"lmdeploy/lite/apis/__init__.py" did not exist on "46f4738c0b8c134339fe6b0a818b7decff52646f"
test_modeling_reformer.py 46 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# coding=utf-8 # Copyright 2020 Huggingface
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import unittest

from transformers import is_torch_available
19
20
21
22
from transformers.testing_utils import (
    require_sentencepiece,
    require_tokenizers,
    require_torch,
23
    require_torch_multi_gpu,
24
25
26
    slow,
    torch_device,
)
Patrick von Platen's avatar
Patrick von Platen committed
27
28

from .test_configuration_common import ConfigTester
29
from .test_generation_utils import GenerationTesterMixin
30
from .test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
Patrick von Platen's avatar
Patrick von Platen committed
31
32
33


if is_torch_available():
34
35
    import torch

Patrick von Platen's avatar
Patrick von Platen committed
36
    from transformers import (
37
        REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
Patrick von Platen's avatar
Patrick von Platen committed
38
        ReformerConfig,
39
        ReformerForMaskedLM,
40
41
42
        ReformerForQuestionAnswering,
        ReformerForSequenceClassification,
        ReformerLayer,
Patrick von Platen's avatar
Patrick von Platen committed
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
        ReformerModel,
        ReformerModelWithLMHead,
        ReformerTokenizer,
    )


class ReformerModelTester:
    def __init__(
        self,
        parent,
        batch_size=None,
        seq_length=None,
        is_training=None,
        is_decoder=None,
        use_input_mask=None,
58
        use_labels=None,
Patrick von Platen's avatar
Patrick von Platen committed
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
        vocab_size=None,
        attention_head_size=None,
        hidden_size=None,
        num_attention_heads=None,
        local_attn_chunk_length=None,
        local_num_chunks_before=None,
        local_num_chunks_after=None,
        num_buckets=None,
        num_hashes=1,
        lsh_attn_chunk_length=None,
        lsh_num_chunks_before=None,
        lsh_num_chunks_after=None,
        chunk_size_lm_head=None,
        chunk_size_feed_forward=None,
        feed_forward_size=None,
        hidden_act=None,
        hidden_dropout_prob=None,
        local_attention_probs_dropout_prob=None,
        lsh_attention_probs_dropout_prob=None,
        max_position_embeddings=None,
        initializer_range=None,
        axial_norm_std=None,
        layer_norm_eps=None,
        axial_pos_embds=None,
        axial_pos_shape=None,
        axial_pos_embds_dim=None,
        attn_layers=None,
        pad_token_id=None,
        eos_token_id=None,
        scope=None,
        hash_seed=None,
90
        num_labels=None,
Patrick von Platen's avatar
Patrick von Platen committed
91
92
93
94
95
96
97
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.is_training = is_training
        self.is_decoder = is_decoder
        self.use_input_mask = use_input_mask
98
        self.use_labels = use_labels
Patrick von Platen's avatar
Patrick von Platen committed
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
        self.vocab_size = vocab_size
        self.attention_head_size = attention_head_size
        self.hidden_size = hidden_size
        self.num_attention_heads = num_attention_heads
        self.num_hidden_layers = len(attn_layers)
        self.local_attn_chunk_length = local_attn_chunk_length
        self.local_num_chunks_after = local_num_chunks_after
        self.local_num_chunks_before = local_num_chunks_before
        self.num_hashes = num_hashes
        self.num_buckets = tuple(num_buckets) if isinstance(num_buckets, list) else num_buckets
        self.lsh_attn_chunk_length = lsh_attn_chunk_length
        self.lsh_num_chunks_after = lsh_num_chunks_after
        self.lsh_num_chunks_before = lsh_num_chunks_before
        self.hidden_act = hidden_act
        self.feed_forward_size = feed_forward_size
        self.hidden_dropout_prob = hidden_dropout_prob
        self.local_attention_probs_dropout_prob = local_attention_probs_dropout_prob
        self.lsh_attention_probs_dropout_prob = lsh_attention_probs_dropout_prob
        self.max_position_embeddings = max_position_embeddings
        self.initializer_range = initializer_range
        self.layer_norm_eps = layer_norm_eps
        self.axial_pos_embds = axial_pos_embds
        self.axial_pos_shape = tuple(axial_pos_shape)
        self.axial_pos_embds_dim = tuple(axial_pos_embds_dim)
        self.axial_norm_std = axial_norm_std
        self.chunk_size_lm_head = chunk_size_lm_head
        self.chunk_size_feed_forward = chunk_size_feed_forward
        self.scope = scope
        self.attn_layers = attn_layers
        self.pad_token_id = pad_token_id
        self.hash_seed = hash_seed

        attn_chunk_length = local_attn_chunk_length if local_attn_chunk_length is not None else lsh_attn_chunk_length
        num_chunks_after = local_num_chunks_after if local_num_chunks_after is not None else lsh_num_chunks_after
        num_chunks_before = local_num_chunks_before if local_num_chunks_before is not None else lsh_num_chunks_before

        self.encoder_seq_length = seq_length // attn_chunk_length + (self.seq_length % attn_chunk_length != 0)
        self.key_length = (num_chunks_before + num_chunks_after + 1) * attn_chunk_length
        self.chunk_length = attn_chunk_length
138
        self.num_labels = num_labels
Patrick von Platen's avatar
Patrick von Platen committed
139
140
141
142
143
144

