test_benchmark.py 9.2 KB
Newer Older
1
2
3
4
5
import os
import tempfile
import unittest
from pathlib import Path

Patrick von Platen's avatar
Patrick von Platen committed
6
from transformers import AutoConfig, is_torch_available
7
from transformers.testing_utils import require_torch, torch_device
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27


if is_torch_available():
    from transformers import (
        PyTorchBenchmarkArguments,
        PyTorchBenchmark,
    )


@require_torch
class BenchmarkTest(unittest.TestCase):
    def check_results_dict_not_empty(self, results):
        for model_result in results.values():
            for batch_size, sequence_length in zip(model_result["bs"], model_result["ss"]):
                result = model_result["result"][batch_size][sequence_length]
                self.assertIsNotNone(result)

    def test_inference_no_configs(self):
        MODEL_ID = "sshleifer/tiny-gpt2"
        benchmark_args = PyTorchBenchmarkArguments(
Patrick von Platen's avatar
Patrick von Platen committed
28
29
30
31
32
33
            models=[MODEL_ID],
            training=False,
            no_inference=False,
            sequence_lengths=[8],
            batch_sizes=[1],
            no_multi_process=True,
34
35
36
37
38
39
        )
        benchmark = PyTorchBenchmark(benchmark_args)
        results = benchmark.run()
        self.check_results_dict_not_empty(results.time_inference_result)
        self.check_results_dict_not_empty(results.memory_inference_result)

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
    def test_inference_no_configs_only_pretrain(self):
        MODEL_ID = "sshleifer/tiny-distilbert-base-uncased-finetuned-sst-2-english"
        benchmark_args = PyTorchBenchmarkArguments(
            models=[MODEL_ID],
            training=False,
            no_inference=False,
            sequence_lengths=[8],
            batch_sizes=[1],
            no_multi_process=True,
            only_pretrain_model=True,
        )
        benchmark = PyTorchBenchmark(benchmark_args)
        results = benchmark.run()
        self.check_results_dict_not_empty(results.time_inference_result)
        self.check_results_dict_not_empty(results.memory_inference_result)

56
57
58
59
60
61
62
63
64
    def test_inference_torchscript(self):
        MODEL_ID = "sshleifer/tiny-gpt2"
        benchmark_args = PyTorchBenchmarkArguments(
            models=[MODEL_ID],
            training=False,
            no_inference=False,
            torchscript=True,
            sequence_lengths=[8],
            batch_sizes=[1],
Patrick von Platen's avatar
Patrick von Platen committed
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
            no_multi_process=True,
        )
        benchmark = PyTorchBenchmark(benchmark_args)
        results = benchmark.run()
        self.check_results_dict_not_empty(results.time_inference_result)
        self.check_results_dict_not_empty(results.memory_inference_result)

    @unittest.skipIf(torch_device == "cpu", "Cant do half precision")
    def test_inference_fp16(self):
        MODEL_ID = "sshleifer/tiny-gpt2"
        benchmark_args = PyTorchBenchmarkArguments(
            models=[MODEL_ID],
            training=False,
            no_inference=False,
            fp16=True,
            sequence_lengths=[8],
            batch_sizes=[1],
            no_multi_process=True,
83
84
85
86
87
88
        )
        benchmark = PyTorchBenchmark(benchmark_args)
        results = benchmark.run()
        self.check_results_dict_not_empty(results.time_inference_result)
        self.check_results_dict_not_empty(results.memory_inference_result)

89
90
91
    def test_train_no_configs(self):
        MODEL_ID = "sshleifer/tiny-gpt2"
        benchmark_args = PyTorchBenchmarkArguments(
Patrick von Platen's avatar
Patrick von Platen committed
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
            models=[MODEL_ID],
            training=True,
            no_inference=True,
            sequence_lengths=[8],
            batch_sizes=[1],
            no_multi_process=True,
        )
        benchmark = PyTorchBenchmark(benchmark_args)
        results = benchmark.run()
        self.check_results_dict_not_empty(results.time_train_result)
        self.check_results_dict_not_empty(results.memory_train_result)

    @unittest.skipIf(torch_device == "cpu", "Cant do half precision")
    def test_train_no_configs_fp16(self):
        MODEL_ID = "sshleifer/tiny-gpt2"
        benchmark_args = PyTorchBenchmarkArguments(
            models=[MODEL_ID],
            training=True,
            no_inference=True,
            sequence_lengths=[8],
            batch_sizes=[1],
            fp16=True,
            no_multi_process=True,
115
116
117
118
119
120
121
122
        )
        benchmark = PyTorchBenchmark(benchmark_args)
        results = benchmark.run()
        self.check_results_dict_not_empty(results.time_train_result)
        self.check_results_dict_not_empty(results.memory_train_result)

    def test_inference_with_configs(self):
        MODEL_ID = "sshleifer/tiny-gpt2"
Patrick von Platen's avatar
Patrick von Platen committed
123
124
        config = AutoConfig.from_pretrained(MODEL_ID)
        benchmark_args = PyTorchBenchmarkArguments(
Patrick von Platen's avatar
Patrick von Platen committed
125
126
127
128
129
130
            models=[MODEL_ID],
            training=False,
            no_inference=False,
            sequence_lengths=[8],
            batch_sizes=[1],
            no_multi_process=True,
Patrick von Platen's avatar
Patrick von Platen committed
131
132
133
134
135
136
137
138
139
        )
        benchmark = PyTorchBenchmark(benchmark_args, configs=[config])
        results = benchmark.run()
        self.check_results_dict_not_empty(results.time_inference_result)
        self.check_results_dict_not_empty(results.memory_inference_result)

