test_benchmark.py 6.09 KB
Newer Older
1
2
3
4
5
import os
import tempfile
import unittest
from pathlib import Path

Patrick von Platen's avatar
Patrick von Platen committed
6
from transformers import AutoConfig, is_torch_available
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

from .utils import require_torch


if is_torch_available():
    from transformers import (
        PyTorchBenchmarkArguments,
        PyTorchBenchmark,
    )


@require_torch
class BenchmarkTest(unittest.TestCase):
    def check_results_dict_not_empty(self, results):
        for model_result in results.values():
            for batch_size, sequence_length in zip(model_result["bs"], model_result["ss"]):
                result = model_result["result"][batch_size][sequence_length]
                self.assertIsNotNone(result)

    def test_inference_no_configs(self):
        MODEL_ID = "sshleifer/tiny-gpt2"
        benchmark_args = PyTorchBenchmarkArguments(
            models=[MODEL_ID], training=False, no_inference=False, sequence_lengths=[8], batch_sizes=[1]
        )
        benchmark = PyTorchBenchmark(benchmark_args)
        results = benchmark.run()
        self.check_results_dict_not_empty(results.time_inference_result)
        self.check_results_dict_not_empty(results.memory_inference_result)

    def test_train_no_configs(self):
        MODEL_ID = "sshleifer/tiny-gpt2"
        benchmark_args = PyTorchBenchmarkArguments(
            models=[MODEL_ID], training=True, no_inference=True, sequence_lengths=[8], batch_sizes=[1]
        )
        benchmark = PyTorchBenchmark(benchmark_args)
        results = benchmark.run()
        self.check_results_dict_not_empty(results.time_train_result)
        self.check_results_dict_not_empty(results.memory_train_result)

    def test_inference_with_configs(self):
        MODEL_ID = "sshleifer/tiny-gpt2"
Patrick von Platen's avatar
Patrick von Platen committed
48
49
50
51
52
53
54
55
56
57
58
59
        config = AutoConfig.from_pretrained(MODEL_ID)
        benchmark_args = PyTorchBenchmarkArguments(
            models=[MODEL_ID], training=False, no_inference=False, sequence_lengths=[8], batch_sizes=[1]
        )
        benchmark = PyTorchBenchmark(benchmark_args, configs=[config])
        results = benchmark.run()
        self.check_results_dict_not_empty(results.time_inference_result)
        self.check_results_dict_not_empty(results.memory_inference_result)

    def test_inference_encoder_decoder_with_configs(self):
        MODEL_ID = "sshleifer/tinier_bart"
        config = AutoConfig.from_pretrained(MODEL_ID)
60
61
62
63
64
65
66
67
68
69
        benchmark_args = PyTorchBenchmarkArguments(
            models=[MODEL_ID], training=False, no_inference=False, sequence_lengths=[8], batch_sizes=[1]
        )
        benchmark = PyTorchBenchmark(benchmark_args, configs=[config])
        results = benchmark.run()
        self.check_results_dict_not_empty(results.time_inference_result)
        self.check_results_dict_not_empty(results.memory_inference_result)

    def test_train_with_configs(self):
        MODEL_ID = "sshleifer/tiny-gpt2"
Patrick von Platen's avatar
Patrick von Platen committed
70
71
72
73
74
75
76
77
78
79
80
81
        config = AutoConfig.from_pretrained(MODEL_ID)
        benchmark_args = PyTorchBenchmarkArguments(
            models=[MODEL_ID], training=True, no_inference=True, sequence_lengths=[8], batch_sizes=[1]
        )
        benchmark = PyTorchBenchmark(benchmark_args, configs=[config])
        results = benchmark.run()
        self.check_results_dict_not_empty(results.time_train_result)
        self.check_results_dict_not_empty(results.memory_train_result)

    def test_train_encoder_decoder_with_configs(self):
        MODEL_ID = "sshleifer/tinier_bart"
        config = AutoConfig.from_pretrained(MODEL_ID)
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
        benchmark_args = PyTorchBenchmarkArguments(
            models=[MODEL_ID], training=True, no_inference=True, sequence_lengths=[8], batch_sizes=[1]
        )
        benchmark = PyTorchBenchmark(benchmark_args, configs=[config])
        results = benchmark.run()
        self.check_results_dict_not_empty(results.time_train_result)
        self.check_results_dict_not_empty(results.memory_train_result)

    def test_save_csv_files(self):
        MODEL_ID = "sshleifer/tiny-gpt2"
        with tempfile.TemporaryDirectory() as tmp_dir:
            benchmark_args = PyTorchBenchmarkArguments(
                models=[MODEL_ID],
                training=True,
                no_inference=False,
                save_to_csv=True,
                sequence_lengths=[8],
                batch_sizes=[1],
                inference_time_csv_file=os.path.join(tmp_dir, "inf_time.csv"),
                train_memory_csv_file=os.path.join(tmp_dir, "train_mem.csv"),
                inference_memory_csv_file=os.path.join(tmp_dir, "inf_mem.csv"),
                train_time_csv_file=os.path.join(tmp_dir, "train_time.csv"),
                env_info_csv_file=os.path.join(tmp_dir, "env.csv"),
            )
            benchmark = PyTorchBenchmark(benchmark_args)
            benchmark.run()
            self.assertTrue(Path(os.path.join(tmp_dir, "inf_time.csv")).exists())
            self.assertTrue(Path(os.path.join(tmp_dir, "train_time.csv")).exists())
            self.assertTrue(Path(os.path.join(tmp_dir, "inf_mem.csv")).exists())
            self.assertTrue(Path(os.path.join(tmp_dir, "train_mem.csv")).exists())
            self.assertTrue(Path(os.path.join(tmp_dir, "env.csv")).exists())
Patrick von Platen's avatar
Patrick von Platen committed
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138

    def test_trace_memory(self):
        MODEL_ID = "sshleifer/tiny-gpt2"

        def _check_summary_is_not_empty(summary):
            self.assertTrue(hasattr(summary, "sequential"))
            self.assertTrue(hasattr(summary, "cumulative"))
            self.assertTrue(hasattr(summary, "current"))
            self.assertTrue(hasattr(summary, "total"))

        with tempfile.TemporaryDirectory() as tmp_dir:
            benchmark_args = PyTorchBenchmarkArguments(
                models=[MODEL_ID],
                training=True,
                no_inference=False,
                sequence_lengths=[8],
                batch_sizes=[1],
                log_filename=os.path.join(tmp_dir, "log.txt"),
                log_print=True,
                trace_memory_line_by_line=True,
            )
            benchmark = PyTorchBenchmark(benchmark_args)
            result = benchmark.run()
            _check_summary_is_not_empty(result.inference_summary)
            _check_summary_is_not_empty(result.train_summary)
            self.assertTrue(Path(os.path.join(tmp_dir, "log.txt")).exists())