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        input_mask = None
        if self.use_input_mask:
145
            input_mask = random_attention_mask([self.batch_size, self.seq_length])
Patrick von Platen's avatar
Patrick von Platen committed
146

147
148
149
150
        choice_labels = None
        if self.use_labels:
            choice_labels = ids_tensor([self.batch_size], 2)

Patrick von Platen's avatar
Patrick von Platen committed
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
        config = ReformerConfig(
            vocab_size=self.vocab_size,
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            feed_forward_size=self.feed_forward_size,
            hidden_act=self.hidden_act,
            hidden_dropout_prob=self.hidden_dropout_prob,
            local_attention_probs_dropout_prob=self.local_attention_probs_dropout_prob,
            lsh_attention_probs_dropout_prob=self.lsh_attention_probs_dropout_prob,
            max_position_embeddings=self.max_position_embeddings,
            is_decoder=self.is_decoder,
            axial_pos_embds=self.axial_pos_embds,
            axial_pos_shape=self.axial_pos_shape,
            axial_pos_embds_dim=self.axial_pos_embds_dim,
            local_attn_chunk_length=self.local_attn_chunk_length,
            local_num_chunks_after=self.local_num_chunks_after,
            local_num_chunks_before=self.local_num_chunks_before,
            num_hashes=self.num_hashes,
            num_buckets=self.num_buckets,
            lsh_attn_chunk_length=self.lsh_attn_chunk_length,
            lsh_num_chunks_after=self.lsh_num_chunks_after,
            lsh_num_chunks_before=self.lsh_num_chunks_before,
            attn_layers=self.attn_layers,
            pad_token_id=self.pad_token_id,
            hash_seed=self.hash_seed,
        )

        return (
            config,
            input_ids,
            input_mask,
183
            choice_labels,
Patrick von Platen's avatar
Patrick von Platen committed
184
185
        )

186
    def create_and_check_reformer_model(self, config, input_ids, input_mask, choice_labels):
Patrick von Platen's avatar
Patrick von Platen committed
187
188
189
        model = ReformerModel(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
190
191
        result = model(input_ids, attention_mask=input_mask)
        result = model(input_ids)
Patrick von Platen's avatar
Patrick von Platen committed
192
193

        # 2 * hidden_size because we use reversible resnet layers
Stas Bekman's avatar
Stas Bekman committed
194
195
        self.parent.assertEqual(
            result.last_hidden_state.shape, (self.batch_size, self.seq_length, 2 * self.hidden_size)
Patrick von Platen's avatar
Patrick von Platen committed
196
197
        )

198
    def create_and_check_reformer_model_with_lm_backward(self, config, input_ids, input_mask, choice_labels):
199
200
201
        if not self.is_training:
            return

202
203
204
        config.is_decoder = False
        config.lsh_num_chunks_after = 1
        model = ReformerForMaskedLM(config=config)
Patrick von Platen's avatar
Patrick von Platen committed
205
        model.to(torch_device)
206
        model.train()
Sylvain Gugger's avatar
Sylvain Gugger committed
207
        loss = model(input_ids, attention_mask=input_mask, labels=input_ids)["loss"]
Patrick von Platen's avatar
Patrick von Platen committed
208
209
        loss.backward()

210
    def create_and_check_reformer_with_lm(self, config, input_ids, input_mask, choice_labels):
211
212
        config.lsh_num_chunks_after = 0
        config.is_decoder = True
Patrick von Platen's avatar
Patrick von Platen committed
213
214
215
        model = ReformerModelWithLMHead(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
216
        result = model(input_ids, attention_mask=input_mask, labels=input_ids)
Stas Bekman's avatar
Stas Bekman committed
217
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
Patrick von Platen's avatar
Patrick von Platen committed
218

219
220
221
222
223
    def create_and_check_reformer_with_mlm(self, config, input_ids, input_mask, choice_labels):
        config.is_decoder = False
        model = ReformerForMaskedLM(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
224
        result = model(input_ids, attention_mask=input_mask, labels=input_ids)
Stas Bekman's avatar
Stas Bekman committed
225
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
226
227
228
229

    def create_and_check_reformer_model_with_attn_mask(
        self, config, input_ids, input_mask, choice_labels, is_decoder=False
    ):
Patrick von Platen's avatar
Patrick von Platen committed
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
        # no special position embeddings
        config.axial_pos_embds = False
        config.is_decoder = is_decoder

        if self.lsh_attn_chunk_length is not None:
            # need to set chunk length equal sequence length to be certain that chunking works
            config.lsh_attn_chunk_length = self.seq_length

        model = ReformerModel(config=config)
        model.to(torch_device)
        model.eval()
        # set all position encodings to zero so that postions don't matter
        with torch.no_grad():
            embedding = model.embeddings.position_embeddings.embedding
            embedding.weight = torch.nn.Parameter(torch.zeros(embedding.weight.shape).to(torch_device))
            embedding.weight.requires_grad = False

        half_seq_len = self.seq_length // 2
        roll = self.chunk_length

        half_input_ids = input_ids[:, :half_seq_len]

        # normal padded
Lysandre's avatar
Lysandre committed
253
254
255
256
        attn_mask = torch.cat(
            [torch.ones_like(half_input_ids), torch.zeros_like(half_input_ids)],
            dim=-1,
        )
Patrick von Platen's avatar
Patrick von Platen committed
257
        input_ids_padded = torch.cat(
Lysandre's avatar
Lysandre committed
258
259
            [half_input_ids, ids_tensor((self.batch_size, half_seq_len), self.vocab_size)],
            dim=-1,
Patrick von Platen's avatar
Patrick von Platen committed
260
261
262
263
        )

