test_benchmark.py 9.18 KB
Newer Older
1
2
3
4
5
import os
import tempfile
import unittest
from pathlib import Path

Patrick von Platen's avatar
Patrick von Platen committed
6
from transformers import AutoConfig, is_torch_available
7

Patrick von Platen's avatar
Patrick von Platen committed
8
from .utils import require_torch, torch_device
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28


if is_torch_available():
    from transformers import (
        PyTorchBenchmarkArguments,
        PyTorchBenchmark,
    )


@require_torch
class BenchmarkTest(unittest.TestCase):
    def check_results_dict_not_empty(self, results):
        for model_result in results.values():
            for batch_size, sequence_length in zip(model_result["bs"], model_result["ss"]):
                result = model_result["result"][batch_size][sequence_length]
                self.assertIsNotNone(result)

    def test_inference_no_configs(self):
        MODEL_ID = "sshleifer/tiny-gpt2"
        benchmark_args = PyTorchBenchmarkArguments(
Patrick von Platen's avatar
Patrick von Platen committed
29
30
31
32
33
34
            models=[MODEL_ID],
            training=False,
            no_inference=False,
            sequence_lengths=[8],
            batch_sizes=[1],
            no_multi_process=True,
35
36
37
38
39
40
        )
        benchmark = PyTorchBenchmark(benchmark_args)
        results = benchmark.run()
        self.check_results_dict_not_empty(results.time_inference_result)
        self.check_results_dict_not_empty(results.memory_inference_result)

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
    def test_inference_no_configs_only_pretrain(self):
        MODEL_ID = "sshleifer/tiny-distilbert-base-uncased-finetuned-sst-2-english"
        benchmark_args = PyTorchBenchmarkArguments(
            models=[MODEL_ID],
            training=False,
            no_inference=False,
            sequence_lengths=[8],
            batch_sizes=[1],
            no_multi_process=True,
            only_pretrain_model=True,
        )
        benchmark = PyTorchBenchmark(benchmark_args)
        results = benchmark.run()
        self.check_results_dict_not_empty(results.time_inference_result)
        self.check_results_dict_not_empty(results.memory_inference_result)

57
58
59
60
61
62
63
64
65
    def test_inference_torchscript(self):
        MODEL_ID = "sshleifer/tiny-gpt2"
        benchmark_args = PyTorchBenchmarkArguments(
            models=[MODEL_ID],
            training=False,
            no_inference=False,
            torchscript=True,
            sequence_lengths=[8],
            batch_sizes=[1],
Patrick von Platen's avatar
Patrick von Platen committed
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
            no_multi_process=True,
        )
        benchmark = PyTorchBenchmark(benchmark_args)
        results = benchmark.run()
        self.check_results_dict_not_empty(results.time_inference_result)
        self.check_results_dict_not_empty(results.memory_inference_result)

    @unittest.skipIf(torch_device == "cpu", "Cant do half precision")
    def test_inference_fp16(self):
        MODEL_ID = "sshleifer/tiny-gpt2"
        benchmark_args = PyTorchBenchmarkArguments(
            models=[MODEL_ID],
            training=False,
            no_inference=False,
            fp16=True,
            sequence_lengths=[8],
            batch_sizes=[1],
            no_multi_process=True,
84
85
86
87
88
89
        )
        benchmark = PyTorchBenchmark(benchmark_args)
        results = benchmark.run()
        self.check_results_dict_not_empty(results.time_inference_result)
        self.check_results_dict_not_empty(results.memory_inference_result)

90
91
92
    def test_train_no_configs(self):
        MODEL_ID = "sshleifer/tiny-gpt2"
        benchmark_args = PyTorchBenchmarkArguments(
Patrick von Platen's avatar
Patrick von Platen committed
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
            models=[MODEL_ID],
            training=True,
            no_inference=True,
            sequence_lengths=[8],
            batch_sizes=[1],
            no_multi_process=True,
        )
        benchmark = PyTorchBenchmark(benchmark_args)
        results = benchmark.run()
        self.check_results_dict_not_empty(results.time_train_result)
        self.check_results_dict_not_empty(results.memory_train_result)

    @unittest.skipIf(torch_device == "cpu", "Cant do half precision")
    def test_train_no_configs_fp16(self):
        MODEL_ID = "sshleifer/tiny-gpt2"
        benchmark_args = PyTorchBenchmarkArguments(
            models=[MODEL_ID],
            training=True,
            no_inference=True,
            sequence_lengths=[8],
            batch_sizes=[1],
            fp16=True,
            no_multi_process=True,
116
117
118
119
120
121
122
123
        )
        benchmark = PyTorchBenchmark(benchmark_args)
        results = benchmark.run()
        self.check_results_dict_not_empty(results.time_train_result)
        self.check_results_dict_not_empty(results.memory_train_result)

    def test_inference_with_configs(self):
        MODEL_ID = "sshleifer/tiny-gpt2"
Patrick von Platen's avatar
Patrick von Platen committed
124
125
        config = AutoConfig.from_pretrained(MODEL_ID)
        benchmark_args = PyTorchBenchmarkArguments(
Patrick von Platen's avatar
Patrick von Platen committed
126
127
128
129
130
131
            models=[MODEL_ID],
            training=False,
            no_inference=False,
            sequence_lengths=[8],
            batch_sizes=[1],
            no_multi_process=True,
Patrick von Platen's avatar
Patrick von Platen committed
132
133
134
135
136
137
138
139
140
        )
        benchmark = PyTorchBenchmark(benchmark_args, configs=[config])
        results = benchmark.run()
        self.check_results_dict_not_empty(results.time_inference_result)
        self.check_results_dict_not_empty(results.memory_inference_result)

