal",
                 init_range=0.01,
                 proj_init_std=0.01,
                 init_std=0.02):
        """Constructs TransfoXLConfig.

        Args:
            vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `TransfoXLModel` or a configuration json file.
            cutoffs: cutoffs for the adaptive softmax
            d_model: Dimensionality of the model's hidden states.
            d_embed: Dimensionality of the embeddings
            d_head: Dimensionality of the model's heads.
            div_val: divident value for adapative input and softmax
            pre_lnorm: apply LayerNorm to the input instead of the output
            d_inner: Inner dimension in FF
            n_layer: Number of hidden layers in the Transformer encoder.
            n_head: Number of attention heads for each attention layer in
                the Transformer encoder.
            tgt_len: number of tokens to predict
            ext_len: length of the extended context
            mem_len: length of the retained previous heads
            same_length: use the same attn length for all tokens
232
            proj_share_all_but_first: True to share all but first projs, False not to share.
thomwolf's avatar
thomwolf committed
233
234
235
236
            attn_type: attention type. 0 for Transformer-XL, 1 for Shaw et al, 2 for Vaswani et al, 3 for Al Rfou et al.
            clamp_len: use the same pos embeddings after clamp_len
            sample_softmax: number of samples in sampled softmax
            adaptive: use adaptive softmax
thomwolf's avatar
thomwolf committed
237
            tie_weight: tie the word embedding and softmax weights
thomwolf's avatar
thomwolf committed
238
239
240
            dropout: The dropout probabilitiy for all fully connected
                layers in the embeddings, encoder, and pooler.
            dropatt: The dropout ratio for the attention probabilities.
thomwolf's avatar
thomwolf committed
241
            untie_r: untie relative position biases           
thomwolf's avatar
thomwolf committed
242
243
244
245
246
247
            embd_pdrop: The dropout ratio for the embeddings.
            init: parameter initializer to use
            init_range: parameters initialized by U(-init_range, init_range).
            proj_init_std: parameters initialized by N(0, init_std)
            init_std: parameters initialized by N(0, init_std)
        """
thomwolf's avatar
thomwolf committed
248
249
        if isinstance(vocab_size_or_config_json_file, str) or (sys.version_info[0] == 2
                        and isinstance(vocab_size_or_config_json_file, unicode)):
thomwolf's avatar
thomwolf committed
250
251
252
253
254
            with open(vocab_size_or_config_json_file, "r", encoding='utf-8') as reader:
                json_config = json.loads(reader.read())
            for key, value in json_config.items():
                self.__dict__[key] = value
        elif isinstance(vocab_size_or_config_json_file, int):
thomwolf's avatar
thomwolf committed
255
            self.n_token = vocab_size_or_config_json_file
thomwolf's avatar
thomwolf committed
256
257
            self.cutoffs = []
            self.cutoffs.extend(cutoffs)
thomwolf's avatar
thomwolf committed
258
            self.tie_weight = tie_weight
259
260
261
262
            if proj_share_all_but_first:
                self.tie_projs = [False] + [True] * len(self.cutoffs)
            else:
                self.tie_projs = [False] + [False] * len(self.cutoffs)
thomwolf's avatar
thomwolf committed
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
            self.d_model = d_model
            self.d_embed = d_embed
            self.d_head = d_head
            self.d_inner = d_inner
            self.div_val = div_val
            self.pre_lnorm = pre_lnorm
            self.n_layer = n_layer
            self.n_head = n_head
            self.tgt_len = tgt_len
            self.ext_len = ext_len
            self.mem_len = mem_len
            self.same_length = same_length
            self.attn_type = attn_type
            self.clamp_len = clamp_len
            self.sample_softmax = sample_softmax
            self.adaptive = adaptive
            self.dropout = dropout
            self.dropatt = dropatt
thomwolf's avatar
thomwolf committed
281
            self.untie_r = untie_r
thomwolf's avatar
thomwolf committed
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
            self.init = init
            self.init_range = init_range
            self.proj_init_std = proj_init_std
            self.init_std = init_std
        else:
            raise ValueError("First argument must be either a vocabulary size (int)"
                             "or the path to a pretrained model config file (str)")

    @classmethod
    def from_dict(cls, json_object):
        """Constructs a `TransfoXLConfig` from a Python dictionary of parameters."""
        config = TransfoXLConfig(vocab_size_or_config_json_file=-1)
        for key, value in json_object.items():
            config.__dict__[key] = value
        return config

    @classmethod
    def from_json_file(cls, json_file):
        """Constructs a `TransfoXLConfig` from a json file of parameters."""
        with open(json_file, "r", encoding='utf-8') as reader:
            text = reader.read()
        return cls.from_dict(json.loads(text))

    def __repr__(self):
        return str(self.to_json_string())

    def to_dict(self):
        """Serializes this instance to a Python dictionary."""
        output = copy.deepcopy(self.__dict__)
        return output

    def to_json_string(self):
        """Serializes this instance to a JSON string."""
        return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n"


class PositionalEmbedding(nn.Module):
    def __init__(self, demb):
        super(PositionalEmbedding, self).__init__()

        self.demb = demb

        inv_freq = 1 / (10000 ** (torch.arange(0.0, demb, 2.0) / demb))
        self.register_buffer('inv_freq', inv_freq)

    def forward(self, pos_seq, bsz=None):
        sinusoid_inp = torch.ger(pos_seq, self.inv_freq)
        pos_emb = torch.cat([sinusoid_inp.sin(), sinusoid_inp.cos()], dim=-1)

        if bsz is not None:
            return pos_emb[:,None,:].expand(-1, bsz, -1)
        else:
            return pos_emb[:,None,:]


class PositionwiseFF(nn.Module):
    def __init__(self, d_model, d_inner, dropout, pre_lnorm=False):
        super(PositionwiseFF, self).__init__()

        self.d_model = d_model
        self.d_inner = d_inner
        self.dropout = dropout

        self.CoreNet = nn.Sequential(
            nn.Linear(d_model, d_inner), nn.ReLU(inplace=True),
            nn.Dropout(dropout),
            nn.Linear(d_inner, d_model),
            nn.Dropout(dropout),
        )

thomwolf's avatar
thomwolf committed
352
        self.layer_norm = LayerNorm(d_model)
thomwolf's avatar
thomwolf committed
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373

        self.pre_lnorm = pre_lnorm

    def forward(self, inp):
        if self.pre_lnorm:
            ##### layer normalization + positionwise feed-forward
            core_out = self.CoreNet(self.layer_norm(inp))

            ##### residual connection
            output = core_out + inp
        else:
            ##### positionwise feed-forward
            core_out = self.CoreNet(inp)