    def test_inference_encoder_decoder_with_configs(self):
        MODEL_ID = "sshleifer/tinier_bart"
        config = AutoConfig.from_pretrained(MODEL_ID)
140
        benchmark_args = PyTorchBenchmarkArguments(
Patrick von Platen's avatar
Patrick von Platen committed
141
142
143
144
145
146
            models=[MODEL_ID],
            training=False,
            no_inference=False,
            sequence_lengths=[8],
            batch_sizes=[1],
            no_multi_process=True,
147
148
149
150
151
152
153
        )
        benchmark = PyTorchBenchmark(benchmark_args, configs=[config])
        results = benchmark.run()
        self.check_results_dict_not_empty(results.time_inference_result)
        self.check_results_dict_not_empty(results.memory_inference_result)

    def test_train_with_configs(self):
154
155
156
157
158
159
160
161
        MODEL_ID = "sshleifer/tiny-gpt2"
        config = AutoConfig.from_pretrained(MODEL_ID)
        benchmark_args = PyTorchBenchmarkArguments(
            models=[MODEL_ID],
            training=True,
            no_inference=True,
            sequence_lengths=[8],
            batch_sizes=[1],
Patrick von Platen's avatar
Patrick von Platen committed
162
            no_multi_process=True,
163
164
165
166
        )
        benchmark = PyTorchBenchmark(benchmark_args, configs=[config])
        results = benchmark.run()
        self.check_results_dict_not_empty(results.time_train_result)
Patrick von Platen's avatar
Patrick von Platen committed
167
168
169
170
171
        self.check_results_dict_not_empty(results.memory_train_result)

    def test_train_encoder_decoder_with_configs(self):
        MODEL_ID = "sshleifer/tinier_bart"
        config = AutoConfig.from_pretrained(MODEL_ID)
172
        benchmark_args = PyTorchBenchmarkArguments(
Patrick von Platen's avatar
Patrick von Platen committed
173
174
175
176
177
178
            models=[MODEL_ID],
            training=True,
            no_inference=True,
            sequence_lengths=[8],
            batch_sizes=[1],
            no_multi_process=True,
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
        )
        benchmark = PyTorchBenchmark(benchmark_args, configs=[config])
        results = benchmark.run()
        self.check_results_dict_not_empty(results.time_train_result)
        self.check_results_dict_not_empty(results.memory_train_result)

    def test_save_csv_files(self):
        MODEL_ID = "sshleifer/tiny-gpt2"
        with tempfile.TemporaryDirectory() as tmp_dir:
            benchmark_args = PyTorchBenchmarkArguments(
                models=[MODEL_ID],
                training=True,
                no_inference=False,
                save_to_csv=True,
                sequence_lengths=[8],
                batch_sizes=[1],
                inference_time_csv_file=os.path.join(tmp_dir, "inf_time.csv"),
                train_memory_csv_file=os.path.join(tmp_dir, "train_mem.csv"),
                inference_memory_csv_file=os.path.join(tmp_dir, "inf_mem.csv"),
                train_time_csv_file=os.path.join(tmp_dir, "train_time.csv"),
                env_info_csv_file=os.path.join(tmp_dir, "env.csv"),
Patrick von Platen's avatar
Patrick von Platen committed
200
                no_multi_process=True,
201
202
203
204
205
206
207
208
            )
            benchmark = PyTorchBenchmark(benchmark_args)
            benchmark.run()
            self.assertTrue(Path(os.path.join(tmp_dir, "inf_time.csv")).exists())
            self.assertTrue(Path(os.path.join(tmp_dir, "train_time.csv")).exists())
            self.assertTrue(Path(os.path.join(tmp_dir, "inf_mem.csv")).exists())
            self.assertTrue(Path(os.path.join(tmp_dir, "train_mem.csv")).exists())
            self.assertTrue(Path(os.path.join(tmp_dir, "env.csv")).exists())
Patrick von Platen's avatar
Patrick von Platen committed
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228

    def test_trace_memory(self):
        MODEL_ID = "sshleifer/tiny-gpt2"

        def _check_summary_is_not_empty(summary):
            self.assertTrue(hasattr(summary, "sequential"))
            self.assertTrue(hasattr(summary, "cumulative"))
            self.assertTrue(hasattr(summary, "current"))
            self.assertTrue(hasattr(summary, "total"))

        with tempfile.TemporaryDirectory() as tmp_dir:
            benchmark_args = PyTorchBenchmarkArguments(
                models=[MODEL_ID],
                training=True,
                no_inference=False,
                sequence_lengths=[8],
                batch_sizes=[1],
                log_filename=os.path.join(tmp_dir, "log.txt"),
                log_print=True,
                trace_memory_line_by_line=True,
Patrick von Platen's avatar
Patrick von Platen committed
229
                no_multi_process=True,
Patrick von Platen's avatar
Patrick von Platen committed
230
231
232
233
234
235
            )
            benchmark = PyTorchBenchmark(benchmark_args)
            result = benchmark.run()
            _check_summary_is_not_empty(result.inference_summary)
            _check_summary_is_not_empty(result.train_summary)
            self.assertTrue(Path(os.path.join(tmp_dir, "log.txt")).exists())