        # shifted padded
        input_ids_roll = torch.cat(
Lysandre's avatar
Lysandre committed
264
265
            [half_input_ids, ids_tensor((self.batch_size, half_seq_len), self.vocab_size)],
            dim=-1,
Patrick von Platen's avatar
Patrick von Platen committed
266
267
268
269
270
271
272
273
274
        )
        input_ids_roll = torch.roll(input_ids_roll, roll, dims=-1)
        attn_mask_roll = torch.roll(attn_mask, roll, dims=-1)

        output_padded = model(input_ids_padded, attention_mask=attn_mask)[0][:, :half_seq_len]
        output_padded_rolled = model(input_ids_roll, attention_mask=attn_mask_roll)[0][:, roll : half_seq_len + roll]

        self.parent.assertTrue(torch.allclose(output_padded, output_padded_rolled, atol=1e-3))

275
276
277
    def create_and_check_reformer_layer_dropout_seed(
        self, config, input_ids, input_mask, choice_labels, is_decoder=False
    ):
Patrick von Platen's avatar
Patrick von Platen committed
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
        config.is_decoder = is_decoder
        layer = ReformerLayer(config).to(torch_device)
        layer.train()
        shape = (
            self.batch_size,
            self.seq_length,
            config.hidden_size,
        )  # Batch x SeqLen x hiddenSize

        # get random tensors
        hidden_states = floats_tensor(shape)
        prev_attn_output = floats_tensor(shape)

        # now the random seeds for attention and feed forward is initialized
        # forward tensors with dropout
        layer_outputs = layer(prev_attn_output, hidden_states, attention_mask=input_mask)

        next_attn_output = layer_outputs.attn_output
        next_hidden_states = layer_outputs.hidden_states

        torch.manual_seed(layer.attention_seed)
        attn_outputs = layer.attention(hidden_states, attention_mask=input_mask)
        self.parent.assertTrue(
Lysandre's avatar
Lysandre committed
301
302
303
304
305
            torch.allclose(
                prev_attn_output + attn_outputs.hidden_states,
                next_attn_output,
                atol=1e-3,
            )
Patrick von Platen's avatar
Patrick von Platen committed
306
307
308
309
310
        )

        torch.manual_seed(layer.feed_forward_seed)
        feed_forward_hidden_states = layer.feed_forward(next_attn_output)
        self.parent.assertTrue(
Lysandre's avatar
Lysandre committed
311
312
313
314
315
            torch.allclose(
                next_hidden_states,
                hidden_states + feed_forward_hidden_states,
                atol=1e-3,
            )
Patrick von Platen's avatar
Patrick von Platen committed
316
317
        )

318
    def create_and_check_reformer_feed_backward_chunking(self, config, input_ids, input_mask, choice_labels):
Patrick von Platen's avatar
Patrick von Platen committed
319
320
321
322
323
324
325
        if not self.is_training:
            return

        # disable dropout
        config.hidden_dropout_prob = 0
        config.local_attention_probs_dropout_prob = 0
        config.lsh_attention_probs_dropout_prob = 0
326
327
        config.lsh_num_chunks_after = 1
        config.is_decoder = False
Patrick von Platen's avatar
Patrick von Platen committed
328
329

        torch.manual_seed(0)
330
        model = ReformerForMaskedLM(config=config)
Patrick von Platen's avatar
Patrick von Platen committed
331
332
333
334
335
336
337
338
339
340
341
342
343
        model.to(torch_device)
        model.train()
        model.zero_grad()
        loss_no_chunk, output_no_chunk = model(input_ids, labels=input_ids, attention_mask=input_mask)[:2]
        loss_no_chunk.backward()
        grad_slice_word_no_chunk = model.reformer.embeddings.word_embeddings.weight.grad[0, :5]
        grad_slice_position_factor_1_no_chunk = model.reformer.embeddings.position_embeddings.weights[0][1, 0, -5:]
        grad_slice_position_factor_2_no_chunk = model.reformer.embeddings.position_embeddings.weights[1][0, 1, :5]

        config.chunk_size_lm_head = 1
        config.chunk_size_feed_forward = 1

        torch.manual_seed(0)
344
        model = ReformerForMaskedLM(config=config)
Patrick von Platen's avatar
Patrick von Platen committed
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
        model.to(torch_device)
        model.train()
        model.zero_grad()
        loss_chunk, output_chunk = model(input_ids, labels=input_ids, attention_mask=input_mask)[:2]
        loss_chunk.backward()
        grad_slice_word_chunk = model.reformer.embeddings.word_embeddings.weight.grad[0, :5]
        grad_slice_position_factor_1_chunk = model.reformer.embeddings.position_embeddings.weights[0][1, 0, -5:]
        grad_slice_position_factor_2_chunk = model.reformer.embeddings.position_embeddings.weights[1][0, 1, :5]
        self.parent.assertTrue(torch.allclose(loss_chunk, loss_no_chunk, atol=1e-3))
        self.parent.assertTrue(torch.allclose(grad_slice_word_no_chunk, grad_slice_word_chunk, atol=1e-3))
        self.parent.assertTrue(
            torch.allclose(grad_slice_position_factor_1_chunk, grad_slice_position_factor_1_no_chunk, atol=1e-3)
        )
        self.parent.assertTrue(
            torch.allclose(grad_slice_position_factor_2_chunk, grad_slice_position_factor_2_no_chunk, atol=1e-3)
        )