            ##### residual connection + layer normalization
            output = self.layer_norm(inp + core_out)

        return output

class MultiHeadAttn(nn.Module):
    def __init__(self, n_head, d_model, d_head, dropout, dropatt=0, 
thomwolf's avatar
thomwolf committed
374
                 pre_lnorm=False, r_r_bias=None, r_w_bias=None):
thomwolf's avatar
thomwolf committed
375
376
377
378
379
380
381
382
383
384
385
386
387
388
        super(MultiHeadAttn, self).__init__()

        self.n_head = n_head
        self.d_model = d_model
        self.d_head = d_head
        self.dropout = dropout

        self.q_net = nn.Linear(d_model, n_head * d_head, bias=False)
        self.kv_net = nn.Linear(d_model, 2 * n_head * d_head, bias=False)

        self.drop = nn.Dropout(dropout)
        self.dropatt = nn.Dropout(dropatt)
        self.o_net = nn.Linear(n_head * d_head, d_model, bias=False)

thomwolf's avatar
thomwolf committed
389
        self.layer_norm = LayerNorm(d_model)
thomwolf's avatar
thomwolf committed
390
391
392
393
394

        self.scale = 1 / (d_head ** 0.5)

        self.pre_lnorm = pre_lnorm

thomwolf's avatar
thomwolf committed
395
396
397
398
399
400
401
        if r_r_bias is None or r_w_bias is None: # Biases are not shared
            self.r_r_bias = nn.Parameter(torch.Tensor(self.n_head, self.d_head))
            self.r_w_bias = nn.Parameter(torch.Tensor(self.n_head, self.d_head))
        else:
            self.r_r_bias = r_r_bias
            self.r_w_bias = r_w_bias

thomwolf's avatar
thomwolf committed
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
    def forward(self, h, attn_mask=None, mems=None):
        ##### multihead attention
        # [hlen x bsz x n_head x d_head]

        if mems is not None:
            c = torch.cat([mems, h], 0)
        else:
            c = h

        if self.pre_lnorm:
            ##### layer normalization
            c = self.layer_norm(c)

        head_q = self.q_net(h)
        head_k, head_v = torch.chunk(self.kv_net(c), 2, -1)

        head_q = head_q.view(h.size(0), h.size(1), self.n_head, self.d_head)
        head_k = head_k.view(c.size(0), c.size(1), self.n_head, self.d_head)
        head_v = head_v.view(c.size(0), c.size(1), self.n_head, self.d_head)

        # [qlen x klen x bsz x n_head]
        attn_score = torch.einsum('ibnd,jbnd->ijbn', (head_q, head_k))
        attn_score.mul_(self.scale)
        if attn_mask is not None and attn_mask.any().item():
            if attn_mask.dim() == 2:
                attn_score.masked_fill_(attn_mask[None,:,:,None], -float('inf'))
            elif attn_mask.dim() == 3:
                attn_score.masked_fill_(attn_mask[:,:,:,None], -float('inf'))

        # [qlen x klen x bsz x n_head]
        attn_prob = F.softmax(attn_score, dim=1)
        attn_prob = self.dropatt(attn_prob)

        # [qlen x klen x bsz x n_head] + [klen x bsz x n_head x d_head] -> [qlen x bsz x n_head x d_head]
        attn_vec = torch.einsum('ijbn,jbnd->ibnd', (attn_prob, head_v))
        attn_vec = attn_vec.contiguous().view(
            attn_vec.size(0), attn_vec.size(1), self.n_head * self.d_head)

        ##### linear projection
        attn_out = self.o_net(attn_vec)
        attn_out = self.drop(attn_out)

        if self.pre_lnorm:
            ##### residual connection
            output = h + attn_out
        else:
            ##### residual connection + layer normalization
            output = self.layer_norm(h + attn_out)

        return output

class RelMultiHeadAttn(nn.Module):
    def __init__(self, n_head, d_model, d_head, dropout, dropatt=0,
thomwolf's avatar
thomwolf committed
455
456
                 tgt_len=None, ext_len=None, mem_len=None, pre_lnorm=False,
                 r_r_bias=None, r_w_bias=None):
thomwolf's avatar
thomwolf committed
457
458
459
460
461
462
463
464
465
466
467
468
469
        super(RelMultiHeadAttn, self).__init__()

        self.n_head = n_head
        self.d_model = d_model
        self.d_head = d_head
        self.dropout = dropout

        self.qkv_net = nn.Linear(d_model, 3 * n_head * d_head, bias=False)

        self.drop = nn.Dropout(dropout)
        self.dropatt = nn.Dropout(dropatt)
        self.o_net = nn.Linear(n_head * d_head, d_model, bias=False)

thomwolf's avatar
thomwolf committed
470
        self.layer_norm = LayerNorm(d_model)
thomwolf's avatar
thomwolf committed
471
472
473
474
475

        self.scale = 1 / (d_head ** 0.5)

        self.pre_lnorm = pre_lnorm

thomwolf's avatar
thomwolf committed
476
477
478
479
480
481
482
        if r_r_bias is None or r_w_bias is None: # Biases are not shared
            self.r_r_bias = nn.Parameter(torch.Tensor(self.n_head, self.d_head))
            self.r_w_bias = nn.Parameter(torch.Tensor(self.n_head, self.d_head))
        else:
            self.r_r_bias = r_r_bias
            self.r_w_bias = r_w_bias

thomwolf's avatar
thomwolf committed
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
    def _parallelogram_mask(self, h, w, left=False):
        mask = torch.ones((h, w)).byte()
        m = min(h, w)
        mask[:m,:m] = torch.triu(mask[:m,:m])
        mask[-m:,-m:] = torch.tril(mask[-m:,-m:])

        if left:
            return mask
        else:
            return mask.flip(0)

    def _shift(self, x, qlen, klen, mask, left=False):
        if qlen > 1:
            zero_pad = torch.zeros((x.size(0), qlen-1, x.size(2), x.size(3)),
                                    device=x.device, dtype=x.dtype)
        else:
            zero_pad = torch.zeros(0, device=x.device, dtype=x.dtype)

        if left:
            mask = mask.flip(1)
            x_padded = torch.cat([zero_pad, x], dim=1).expand(qlen, -1, -1, -1)
        else:
            x_padded = torch.cat([x, zero_pad], dim=1).expand(qlen, -1, -1, -1)

        x = x_padded.masked_select(mask[:,:,None,None]) \
                    .view(qlen, klen, x.size(2), x.size(3))

        return x

    def _rel_shift(self, x, zero_triu=False):
thomwolf's avatar
thomwolf committed
513
514
        zero_pad_shape = (x.size(0), 1) + x.size()[2:]
        zero_pad = torch.zeros(zero_pad_shape, device=x.device, dtype=x.dtype)
thomwolf's avatar
thomwolf committed
515
516
        x_padded = torch.cat([zero_pad, x], dim=1)