    def test_inference_encoder_decoder_with_configs(self):
        MODEL_ID = "sshleifer/tinier_bart"
        config = AutoConfig.from_pretrained(MODEL_ID)
141
        benchmark_args = PyTorchBenchmarkArguments(
Patrick von Platen's avatar
Patrick von Platen committed
142
143
144
145
146
147
            models=[MODEL_ID],
            training=False,
            no_inference=False,
            sequence_lengths=[8],
            batch_sizes=[1],
            no_multi_process=True,
148
149
150
151
152
153
154
        )
        benchmark = PyTorchBenchmark(benchmark_args, configs=[config])
        results = benchmark.run()
        self.check_results_dict_not_empty(results.time_inference_result)
        self.check_results_dict_not_empty(results.memory_inference_result)

    def test_train_with_configs(self):
155
156
157
158
159
160
161
162
        MODEL_ID = "sshleifer/tiny-gpt2"
        config = AutoConfig.from_pretrained(MODEL_ID)
        benchmark_args = PyTorchBenchmarkArguments(
            models=[MODEL_ID],
            training=True,
            no_inference=True,
            sequence_lengths=[8],
            batch_sizes=[1],
Patrick von Platen's avatar
Patrick von Platen committed
163
            no_multi_process=True,
164
165
166
167
        )
        benchmark = PyTorchBenchmark(benchmark_args, configs=[config])
        results = benchmark.run()
        self.check_results_dict_not_empty(results.time_train_result)
Patrick von Platen's avatar
Patrick von Platen committed
168
169
170
171
172
        self.check_results_dict_not_empty(results.memory_train_result)

    def test_train_encoder_decoder_with_configs(self):
        MODEL_ID = "sshleifer/tinier_bart"
        config = AutoConfig.from_pretrained(MODEL_ID)
173
        benchmark_args = PyTorchBenchmarkArguments(
Patrick von Platen's avatar
Patrick von Platen committed
174
175
176
177
178
179
            models=[MODEL_ID],
            training=True,
            no_inference=True,
            sequence_lengths=[8],
            batch_sizes=[1],
            no_multi_process=True,
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
        )
        benchmark = PyTorchBenchmark(benchmark_args, configs=[config])
        results = benchmark.run()
        self.check_results_dict_not_empty(results.time_train_result)
        self.check_results_dict_not_empty(results.memory_train_result)

    def test_save_csv_files(self):
        MODEL_ID = "sshleifer/tiny-gpt2"
        with tempfile.TemporaryDirectory() as tmp_dir:
            benchmark_args = PyTorchBenchmarkArguments(
                models=[MODEL_ID],
                training=True,
                no_inference=False,
                save_to_csv=True,
                sequence_lengths=[8],
                batch_sizes=[1],
                inference_time_csv_file=os.path.join(tmp_dir, "inf_time.csv"),
                train_memory_csv_file=os.path.join(tmp_dir, "train_mem.csv"),
                inference_memory_csv_file=os.path.join(tmp_dir, "inf_mem.csv"),
                train_time_csv_file=os.path.join(tmp_dir, "train_time.csv"),
                env_info_csv_file=os.path.join(tmp_dir, "env.csv"),
Patrick von Platen's avatar
Patrick von Platen committed
201
                no_multi_process=True,
202
203
204
205
206
207
208
209
            )
            benchmark = PyTorchBenchmark(benchmark_args)
            benchmark.run()
            self.assertTrue(Path(os.path.join(tmp_dir, "inf_time.csv")).exists())
            self.assertTrue(Path(os.path.join(tmp_dir, "train_time.csv")).exists())
            self.assertTrue(Path(os.path.join(tmp_dir, "inf_mem.csv")).exists())
            self.assertTrue(Path(os.path.join(tmp_dir, "train_mem.csv")).exists())
            self.assertTrue(Path(os.path.join(tmp_dir, "env.csv")).exists())
Patrick von Platen's avatar
Patrick von Platen committed
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229

    def test_trace_memory(self):
        MODEL_ID = "sshleifer/tiny-gpt2"

        def _check_summary_is_not_empty(summary):
            self.assertTrue(hasattr(summary, "sequential"))
            self.assertTrue(hasattr(summary, "cumulative"))
            self.assertTrue(hasattr(summary, "current"))
            self.assertTrue(hasattr(summary, "total"))

        with tempfile.TemporaryDirectory() as tmp_dir:
            benchmark_args = PyTorchBenchmarkArguments(
                models=[MODEL_ID],
                training=True,
                no_inference=False,
                sequence_lengths=[8],
                batch_sizes=[1],
                log_filename=os.path.join(tmp_dir, "log.txt"),
                log_print=True,
                trace_memory_line_by_line=True,
Patrick von Platen's avatar
Patrick von Platen committed
230
                no_multi_process=True,
Patrick von Platen's avatar
Patrick von Platen committed
231
232
233
234
235
236
            )
            benchmark = PyTorchBenchmark(benchmark_args)
            result = benchmark.run()
            _check_summary_is_not_empty(result.inference_summary)
            _check_summary_is_not_empty(result.train_summary)
            self.assertTrue(Path(os.path.join(tmp_dir, "log.txt")).exists())