362
    def create_and_check_reformer_random_seed(self, config, input_ids, input_mask, choice_labels):
Patrick von Platen's avatar
Patrick von Platen committed
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
        layer = ReformerLayer(config).to(torch_device)
        layer.train()

        shape = (
            self.batch_size,
            self.seq_length,
            config.hidden_size,
        )  # Batch x SeqLen x hiddenSize

        hidden_states = floats_tensor(shape)
        attn_output = floats_tensor(shape)

        seeds = []
        for _ in range(100):
            layer_outputs = layer(attn_output, hidden_states, attention_mask=input_mask)
            attn_output = layer_outputs.attn_output
            hidden_states = layer_outputs.hidden_states
            torch.manual_seed(layer.attention_seed)
            seeds.append(layer.attention_seed)
        self.parent.assertGreater(len(set(seeds)), 70)

        seeds = []
        for _ in range(100):
            layer_outputs = layer(attn_output, hidden_states, attention_mask=input_mask)
            attn_output = layer_outputs.attn_output
            hidden_states = layer_outputs.hidden_states
            torch.manual_seed(layer.feed_forward_seed)
            seeds.append(layer.feed_forward_seed)
        self.parent.assertGreater(len(set(seeds)), 70)

393
    def create_and_check_reformer_model_fp16_forward(self, config, input_ids, input_mask, choice_labels):
Patrick von Platen's avatar
Patrick von Platen committed
394
395
396
397
        model = ReformerModel(config=config)
        model.to(torch_device)
        model.half()
        model.eval()
Patrick von Platen's avatar
Patrick von Platen committed
398
        output = model(input_ids, attention_mask=input_mask)["last_hidden_state"]
Patrick von Platen's avatar
Patrick von Platen committed
399
400
        self.parent.assertFalse(torch.isnan(output).any().item())

401
402
403
404
405
406
407
408
409
410
411
412
413
    def create_and_check_reformer_model_generate(self, config, input_ids, input_mask, choice_labels):
        config.is_decoder = True
        config.lsh_num_chunks_after = 0
        config.bos_token_id = 0
        config.eos_token_id = None
        config.max_length = 20

        model = ReformerModelWithLMHead(config=config)
        model.to(torch_device)
        model.eval()
        output = model.generate()
        self.parent.assertIsNotNone(output)

414
    def create_and_check_reformer_model_fp16_generate(self, config, input_ids, input_mask, choice_labels):
415
416
        config.is_decoder = True
        config.lsh_num_chunks_after = 0
Patrick von Platen's avatar
Patrick von Platen committed
417
418
419
420
        model = ReformerModelWithLMHead(config=config)
        model.to(torch_device)
        model.half()
        model.eval()
421
422
        # only use last 10 inputs for generation
        output = model.generate(input_ids[:, -10:], attention_mask=input_mask, do_sample=False)
Patrick von Platen's avatar
Patrick von Platen committed
423
424
        self.parent.assertFalse(torch.isnan(output).any().item())

425
    def create_and_check_reformer_no_chunking(self, config, input_ids, input_mask, choice_labels):
426
427
428
        # force chunk length to be bigger than input_ids
        config.lsh_attn_chunk_length = 2 * input_ids.shape[-1]
        config.local_attn_chunk_length = 2 * input_ids.shape[-1]
429
430
431
        config.lsh_num_chunks_after = 1
        config.is_decoder = False
        model = ReformerForMaskedLM(config=config)
432
433
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
434
        output_logits = model(input_ids, attention_mask=input_mask)["logits"]
435
436
        self.parent.assertTrue(output_logits.shape[1] == input_ids.shape[-1])

437
    def create_and_check_reformer_for_question_answering(self, config, input_ids, input_mask, choice_labels):
438
439
440
        model = ReformerForQuestionAnswering(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
441
        result = model(
Lysandre's avatar
Lysandre committed
442
443
444
445
            input_ids,
            attention_mask=input_mask,
            start_positions=choice_labels,
            end_positions=choice_labels,
446
        )
Stas Bekman's avatar
Stas Bekman committed
447
448
        self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
        self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))
449

450
451
452
453
454
455
456
457
458
459
460
    def create_and_check_past_buckets_states(self, config, input_ids, input_mask, choice_labels):
        config.is_decoder = True
        config.lsh_num_chunks_before = 1
        config.lsh_num_chunks_after = 0
        model = ReformerModelWithLMHead(config=config)
        model.to(torch_device)
        model.eval()
        input_ids_first = input_ids[:, :-1]
        input_ids_second = input_ids[:, -1:]

        # return saved cache
Sylvain Gugger's avatar
Sylvain Gugger committed
461
        past_buckets_states = model(input_ids_first, use_cache=True)["past_buckets_states"]
462
463

        # calculate last output with and without cache
Sylvain Gugger's avatar
Sylvain Gugger committed
464
465
        outputs_with_cache = model(input_ids_second, past_buckets_states=past_buckets_states, use_cache=True)["logits"]
        outputs_without_cache = model(input_ids)["logits"][:, -1]
466
467
468
469
470
471
472
473
474
475
476

        # select random slice idx
        random_slice_idx = torch.randint(outputs_without_cache.shape[-1], (1, 1), device=torch_device).item()

        # outputs should be similar within range
        self.parent.assertTrue(
            torch.allclose(
                outputs_with_cache[:, 0, random_slice_idx], outputs_without_cache[:, random_slice_idx], atol=1e-2
            )
        )