thomwolf's avatar
thomwolf committed
517
518
        x_padded_shape = (x.size(1) + 1, x.size(0)) + x.size()[2:]
        x_padded = x_padded.view(*x_padded_shape)
thomwolf's avatar
thomwolf committed
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536

        x = x_padded[1:].view_as(x)

        if zero_triu:
            ones = torch.ones((x.size(0), x.size(1)))
            x = x * torch.tril(ones, x.size(1) - x.size(0))[:,:,None,None]

        return x

    def forward(self, w, r, attn_mask=None, mems=None):
        raise NotImplementedError

class RelPartialLearnableMultiHeadAttn(RelMultiHeadAttn):
    def __init__(self, *args, **kwargs):
        super(RelPartialLearnableMultiHeadAttn, self).__init__(*args, **kwargs)

        self.r_net = nn.Linear(self.d_model, self.n_head * self.d_head, bias=False)

thomwolf's avatar
thomwolf committed
537
    def forward(self, w, r, attn_mask=None, mems=None):
thomwolf's avatar
thomwolf committed
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
        qlen, rlen, bsz = w.size(0), r.size(0), w.size(1)

        if mems is not None:
            cat = torch.cat([mems, w], 0)
            if self.pre_lnorm:
                w_heads = self.qkv_net(self.layer_norm(cat))
            else:
                w_heads = self.qkv_net(cat)
            r_head_k = self.r_net(r)

            w_head_q, w_head_k, w_head_v = torch.chunk(w_heads, 3, dim=-1)
            w_head_q = w_head_q[-qlen:]
        else:
            if self.pre_lnorm:
                w_heads = self.qkv_net(self.layer_norm(w))
            else:
                w_heads = self.qkv_net(w)
            r_head_k = self.r_net(r)

            w_head_q, w_head_k, w_head_v = torch.chunk(w_heads, 3, dim=-1)

        klen = w_head_k.size(0)

        w_head_q = w_head_q.view(qlen, bsz, self.n_head, self.d_head)           # qlen x bsz x n_head x d_head
        w_head_k = w_head_k.view(klen, bsz, self.n_head, self.d_head)           # qlen x bsz x n_head x d_head
        w_head_v = w_head_v.view(klen, bsz, self.n_head, self.d_head)           # qlen x bsz x n_head x d_head

        r_head_k = r_head_k.view(rlen, self.n_head, self.d_head)                # qlen x n_head x d_head

        #### compute attention score
568
        rw_head_q = w_head_q + self.r_w_bias                                    # qlen x bsz x n_head x d_head
thomwolf's avatar
thomwolf committed
569
570
        AC = torch.einsum('ibnd,jbnd->ijbn', (rw_head_q, w_head_k))             # qlen x klen x bsz x n_head

thomwolf's avatar
thomwolf committed
571
        rr_head_q = w_head_q + self.r_r_bias
thomwolf's avatar
thomwolf committed
572
573
574
575
576
577
578
579
580
581
582
        BD = torch.einsum('ibnd,jnd->ijbn', (rr_head_q, r_head_k))              # qlen x klen x bsz x n_head
        BD = self._rel_shift(BD)

        # [qlen x klen x bsz x n_head]
        attn_score = AC + BD
        attn_score.mul_(self.scale)

        #### compute attention probability
        if attn_mask is not None and attn_mask.any().item():
            if attn_mask.dim() == 2:
                attn_score = attn_score.float().masked_fill(
583
                    attn_mask[None,:,:,None], -1e30).type_as(attn_score)
thomwolf's avatar
thomwolf committed
584
585
            elif attn_mask.dim() == 3:
                attn_score = attn_score.float().masked_fill(
586
                    attn_mask[:,:,:,None], -1e30).type_as(attn_score)
thomwolf's avatar
thomwolf committed
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741

        # [qlen x klen x bsz x n_head]
        attn_prob = F.softmax(attn_score, dim=1)
        attn_prob = self.dropatt(attn_prob)

        #### compute attention vector
        attn_vec = torch.einsum('ijbn,jbnd->ibnd', (attn_prob, w_head_v))

        # [qlen x bsz x n_head x d_head]
        attn_vec = attn_vec.contiguous().view(
            attn_vec.size(0), attn_vec.size(1), self.n_head * self.d_head)

        ##### linear projection
        attn_out = self.o_net(attn_vec)
        attn_out = self.drop(attn_out)

        if self.pre_lnorm:
            ##### residual connection
            output = w + attn_out
        else:
            ##### residual connection + layer normalization
            output = self.layer_norm(w + attn_out)

        return output

class RelLearnableMultiHeadAttn(RelMultiHeadAttn):
    def __init__(self, *args, **kwargs):
        super(RelLearnableMultiHeadAttn, self).__init__(*args, **kwargs)

    def forward(self, w, r_emb, r_w_bias, r_bias, attn_mask=None, mems=None):
        # r_emb: [klen, n_head, d_head], used for term B
        # r_w_bias: [n_head, d_head], used for term C
        # r_bias: [klen, n_head], used for term D

        qlen, bsz = w.size(0), w.size(1)

        if mems is not None:
            cat = torch.cat([mems, w], 0)
            if self.pre_lnorm:
                w_heads = self.qkv_net(self.layer_norm(cat))
            else:
                w_heads = self.qkv_net(cat)
            w_head_q, w_head_k, w_head_v = torch.chunk(w_heads, 3, dim=-1)

            w_head_q = w_head_q[-qlen:]
        else:
            if self.pre_lnorm:
                w_heads = self.qkv_net(self.layer_norm(w))
            else:
                w_heads = self.qkv_net(w)
            w_head_q, w_head_k, w_head_v = torch.chunk(w_heads, 3, dim=-1)

        klen = w_head_k.size(0)

        w_head_q = w_head_q.view(qlen, bsz, self.n_head, self.d_head)
        w_head_k = w_head_k.view(klen, bsz, self.n_head, self.d_head)
        w_head_v = w_head_v.view(klen, bsz, self.n_head, self.d_head)

        if klen > r_emb.size(0):
            r_emb_pad = r_emb[0:1].expand(klen-r_emb.size(0), -1, -1)
            r_emb = torch.cat([r_emb_pad, r_emb], 0)
            r_bias_pad = r_bias[0:1].expand(klen-r_bias.size(0), -1)
            r_bias = torch.cat([r_bias_pad, r_bias], 0)
        else:
            r_emb = r_emb[-klen:]
            r_bias = r_bias[-klen:]

        #### compute attention score
        rw_head_q = w_head_q + r_w_bias[None]                                   # qlen x bsz x n_head x d_head

        AC = torch.einsum('ibnd,jbnd->ijbn', (rw_head_q, w_head_k))             # qlen x klen x bsz x n_head
        B_ = torch.einsum('ibnd,jnd->ijbn', (w_head_q, r_emb))                  # qlen x klen x bsz x n_head
        D_ = r_bias[None, :, None]                                              # 1    x klen x 1   x n_head
        BD = self._rel_shift(B_ + D_)

        # [qlen x klen x bsz x n_head]
        attn_score = AC + BD
        attn_score.mul_(self.scale)

        #### compute attention probability
        if attn_mask is not None and attn_mask.any().item():
            if attn_mask.dim() == 2:
                attn_score.masked_fill_(attn_mask[None,:,:,None], -float('inf'))
            elif attn_mask.dim() == 3:
                attn_score.masked_fill_(attn_mask[:,:,:,None], -float('inf'))

        # [qlen x klen x bsz x n_head]
        attn_prob = F.softmax(attn_score, dim=1)
        attn_prob = self.dropatt(attn_prob)

        #### compute attention vector
        attn_vec = torch.einsum('ijbn,jbnd->ibnd', (attn_prob, w_head_v))

        # [qlen x bsz x n_head x d_head]
        attn_vec = attn_vec.contiguous().view(
            attn_vec.size(0), attn_vec.size(1), self.n_head * self.d_head)

        ##### linear projection
        attn_out = self.o_net(attn_vec)
        attn_out = self.drop(attn_out)

        if self.pre_lnorm:
            ##### residual connection
            output = w + attn_out
        else:
            ##### residual connection + layer normalization
            output = self.layer_norm(w + attn_out)

        return output

class DecoderLayer(nn.Module):
    def __init__(self, n_head, d_model, d_head, d_inner, dropout, **kwargs):
        super(DecoderLayer, self).__init__()

        self.dec_attn = MultiHeadAttn(n_head, d_model, d_head, dropout, **kwargs)
        self.pos_ff = PositionwiseFF(d_model, d_inner, dropout, 
                                     pre_lnorm=kwargs.get('pre_lnorm'))

    def forward(self, dec_inp, dec_attn_mask=None, mems=None):

        output = self.dec_attn(dec_inp, attn_mask=dec_attn_mask,
                               mems=mems)
        output = self.pos_ff(output)

        return output

class RelLearnableDecoderLayer(nn.Module):
    def __init__(self, n_head, d_model, d_head, d_inner, dropout,
                 **kwargs):
        super(RelLearnableDecoderLayer, self).__init__()

        self.dec_attn = RelLearnableMultiHeadAttn(n_head, d_model, d_head, dropout,
                                         **kwargs)
        self.pos_ff = PositionwiseFF(d_model, d_inner, dropout, 
                                     pre_lnorm=kwargs.get('pre_lnorm'))

    def forward(self, dec_inp, r_emb, r_w_bias, r_bias, dec_attn_mask=None, mems=None):

        output = self.dec_attn(dec_inp, r_emb, r_w_bias, r_bias,
                               attn_mask=dec_attn_mask,
                               mems=mems)
        output = self.pos_ff(output)

        return output

class RelPartialLearnableDecoderLayer(nn.Module):
    def __init__(self, n_head, d_model, d_head, d_inner, dropout,
                 **kwargs):
        super(RelPartialLearnableDecoderLayer, self).__init__()

        self.dec_attn = RelPartialLearnableMultiHeadAttn(n_head, d_model,
                            d_head, dropout, **kwargs)
        self.pos_ff = PositionwiseFF(d_model, d_inner, dropout, 
                                     pre_lnorm=kwargs.get('pre_lnorm'))

thomwolf's avatar
thomwolf committed
742
    def forward(self, dec_inp, r, dec_attn_mask=None, mems=None):
thomwolf's avatar
thomwolf committed
743

thomwolf's avatar
thomwolf committed
744
        output = self.dec_attn(dec_inp, r,
thomwolf's avatar
thomwolf committed
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
                               attn_mask=dec_attn_mask,
                               mems=mems)
        output = self.pos_ff(output)

        return output


class AdaptiveEmbedding(nn.Module):
    def __init__(self, n_token, d_embed, d_proj, cutoffs, div_val=1, 
                 sample_softmax=False):
        super(AdaptiveEmbedding, self).__init__()

        self.n_token = n_token
        self.d_embed = d_embed

        self.cutoffs = cutoffs + [n_token]
        self.div_val = div_val
        self.d_proj = d_proj

        self.emb_scale = d_proj ** 0.5

        self.cutoff_ends = [0] + self.cutoffs

        self.emb_layers = nn.ModuleList()
        self.emb_projs = nn.ParameterList()
        if div_val == 1:
            self.emb_layers.append(
                nn.Embedding(n_token, d_embed, sparse=sample_softmax>0)
            )
            if d_proj != d_embed:
                self.emb_projs.append(nn.Parameter(torch.Tensor(d_proj, d_embed)))
        else:
            for i in range(len(self.cutoffs)):
                l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i+1]
                d_emb_i = d_embed // (div_val ** i)
                self.emb_layers.append(nn.Embedding(r_idx-l_idx, d_emb_i))
                self.emb_projs.append(nn.Parameter(torch.Tensor(d_proj, d_emb_i)))

    def forward(self, inp):
        if self.div_val == 1:
            embed = self.emb_layers[0](inp)
            if self.d_proj != self.d_embed:
                embed  = F.linear(embed, self.emb_projs[0])
        else:
            param = next(self.parameters())
            inp_flat = inp.view(-1)
            emb_flat = torch.zeros([inp_flat.size(0), self.d_proj], 
                dtype=param.dtype, device=param.device)
            for i in range(len(self.cutoffs)):
                l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i + 1]

                mask_i = (inp_flat >= l_idx) & (inp_flat < r_idx)
                indices_i = mask_i.nonzero().squeeze()

                if indices_i.numel() == 0:
                    continue

                inp_i = inp_flat.index_select(0, indices_i) - l_idx
                emb_i = self.emb_layers[i](inp_i)
                emb_i = F.linear(emb_i, self.emb_projs[i])

                emb_flat.index_copy_(0, indices_i, emb_i)

thomwolf's avatar
thomwolf committed
808
809
            embed_shape = inp.size() + (self.d_proj,)
            embed = emb_flat.view(embed_shape)
thomwolf's avatar
thomwolf committed
810
811
812
813
814
815

        embed.mul_(self.emb_scale)

        return embed


816
817
818
819
820
821
822
823
824
825
826
827
828
829
class TransfoXLPreTrainedModel(nn.Module):
    """ An abstract class to handle weights initialization and
        a simple interface for dowloading and loading pretrained models.
    """
    def __init__(self, config, *inputs, **kwargs):
        super(TransfoXLPreTrainedModel, self).__init__()
        if not isinstance(config, TransfoXLConfig):
            raise ValueError(
                "Parameter config in `{}(config)` should be an instance of class `TransfoXLConfig`. "
                "To create a model from a pretrained model use "
                "`model = {}.from_pretrained(PRETRAINED_MODEL_NAME)`".format(
                    self.__class__.__name__, self.__class__.__name__
                ))
        self.config = config
thomwolf's avatar
thomwolf committed
830