Patrick von Platen's avatar
Patrick von Platen committed
477
478
    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
479
        (config, input_ids, input_mask, choice_labels) = config_and_inputs
Patrick von Platen's avatar
Patrick von Platen committed
480
481
482
        inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask}
        return config, inputs_dict

483
484
485
486
487
488
489
490
    def create_and_check_reformer_for_sequence_classification(
        self, config, input_ids, input_mask, choice_labels, is_decoder
    ):
        config.is_decoder = is_decoder
        sequence_labels = ids_tensor([self.batch_size], config.num_labels)
        model = ReformerForSequenceClassification(config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
491
        result = model(input_ids, attention_mask=input_mask, labels=sequence_labels)
Stas Bekman's avatar
Stas Bekman committed
492
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
493

Patrick von Platen's avatar
Patrick von Platen committed
494
495
496

class ReformerTesterMixin:
    """
Lysandre's avatar
Lysandre committed
497
    Reformer Local and Reformer LSH run essentially the same tests
Patrick von Platen's avatar
Patrick von Platen committed
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
    """

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_reformer_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_reformer_model(*config_and_inputs)

    def test_reformer_lm_model_backward(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_reformer_model_with_lm_backward(*config_and_inputs)

    def test_reformer_model_attn_masking(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
513
514
        self.model_tester.create_and_check_reformer_model_with_attn_mask(*config_and_inputs, is_decoder=True)
        self.model_tester.create_and_check_reformer_model_with_attn_mask(*config_and_inputs, is_decoder=False)
Patrick von Platen's avatar
Patrick von Platen committed
515
516
517
518
519

    def test_reformer_with_lm(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_reformer_with_lm(*config_and_inputs)

520
521
522
523
    def test_reformer_with_mlm(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_reformer_with_mlm(*config_and_inputs)

Patrick von Platen's avatar
Patrick von Platen committed
524
525
    def test_reformer_layer_training_dropout(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
526
527
        self.model_tester.create_and_check_reformer_layer_dropout_seed(*config_and_inputs, is_decoder=True)
        self.model_tester.create_and_check_reformer_layer_dropout_seed(*config_and_inputs, is_decoder=False)
Patrick von Platen's avatar
Patrick von Platen committed
528
529
530
531
532

    def test_reformer_chunking_backward_equality(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_reformer_feed_backward_chunking(*config_and_inputs)

533
534
535
536
    def test_reformer_no_chunking(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_reformer_no_chunking(*config_and_inputs)

537
538
539
540
541
542
543
544
545
546
547
548
    def test_reformer_qa_answering(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_reformer_for_question_answering(*config_and_inputs)

    def test_reformer_cached_inference(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_past_buckets_states(*config_and_inputs)

    def test_reformer_cached_generate(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_reformer_model_generate(*config_and_inputs)

Patrick von Platen's avatar
Patrick von Platen committed
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
    @slow
    def test_dropout_random_seed_is_changing(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_reformer_random_seed(*config_and_inputs)

    @unittest.skipIf(torch_device == "cpu", "Cant do half precision")
    def test_reformer_model_fp16_forward(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_reformer_model_fp16_forward(*config_and_inputs)

    @unittest.skipIf(torch_device == "cpu", "Cant do half precision")
    def test_reformer_model_fp16_generate(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_reformer_model_fp16_generate(*config_and_inputs)

564
565
    @require_torch_multi_gpu
    def test_multi_gpu_data_parallel_forward(self):
566
567
568
        # Opt-out of this test.
        pass

569
570
571
572
    def test_for_sequence_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_reformer_for_sequence_classification(*config_and_inputs, is_decoder=False)

Patrick von Platen's avatar
Patrick von Platen committed
573
574

@require_torch
575
class ReformerLocalAttnModelTest(ReformerTesterMixin, GenerationTesterMixin, ModelTesterMixin, unittest.TestCase):
576
    all_model_classes = (
577
578
579
        (ReformerModel, ReformerModelWithLMHead, ReformerForSequenceClassification, ReformerForQuestionAnswering)
        if is_torch_available()
        else ()
580
    )
Patrick von Platen's avatar
Patrick von Platen committed
581
582
583
584
585
586
587
588
589
590
    all_generative_model_classes = (ReformerModelWithLMHead,) if is_torch_available() else ()
    test_pruning = False
    test_headmasking = False
    test_torchscript = False

    def prepare_kwargs(self):
        return {
            "batch_size": 13,
            "seq_length": 32,
            "is_training": True,
591
            "is_decoder": True,
Patrick von Platen's avatar
Patrick von Platen committed
592
            "use_input_mask": True,
593
            "use_labels": True,
Patrick von Platen's avatar
Patrick von Platen committed
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
            "vocab_size": 32,
            "attention_head_size": 16,
            "hidden_size": 32,
            "num_attention_heads": 2,
            "local_attn_chunk_length": 4,
            "local_num_chunks_before": 1,
            "local_num_chunks_after": 0,
            "chunk_size_lm_head": 0,
            "chunk_size_feed_forward": 0,
            "feed_forward_size": 32,
            "hidden_act": "gelu",
            "hidden_dropout_prob": 0.1,
            "local_attention_probs_dropout_prob": 0.1,
            "max_position_embeddings": 512,
            "initializer_range": 0.02,
            "axial_norm_std": 1.0,
            "layer_norm_eps": 1e-12,
            "axial_pos_embds": True,
            "axial_pos_shape": [4, 8],
            "axial_pos_embds_dim": [16, 16],
            "attn_layers": ["local", "local", "local", "local"],
            "pad_token_id": 0,
            "eos_token_id": 2,
            "scope": None,
            "hash_seed": 0,
619
            "num_labels": 2,
Patrick von Platen's avatar
Patrick von Platen committed
620
621
622
623
624
625
626
627
628
        }

    def setUp(self):
        tester_kwargs = self.prepare_kwargs()
        self.model_tester = ReformerModelTester(self, **tester_kwargs)
        self.config_tester = ConfigTester(self, config_class=ReformerConfig, hidden_size=37)