831
832
833
834
835
    def init_weight(self, weight):
        if self.config.init == 'uniform':
            nn.init.uniform_(weight, -self.config.init_range, self.config.init_range)
        elif self.config.init == 'normal':
            nn.init.normal_(weight, 0.0, self.config.init_std)
thomwolf's avatar
thomwolf committed
836

837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
    def init_bias(self, bias):
        nn.init.constant_(bias, 0.0)

    def init_weights(self, m):
        """ Initialize the weights.
        """
        classname = m.__class__.__name__
        if classname.find('Linear') != -1:
            if hasattr(m, 'weight') and m.weight is not None:
                self.init_weight(m.weight)
            if hasattr(m, 'bias') and m.bias is not None:
                self.init_bias(m.bias)
        elif classname.find('AdaptiveEmbedding') != -1:
            if hasattr(m, 'emb_projs'):
                for i in range(len(m.emb_projs)):
                    if m.emb_projs[i] is not None:
                        nn.init.normal_(m.emb_projs[i], 0.0, self.config.proj_init_std)
        elif classname.find('Embedding') != -1:
            if hasattr(m, 'weight'):
                self.init_weight(m.weight)
        elif classname.find('ProjectedAdaptiveLogSoftmax') != -1:
            if hasattr(m, 'cluster_weight') and m.cluster_weight is not None:
                self.init_weight(m.cluster_weight)
            if hasattr(m, 'cluster_bias') and m.cluster_bias is not None:
                self.init_bias(m.cluster_bias)
            if hasattr(m, 'out_projs'):
                for i in range(len(m.out_projs)):
                    if m.out_projs[i] is not None:
                        nn.init.normal_(m.out_projs[i], 0.0, self.config.proj_init_std)
        elif classname.find('LayerNorm') != -1:
            if hasattr(m, 'weight'):
                nn.init.normal_(m.weight, 1.0, self.config.init_std)
            if hasattr(m, 'bias') and m.bias is not None:
                self.init_bias(m.bias)
        elif classname.find('TransformerLM') != -1:
            if hasattr(m, 'r_emb'):
                self.init_weight(m.r_emb)
            if hasattr(m, 'r_w_bias'):
                self.init_weight(m.r_w_bias)
            if hasattr(m, 'r_r_bias'):
                self.init_weight(m.r_r_bias)
            if hasattr(m, 'r_bias'):
                self.init_bias(m.r_bias)
thomwolf's avatar
thomwolf committed
880

881
882
    def set_num_special_tokens(self, num_special_tokens):
        pass
thomwolf's avatar
thomwolf committed
883

884
885
    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path, state_dict=None, cache_dir=None,
886
                        from_tf=False, *inputs, **kwargs):
887
888
889
890
891
892
893
894
895
896
897
        """
        Instantiate a TransfoXLPreTrainedModel from a pre-trained model file or a pytorch state dict.
        Download and cache the pre-trained model file if needed.

        Params:
            pretrained_model_name_or_path: either:
                - a str with the name of a pre-trained model to load selected in the list of:
                    . `transfo-xl`
                - a path or url to a pretrained model archive containing:
                    . `transfo_xl_config.json` a configuration file for the model
                    . `pytorch_model.bin` a PyTorch dump of a TransfoXLModel instance
898
899
900
901
                - a path or url to a pretrained model archive containing:
                    . `bert_config.json` a configuration file for the model
                    . `model.chkpt` a TensorFlow checkpoint
            from_tf: should we load the weights from a locally saved TensorFlow checkpoint
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
            cache_dir: an optional path to a folder in which the pre-trained models will be cached.
            state_dict: an optional state dictionnary (collections.OrderedDict object) to use instead of pre-trained models
            *inputs, **kwargs: additional input for the specific Bert class
                (ex: num_labels for BertForSequenceClassification)
        """
        if pretrained_model_name_or_path in PRETRAINED_MODEL_ARCHIVE_MAP:
            archive_file = PRETRAINED_MODEL_ARCHIVE_MAP[pretrained_model_name_or_path]
            config_file = PRETRAINED_CONFIG_ARCHIVE_MAP[pretrained_model_name_or_path]
        else:
            archive_file = os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME)
            config_file = os.path.join(pretrained_model_name_or_path, CONFIG_NAME)
        # redirect to the cache, if necessary
        try:
            resolved_archive_file = cached_path(archive_file, cache_dir=cache_dir)
            resolved_config_file = cached_path(config_file, cache_dir=cache_dir)
thomwolf's avatar
thomwolf committed
917
        except EnvironmentError:
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
            logger.error(
                "Model name '{}' was not found in model name list ({}). "
                "We assumed '{}' was a path or url but couldn't find files {} and {} "
                "at this path or url.".format(
                    pretrained_model_name_or_path,
                    ', '.join(PRETRAINED_MODEL_ARCHIVE_MAP.keys()),
                    pretrained_model_name_or_path,
                    archive_file, config_file))
            return None
        if resolved_archive_file == archive_file and resolved_config_file == config_file:
            logger.info("loading weights file {}".format(archive_file))
            logger.info("loading configuration file {}".format(config_file))
        else:
            logger.info("loading weights file {} from cache at {}".format(
                archive_file, resolved_archive_file))
            logger.info("loading configuration file {} from cache at {}".format(
                config_file, resolved_config_file))
        # Load config
        config = TransfoXLConfig.from_json_file(resolved_config_file)
        logger.info("Model config {}".format(config))
        # Instantiate model.
        model = cls(config, *inputs, **kwargs)
940
        if state_dict is None and not from_tf:
thomwolf's avatar
thomwolf committed
941
            state_dict = torch.load(resolved_archive_file, map_location='cpu' if not torch.cuda.is_available() else None)
942
943
        if from_tf:
            # Directly load from a TensorFlow checkpoint
thomwolf's avatar
thomwolf committed
944
945
            return load_tf_weights_in_transfo_xl(model, config, pretrained_model_name_or_path)

946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
        missing_keys = []
        unexpected_keys = []
        error_msgs = []
        # copy state_dict so _load_from_state_dict can modify it
        metadata = getattr(state_dict, '_metadata', None)
        state_dict = state_dict.copy()
        if metadata is not None:
            state_dict._metadata = metadata

        def load(module, prefix=''):
            local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {})
            module._load_from_state_dict(
                state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs)
            for name, child in module._modules.items():
                if child is not None:
                    load(child, prefix + name + '.')
962
        load(model, prefix='')
963
964
965
966
967
968
969
970
971
        if len(missing_keys) > 0:
            logger.info("Weights of {} not initialized from pretrained model: {}".format(
                model.__class__.__name__, missing_keys))
        if len(unexpected_keys) > 0:
            logger.info("Weights from pretrained model not used in {}: {}".format(
                model.__class__.__name__, unexpected_keys))
        if len(error_msgs) > 0:
            raise RuntimeError('Error(s) in loading state_dict for {}:\n\t{}'.format(
                               model.__class__.__name__, "\n\t".join(error_msgs)))
thomwolf's avatar
thomwolf committed
972
        # Make sure we are still sharing the input and output embeddings
thomwolf's avatar
thomwolf committed
973
        if hasattr(model, 'tie_weights'):
thomwolf's avatar
thomwolf committed
974
            model.tie_weights()
975
976
977
978
        return model


class TransfoXLModel(TransfoXLPreTrainedModel):
thomwolf's avatar
thomwolf committed
979
980
981
982
983
984
985
986
987
988
989
990
    """Transformer XL model ("Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context").

    Transformer XL use a relative positioning (with sinusiodal patterns) and adaptive softmax inputs which means that:
    - you don't need to specify positioning embeddings indices
    - the tokens in the vocabulary have to be sorted to decreasing frequency.

    Params:
        config: a TransfoXLConfig class instance with the configuration to build a new model

    Inputs:
        `input_ids`: a torch.LongTensor of shape [sequence_length, batch_size]
            with the token indices selected in the range [0, self.config.n_token[
thomwolf's avatar
thomwolf committed
991
992
993
        `mems`: optional memomry of hidden states from previous forward passes
            as a list (num layers) of hidden states at the entry of each layer
            each hidden states has shape [self.config.mem_len, bsz, self.config.d_model]
thomwolf's avatar
thomwolf committed
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
    Outputs:
        A tuple of (last_hidden_state, new_mems)
        `last_hidden_state`: the encoded-hidden-states at the top of the model
            as a torch.FloatTensor of size [sequence_length, batch_size, self.config.d_model]
        `new_mems`: list (num layers) of updated mem states at the entry of each layer
            each mem state is a torch.FloatTensor of size [self.config.mem_len, batch_size, self.config.d_model]

    Example usage:
    ```python
    # Already been converted into BPE token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
    input_ids_next = torch.LongTensor([[53, 21, 1], [64, 23, 100]])

    config = TransfoXLConfig()

    model = TransfoXLModel(config)
    last_hidden_state, new_mems = model(input_ids)

    # Another time on input_ids_next using the memory:
    last_hidden_state, new_mems = model(input_ids_next, new_mems)
    ```
    """
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
    def __init__(self, config):
        super(TransfoXLModel, self).__init__(config)
        self.n_token = config.n_token

        self.d_embed = config.d_embed
        self.d_model = config.d_model
        self.n_head = config.n_head
        self.d_head = config.d_head

        self.word_emb = AdaptiveEmbedding(config.n_token, config.d_embed, config.d_model, config.cutoffs, 
                                          div_val=config.div_val)
thomwolf's avatar
thomwolf committed
1027

1028
        self.drop = nn.Dropout(config.dropout)
thomwolf's avatar
thomwolf committed
1029

1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
        self.n_layer = config.n_layer

        self.tgt_len = config.tgt_len
        self.mem_len = config.mem_len
        self.ext_len = config.ext_len
        self.max_klen = config.tgt_len + config.ext_len + config.mem_len

        self.attn_type = config.attn_type

        if not config.untie_r:
thomwolf's avatar
thomwolf committed
1040
1041
1042
            self.r_w_bias = nn.Parameter(torch.Tensor(self.n_head, self.d_head))
            self.r_r_bias = nn.Parameter(torch.Tensor(self.n_head, self.d_head))

thomwolf's avatar
thomwolf committed
1043
        self.layers = nn.ModuleList()
1044
1045
        if config.attn_type == 0: # the default attention
            for i in range(config.n_layer):
thomwolf's avatar
thomwolf committed
1046
1047
                self.layers.append(
                    RelPartialLearnableDecoderLayer(
1048
1049
1050
1051
1052
                        config.n_head, config.d_model, config.d_head, config.d_inner, config.dropout,
                        tgt_len=config.tgt_len, ext_len=config.ext_len, mem_len=config.mem_len,
                        dropatt=config.dropatt, pre_lnorm=config.pre_lnorm,
                        r_w_bias=None if config.untie_r else self.r_w_bias,
                        r_r_bias=None if config.untie_r else self.r_r_bias)
thomwolf's avatar
thomwolf committed
1053
                )
1054
1055
        elif config.attn_type == 1: # learnable embeddings
            for i in range(config.n_layer):
thomwolf's avatar
thomwolf committed
1056
1057
                self.layers.append(
                    RelLearnableDecoderLayer(
1058
1059
1060
1061
1062
                        config.n_head, config.d_model, config.d_head, config.d_inner, config.dropout,
                        tgt_len=config.tgt_len, ext_len=config.ext_len, mem_len=config.mem_len,
                        dropatt=config.dropatt, pre_lnorm=config.pre_lnorm,
                        r_w_bias=None if config.untie_r else self.r_w_bias,
                        r_r_bias=None if config.untie_r else self.r_r_bias)
thomwolf's avatar
thomwolf committed
1063
                )
1064
1065
        elif config.attn_type in [2, 3]: # absolute embeddings
            for i in range(config.n_layer):
thomwolf's avatar
thomwolf committed
1066
1067
                self.layers.append(
                    DecoderLayer(
1068
1069
1070
1071
                        config.n_head, config.d_model, config.d_head, config.d_inner, config.dropout,
                        dropatt=config.dropatt, pre_lnorm=config.pre_lnorm,
                        r_w_bias=None if config.untie_r else self.r_w_bias,
                        r_r_bias=None if config.untie_r else self.r_r_bias)
thomwolf's avatar
thomwolf committed
1072
1073
                )