    @slow
    def test_model_from_pretrained(self):
629
        for model_name in REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
Patrick von Platen's avatar
Patrick von Platen committed
630
631
632
633
634
            model = ReformerModelWithLMHead.from_pretrained(model_name)
            self.assertIsNotNone(model)


@require_torch
635
class ReformerLSHAttnModelTest(ReformerTesterMixin, ModelTesterMixin, GenerationTesterMixin, unittest.TestCase):
636
    all_model_classes = (
637
638
639
        (ReformerModel, ReformerModelWithLMHead, ReformerForSequenceClassification, ReformerForQuestionAnswering)
        if is_torch_available()
        else ()
640
    )
Patrick von Platen's avatar
Patrick von Platen committed
641
642
643
644
645
646
647
648
649
650
    all_generative_model_classes = (ReformerModelWithLMHead,) if is_torch_available() else ()
    test_pruning = False
    test_headmasking = False
    test_torchscript = False

    def prepare_kwargs(self):
        return {
            "batch_size": 13,
            "seq_length": 13,
            "use_input_mask": True,
651
            "use_labels": True,
Patrick von Platen's avatar
Patrick von Platen committed
652
            "is_training": False,
653
            "is_decoder": True,
Patrick von Platen's avatar
Patrick von Platen committed
654
655
656
657
658
659
660
            "vocab_size": 32,
            "attention_head_size": 16,
            "hidden_size": 64,
            "num_attention_heads": 2,
            "num_buckets": 2,
            "num_hashes": 4,
            "lsh_attn_chunk_length": 4,
661
662
            "lsh_num_chunks_before": 1,
            "lsh_num_chunks_after": 0,
Patrick von Platen's avatar
Patrick von Platen committed
663
664
665
666
667
668
669
670
671
672
673
674
675
            "chunk_size_lm_head": 5,
            "chunk_size_feed_forward": 6,
            "feed_forward_size": 32,
            "hidden_act": "relu",
            "hidden_dropout_prob": 0.1,
            "lsh_attention_probs_dropout_prob": 0.1,
            "max_position_embeddings": 512,
            "initializer_range": 0.02,
            "axial_norm_std": 1.0,
            "layer_norm_eps": 1e-12,
            "axial_pos_embds": True,
            "axial_pos_shape": [4, 8],
            "axial_pos_embds_dim": [16, 48],
676
677
678
            #            sanotheu
            #            "attn_layers": ["lsh", "lsh", "lsh", "lsh"],
            "attn_layers": ["lsh"],
Patrick von Platen's avatar
Patrick von Platen committed
679
680
681
682
            "pad_token_id": 0,
            "eos_token_id": 2,
            "scope": None,
            "hash_seed": 0,
683
            "num_labels": 2,
Patrick von Platen's avatar
Patrick von Platen committed
684
685
686
687
688
689
690
691
692
        }

    def setUp(self):
        tester_kwargs = self.prepare_kwargs()
        self.model_tester = ReformerModelTester(self, **tester_kwargs)
        self.config_tester = ConfigTester(self, config_class=ReformerConfig, hidden_size=37)


@require_torch
693
694
@require_sentencepiece
@require_tokenizers
Patrick von Platen's avatar
Patrick von Platen committed
695
696
class ReformerIntegrationTests(unittest.TestCase):
    """
697
    These integration tests test the current layer activations and gradients againts the output of the Hugging Face Reformer model at time of integration: 29/06/2020. During integration, the model was tested against the output of the official Trax ReformerLM model for various cases ("lsh" only, "local" only, masked / non-masked, different chunk length, ....). In order to recover the original trax integration tests, one should use patrickvonplaten's fork of trax and the code that lives on the branch `reformer_trax_tests`.
Patrick von Platen's avatar
Patrick von Platen committed
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
    """

    def _get_basic_config_and_input(self):
        config = {
            "vocab_size": 320,
            "attention_head_size": 8,
            "hidden_size": 16,
            "num_attention_heads": 2,
            "num_buckets": 2,
            "num_hashes": 4,
            "lsh_attn_chunk_length": 4,
            "local_attn_chunk_length": 4,
            "lsh_num_chunks_before": 1,
            "lsh_num_chunks_after": 0,
            "local_num_chunks_before": 1,
            "local_num_chunks_after": 0,
            "chunk_size_lm_head": 0,
            "chunk_size_feed_forward": 0,
            "feed_forward_size": 32,
            "hidden_act": "gelu",
            "hidden_dropout_prob": 0.0,
            "lsh_attention_probs_dropout_prob": 0.0,
            "local_attention_probs_dropout_prob": 0.0,
            "max_position_embeddings": 32,
            "initializer_range": 0.02,
            "axial_norm_std": 1.0,
            "layer_norm_eps": 1e-12,
            "sinusoidal_pos_embds": False,
            "axial_pos_embds": True,
            "axial_pos_shape": [4, 8],
            "axial_pos_embds_dim": [8, 8],
            "hash_seed": 0,
            "is_decoder": True,
        }
        return config

    def _get_hidden_states(self):
        return torch.tensor(
            [
                [
                    [
                        1.90826353e00,
                        -1.45999730e00,
                        -6.20405462e-01,
                        1.52503433e00,
                        -3.64464232e-01,
                        -8.27359235e-01,
                        8.39670803e-01,
                        2.44492178e-01,
                        4.98332758e-01,
                        2.69175139e00,
                        -7.08081422e-03,
                        1.04915401e00,
                        -1.83476661e00,
                        7.67220476e-01,
                        2.98580543e-01,
                        2.84803992e-02,
                    ],
                    [
                        -2.66374286e-02,
                        4.33497576e-01,
                        3.10386309e-01,
                        5.46039944e-01,
                        -2.47292666e-04,
                        -7.52305019e-01,
                        2.39162103e-01,
                        7.25216186e-01,
                        -7.58357372e-01,
                        4.20635998e-01,
                        -4.04739919e-02,
                        1.59924145e-01,
                        2.05135748e00,
                        -1.15997978e00,
                        5.37166397e-01,
                        2.62873606e-01,
                    ],
                    [
                        1.85247482e-01,
                        7.07046037e-01,
                        -6.77089715e-01,
                        -2.24209655e00,
                        -3.75307980e-02,
                        -8.59380874e-01,
                        -2.81027884e00,
                        1.01276376e00,
                        -1.69438001e00,
                        4.17574660e-01,
                        -1.49196962e00,
                        -1.76483717e00,
                        -1.94566312e-01,
                        -1.71183858e00,
                        7.72903565e-01,
                        -1.11557056e00,
                    ],
                    [
                        9.46069193e-01,
                        1.53417623e-01,
                        -9.58686996e-01,
                        1.18126669e-01,
                        1.75967724e00,
                        1.62194590e00,
                        -5.74108159e-01,
                        6.79920443e-01,
                        5.44028163e-01,
                        2.05466114e-01,
                        -3.63045868e-01,
                        2.41865062e-01,
                        3.20348382e-01,
                        -9.05611176e-01,
                        -1.92690727e-01,
                        -1.19917547e00,
                    ],
                ]
            ],
            dtype=torch.float32,
            device=torch_device,
        )

    def _get_attn_mask(self):
        return torch.tensor([[0, 1, 0, 0]], dtype=torch.long, device=torch_device)

    def _get_input_ids_and_mask(self):
        mask = torch.tensor(
            [
                [1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1],
                [0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0],
            ],
            dtype=torch.long,
            device=torch_device,
        )

        input_ids = torch.tensor(
            [
                [
                    89,
                    279,
                    286,
                    84,
                    194,
                    316,
                    182,
                    28,
                    283,
                    37,
                    169,
                    7,
                    253,
                    267,
                    107,
                    250,
                    44,
                    7,
                    102,
                    62,
                    3,
                    243,
                    171,
                    265,
                    302,
                    48,
                    164,
                    264,
                    148,
                    229,
                    280,
                    150,
                ],
                [
                    9,
                    192,
                    66,
                    112,
                    163,
                    83,
                    135,
                    70,
                    224,
                    96,
                    31,
                    80,
                    196,
                    80,
                    63,
                    22,
                    85,
                    100,
                    47,
                    283,
                    0,
                    163,
                    126,
                    143,
                    195,
                    82,
                    53,
                    82,
                    18,
                    27,
                    182,
                    52,
                ],
            ],
            dtype=torch.long,
            device=torch_device,
        )

        return input_ids, mask

    def test_lsh_layer_forward(self):
        config = self._get_basic_config_and_input()
908
        config["lsh_num_chunks_before"] = 0
Patrick von Platen's avatar
Patrick von Platen committed
909
910
911
912
913
914
915
916
917
        config["attn_layers"] = ["lsh"]
        config["is_decoder"] = False
        hidden_states = self._get_hidden_states()
        torch.manual_seed(0)
        layer = ReformerLayer(ReformerConfig(**config)).to(torch_device)
        layer.eval()
        reformer_output = layer(prev_attn_output=hidden_states.clone(), hidden_states=hidden_states)
        output_slice = reformer_output.hidden_states[0, 0, :5]
        expected_output_slice = torch.tensor(
Lysandre's avatar
Lysandre committed
918
919
920
            [1.6879, -1.3083, -0.4708, 1.3555, -0.6292],
            dtype=torch.float,
            device=torch_device,
Patrick von Platen's avatar
Patrick von Platen committed
921
922
923
924
925
        )
        self.assertTrue(torch.allclose(output_slice, expected_output_slice, atol=1e-3))

    def test_lsh_layer_forward_complex(self):
        config = self._get_basic_config_and_input()
926
        config["lsh_num_chunks_before"] = 0
Patrick von Platen's avatar
Patrick von Platen committed
927
928
929
930
931
932
933
934
        config["attn_layers"] = ["lsh"]
        config["num_buckets"] = [2, 4]
        attn_mask = self._get_attn_mask()
        hidden_states = self._get_hidden_states()
        torch.manual_seed(0)
        layer = ReformerLayer(ReformerConfig(**config)).to(torch_device)
        layer.eval()
        reformer_output = layer(
Lysandre's avatar
Lysandre committed
935
936
937
            prev_attn_output=hidden_states.clone(),
            hidden_states=hidden_states,
            attention_mask=attn_mask,
Patrick von Platen's avatar
Patrick von Platen committed
938
939
940
        )
        output_slice = reformer_output.hidden_states[0, 0, :5]
        expected_output_slice = torch.tensor(
Lysandre's avatar
Lysandre committed
941
942
943
            [1.6439, -1.2306, -0.5108, 1.3006, -0.6537],
            dtype=torch.float,
            device=torch_device,
Patrick von Platen's avatar
Patrick von Platen committed
944
945
946
947
948
        )
        self.assertTrue(torch.allclose(output_slice, expected_output_slice, atol=1e-3))