1074
1075
        self.same_length = config.same_length
        self.clamp_len = config.clamp_len
thomwolf's avatar
thomwolf committed
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088

        if self.attn_type == 0: # default attention
            self.pos_emb = PositionalEmbedding(self.d_model)
        elif self.attn_type == 1: # learnable
            self.r_emb = nn.Parameter(torch.Tensor(
                    self.n_layer, self.max_klen, self.n_head, self.d_head))
            self.r_bias = nn.Parameter(torch.Tensor(
                    self.n_layer, self.max_klen, self.n_head))
        elif self.attn_type == 2: # absolute standard
            self.pos_emb = PositionalEmbedding(self.d_model)
        elif self.attn_type == 3: # absolute deeper SA
            self.r_emb = nn.Parameter(torch.Tensor(
                    self.n_layer, self.max_klen, self.n_head, self.d_head))
thomwolf's avatar
thomwolf committed
1089
        self.apply(self.init_weights)
thomwolf's avatar
thomwolf committed
1090

thomwolf's avatar
thomwolf committed
1091
1092
1093
1094
    def backward_compatible(self):
        self.sample_softmax = -1


thomwolf's avatar
thomwolf committed
1095
1096
1097
1098
1099
    def reset_length(self, tgt_len, ext_len, mem_len):
        self.tgt_len = tgt_len
        self.mem_len = mem_len
        self.ext_len = ext_len

1100
    def init_mems(self, data):
thomwolf's avatar
thomwolf committed
1101
1102
1103
        if self.mem_len > 0:
            mems = []
            param = next(self.parameters())
1104
            for i in range(self.n_layer):
1105
1106
                empty = torch.zeros(self.mem_len, data.size(1), self.config.d_model,
                                    dtype=param.dtype, device=param.device)
thomwolf's avatar
thomwolf committed
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
                mems.append(empty)

            return mems
        else:
            return None

    def _update_mems(self, hids, mems, qlen, mlen):
        # does not deal with None
        if mems is None: return None

        # mems is not None
        assert len(hids) == len(mems), 'len(hids) != len(mems)'

        # There are `mlen + qlen` steps that can be cached into mems
        # For the next step, the last `ext_len` of the `qlen` tokens
        # will be used as the extended context. Hence, we only cache
        # the tokens from `mlen + qlen - self.ext_len - self.mem_len`
        # to `mlen + qlen - self.ext_len`.
        with torch.no_grad():
            new_mems = []
            end_idx = mlen + max(0, qlen - 0 - self.ext_len)
            beg_idx = max(0, end_idx - self.mem_len)
            for i in range(len(hids)):

                cat = torch.cat([mems[i], hids[i]], dim=0)
                new_mems.append(cat[beg_idx:end_idx].detach())

        return new_mems

    def _forward(self, dec_inp, mems=None):
        qlen, bsz = dec_inp.size()

        word_emb = self.word_emb(dec_inp)

        mlen = mems[0].size(0) if mems is not None else 0
        klen = mlen + qlen
        if self.same_length:
            all_ones = word_emb.new_ones(qlen, klen)
            mask_len = klen - self.mem_len
            if mask_len > 0:
                mask_shift_len = qlen - mask_len
            else:
                mask_shift_len = qlen
            dec_attn_mask = (torch.triu(all_ones, 1+mlen)
                    + torch.tril(all_ones, -mask_shift_len)).byte()[:, :, None] # -1
        else:
            dec_attn_mask = torch.triu(
                word_emb.new_ones(qlen, klen), diagonal=1+mlen).byte()[:,:,None]

        hids = []
        if self.attn_type == 0: # default
            pos_seq = torch.arange(klen-1, -1, -1.0, device=word_emb.device, 
                                   dtype=word_emb.dtype)
            if self.clamp_len > 0:
                pos_seq.clamp_(max=self.clamp_len)
            pos_emb = self.pos_emb(pos_seq)

            core_out = self.drop(word_emb)
            pos_emb = self.drop(pos_emb)

            for i, layer in enumerate(self.layers):
1168
                hids.append(core_out)
thomwolf's avatar
thomwolf committed
1169
                mems_i = None if mems is None else mems[i]
1170
                core_out = layer(core_out, pos_emb, dec_attn_mask=dec_attn_mask, mems=mems_i)
thomwolf's avatar
thomwolf committed
1171
1172
1173
        elif self.attn_type == 1: # learnable
            core_out = self.drop(word_emb)
            for i, layer in enumerate(self.layers):
1174
                hids.append(core_out)
thomwolf's avatar
thomwolf committed
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
                if self.clamp_len > 0:
                    r_emb = self.r_emb[i][-self.clamp_len :]
                    r_bias = self.r_bias[i][-self.clamp_len :]
                else:
                    r_emb, r_bias = self.r_emb[i], self.r_bias[i]

                mems_i = None if mems is None else mems[i]
                core_out = layer(core_out, r_emb, self.r_w_bias[i],
                        r_bias, dec_attn_mask=dec_attn_mask, mems=mems_i)
        elif self.attn_type == 2: # absolute
            pos_seq = torch.arange(klen - 1, -1, -1.0, device=word_emb.device,
                                   dtype=word_emb.dtype)
            if self.clamp_len > 0:
                pos_seq.clamp_(max=self.clamp_len)
            pos_emb = self.pos_emb(pos_seq)

            core_out = self.drop(word_emb + pos_emb[-qlen:])

            for i, layer in enumerate(self.layers):
1194
                hids.append(core_out)
thomwolf's avatar
thomwolf committed
1195
1196
1197
1198
1199
1200
1201
1202
1203
                mems_i = None if mems is None else mems[i]
                if mems_i is not None and i == 0:
                    mems_i += pos_emb[:mlen]
                core_out = layer(core_out, dec_attn_mask=dec_attn_mask,
                                 mems=mems_i)
        elif self.attn_type == 3:
            core_out = self.drop(word_emb)

            for i, layer in enumerate(self.layers):
1204
                hids.append(core_out)
thomwolf's avatar
thomwolf committed
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
                mems_i = None if mems is None else mems[i]
                if mems_i is not None and mlen > 0:
                    cur_emb = self.r_emb[i][:-qlen]
                    cur_size = cur_emb.size(0)
                    if cur_size < mlen:
                        cur_emb_pad = cur_emb[0:1].expand(mlen-cur_size, -1, -1)
                        cur_emb = torch.cat([cur_emb_pad, cur_emb], 0)
                    else:
                        cur_emb = cur_emb[-mlen:]
                    mems_i += cur_emb.view(mlen, 1, -1)
                core_out += self.r_emb[i][-qlen:].view(qlen, 1, -1)

                core_out = layer(core_out, dec_attn_mask=dec_attn_mask,
                                 mems=mems_i)

        core_out = self.drop(core_out)

        new_mems = self._update_mems(hids, mems, mlen, qlen)

        return core_out, new_mems

thomwolf's avatar
thomwolf committed
1226
1227
1228
    def forward(self, input_ids, mems=None):
        """ Params:
                input_ids :: [len, bsz]
thomwolf's avatar
thomwolf committed
1229
1230
1231
                mems :: optional mems from previous forwar passes (or init_mems)
                    list (num layers) of mem states at the entry of each layer
                        shape :: [self.config.mem_len, bsz, self.config.d_model]
thomwolf's avatar
thomwolf committed
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
            Returns:
                tuple (last_hidden, new_mems) where:
                    new_mems: list (num layers) of mem states at the entry of each layer
                        shape :: [self.config.mem_len, bsz, self.config.d_model]
                    last_hidden: output of the last layer:
                        shape :: [len, bsz, self.config.d_model]
        """
        if mems is None:
            mems = self.init_mems(input_ids)
        last_hidden, new_mems = self._forward(input_ids, mems=mems)
        return (last_hidden, new_mems)


class TransfoXLLMHeadModel(TransfoXLPreTrainedModel):
    """Transformer XL model ("Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context").

    This model add an (adaptive) softmax head on top of the TransfoXLModel

    Transformer XL use a relative positioning (with sinusiodal patterns) and adaptive softmax inputs which means that:
    - you don't need to specify positioning embeddings indices
    - the tokens in the vocabulary have to be sorted to decreasing frequency.

    Call self.tie_weights() if you update/load the weights of the transformer to keep the weights tied.

    Params:
        config: a TransfoXLConfig class instance with the configuration to build a new model

    Inputs:
        `input_ids`: a torch.LongTensor of shape [sequence_length, batch_size]
            with the token indices selected in the range [0, self.config.n_token[
thomwolf's avatar
thomwolf committed
1262
        `target`: an optional torch.LongTensor of shape [sequence_length, batch_size]
thomwolf's avatar
thomwolf committed
1263
            with the target token indices selected in the range [0, self.config.n_token[
thomwolf's avatar
thomwolf committed
1264
1265
1266
        `mems`: an optional memory of hidden states from previous forward passes
            as a list (num layers) of hidden states at the entry of each layer
            each hidden states has shape [self.config.mem_len, bsz, self.config.d_model]
thomwolf's avatar
thomwolf committed
1267
1268
1269
1270
1271
1272

    Outputs:
        A tuple of (last_hidden_state, new_mems)
        `softmax_output`: output of the (adaptive) softmax:
            if target is None:
                Negative log likelihood of shape :: [len, bsz] 
1273
            else:
thomwolf's avatar
thomwolf committed
1274
1275
1276
                log probabilities of tokens, shape :: [len, bsz, n_tokens]
        `new_mems`: list (num layers) of updated mem states at the entry of each layer
            each mem state is a torch.FloatTensor of size [self.config.mem_len, batch_size, self.config.d_model]
thomwolf's avatar
thomwolf committed
1277

thomwolf's avatar
thomwolf committed
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
    Example usage:
    ```python
    # Already been converted into BPE token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
    input_ids_next = torch.LongTensor([[53, 21, 1], [64, 23, 100]])

    config = TransfoXLConfig()

    model = TransfoXLModel(config)
    last_hidden_state, new_mems = model(input_ids)

    # Another time on input_ids_next using the memory:
    last_hidden_state, new_mems = model(input_ids_next, new_mems)
    ```
    """
    def __init__(self, config):
        super(TransfoXLLMHeadModel, self).__init__(config)
        self.transformer = TransfoXLModel(config)
        self.sample_softmax = config.sample_softmax
        # use sampled softmax
        if config.sample_softmax > 0:
            self.out_layer = nn.Linear(config.d_model, config.n_token)
            self.sampler = LogUniformSampler(config.n_token, config.sample_softmax)
        # use adaptive softmax (including standard softmax)
        else:
            self.crit = ProjectedAdaptiveLogSoftmax(config.n_token, config.d_embed, config.d_model, 
                                                    config.cutoffs, div_val=config.div_val)
        self.apply(self.init_weights)
        self.tie_weights()

    def tie_weights(self):
        """ Run this to be sure output and input (adaptive) softmax weights are tied """
        # sampled softmax
        if self.sample_softmax > 0:
            if self.config.tie_weight:
                self.out_layer.weight = self.transformer.word_emb.weight
        # adaptive softmax (including standard softmax)
        else:
            if self.config.tie_weight:
                for i in range(len(self.crit.out_layers)):
                    self.crit.out_layers[i].weight = self.transformer.word_emb.emb_layers[i].weight
            if self.config.tie_projs:
                for i, tie_proj in enumerate(self.config.tie_projs):
                    if tie_proj and self.config.div_val == 1 and self.config.d_model != self.config.d_embed:
                        self.crit.out_projs[i] = self.transformer.word_emb.emb_projs[0]
                    elif tie_proj and self.config.div_val != 1:
                        self.crit.out_projs[i] = self.transformer.word_emb.emb_projs[i]

    def reset_length(self, tgt_len, ext_len, mem_len):
        self.transformer.reset_length(tgt_len, ext_len, mem_len)

    def init_mems(self, data):
        return self.transformer.init_mems(data)

    def forward(self, input_ids, target=None, mems=None):
        """ Params:
                input_ids :: [len, bsz]
                target :: [len, bsz]
            Returns:
                tuple(softmax_output, new_mems) where:
                    new_mems: list (num layers) of hidden states at the entry of each layer
                        shape :: [mem_len, bsz, self.config.d_model]
                    softmax_output: output of the (adaptive) softmax:
                        if target is None:
                            Negative log likelihood of shape :: [len, bsz] 
                        else:
                            log probabilities of tokens, shape :: [len, bsz, n_tokens]
        """
        bsz = input_ids.size(1)
        tgt_len = input_ids.size(0)

        last_hidden, new_mems = self.transformer(input_ids, mems)

        pred_hid = last_hidden[-tgt_len:]
thomwolf's avatar
thomwolf committed
1352
        if self.sample_softmax > 0 and self.training:
thomwolf's avatar
thomwolf committed
1353
1354
            assert self.config.tie_weight
            logit = sample_logits(self.transformer.word_emb, self.out_layer.bias, target, pred_hid, self.sampler)
thomwolf's avatar
thomwolf committed
1355
1356
            loss = -F.log_softmax(logit, -1)[:, :, 0]
        else:
thomwolf's avatar
thomwolf committed
1357
1358
1359
1360
1361
            softmax_output = self.crit(pred_hid.view(-1, pred_hid.size(-1)), target)
            if target is None:
                softmax_output = softmax_output.view(tgt_len, bsz, -1)
            else:
                softmax_output = softmax_output.view(tgt_len, bsz)
thomwolf's avatar
thomwolf committed
1362

thomwolf's avatar
thomwolf committed
1363
        return (softmax_output, new_mems)