    def test_local_layer_forward(self):
        config = self._get_basic_config_and_input()
949
        config["local_num_chunks_before"] = 0
Patrick von Platen's avatar
Patrick von Platen committed
950
951
952
953
954
955
956
957
958
        config["attn_layers"] = ["local"]
        config["is_decoder"] = False
        hidden_states = self._get_hidden_states()
        torch.manual_seed(0)
        layer = ReformerLayer(ReformerConfig(**config)).to(torch_device)
        layer.eval()
        reformer_output = layer(prev_attn_output=hidden_states, hidden_states=hidden_states)
        output_slice = reformer_output.hidden_states[0, 0, :5]
        expected_output_slice = torch.tensor(
Lysandre's avatar
Lysandre committed
959
960
961
            [1.4212, -2.0576, -0.9688, 1.4599, -0.1344],
            dtype=torch.float,
            device=torch_device,
Patrick von Platen's avatar
Patrick von Platen committed
962
963
964
965
966
        )
        self.assertTrue(torch.allclose(output_slice, expected_output_slice, atol=1e-3))

    def test_local_layer_forward_complex(self):
        config = self._get_basic_config_and_input()
967
        config["local_num_chunks_before"] = 0
Patrick von Platen's avatar
Patrick von Platen committed
968
969
970
971
972
973
        config["attn_layers"] = ["local"]
        attn_mask = self._get_attn_mask()
        hidden_states = self._get_hidden_states()
        torch.manual_seed(0)
        layer = ReformerLayer(ReformerConfig(**config)).to(torch_device)
        layer.eval()
Lysandre's avatar
Lysandre committed
974
975
976
977
978
        reformer_output = layer(
            prev_attn_output=hidden_states,
            hidden_states=hidden_states,
            attention_mask=attn_mask,
        )
Patrick von Platen's avatar
Patrick von Platen committed
979
980
        output_slice = reformer_output.hidden_states[0, 0, :5]
        expected_output_slice = torch.tensor(
Lysandre's avatar
Lysandre committed
981
982
983
            [1.4750, -2.0235, -0.9743, 1.4463, -0.1269],
            dtype=torch.float,
            device=torch_device,
Patrick von Platen's avatar
Patrick von Platen committed
984
985
986
987
988
989
990
991
992
993
994
995
996
997
        )
        self.assertTrue(torch.allclose(output_slice, expected_output_slice, atol=1e-3))

    def test_lsh_model_forward(self):
        config = self._get_basic_config_and_input()
        config["attn_layers"] = ["lsh", "lsh", "lsh", "lsh"]
        config["num_buckets"] = [2, 4]
        torch.manual_seed(0)
        model = ReformerModel(ReformerConfig(**config)).to(torch_device)
        model.eval()
        input_ids, attn_mask = self._get_input_ids_and_mask()
        hidden_states = model(input_ids=input_ids, attention_mask=attn_mask)[0]
        output_slice = hidden_states[0, 0, :5]
        expected_output_slice = torch.tensor(
Lysandre's avatar
Lysandre committed
998
999
1000
            [-0.9896, -0.9396, -1.0831, -0.0597, 0.2456],
            dtype=torch.float,
            device=torch_device,
Patrick von Platen's avatar
Patrick von Platen committed
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
        )
        self.assertTrue(torch.allclose(output_slice, expected_output_slice, atol=1e-3))

    def test_local_model_forward(self):
        config = self._get_basic_config_and_input()
        config["attn_layers"] = ["local", "local", "local", "local"]
        torch.manual_seed(0)
        model = ReformerModel(ReformerConfig(**config)).to(torch_device)
        model.eval()
        input_ids, attn_mask = self._get_input_ids_and_mask()
        hidden_states = model(input_ids=input_ids, attention_mask=attn_mask)[0]
        output_slice = hidden_states[0, 0, :5]
        expected_output_slice = torch.tensor(
Lysandre's avatar
Lysandre committed
1014
1015
1016
            [-1.6791, 0.7171, 0.1594, 0.4063, 1.2584],
            dtype=torch.float,
            device=torch_device,
Patrick von Platen's avatar
Patrick von Platen committed
1017
1018
1019
1020
1021
1022
1023
1024
1025
        )
        self.assertTrue(torch.allclose(output_slice, expected_output_slice, atol=1e-3))

    def test_lm_model_forward(self):
        config = self._get_basic_config_and_input()
        config["attn_layers"] = ["local", "lsh", "local", "lsh", "local", "lsh"]
        config["num_buckets"] = [2, 4]
        config["is_decoder"] = False
        torch.manual_seed(0)
1026
        model = ReformerForMaskedLM(ReformerConfig(**config)).to(torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
1027
1028
1029
1030
1031
        model.eval()
        input_ids, attn_mask = self._get_input_ids_and_mask()
        hidden_states = model(input_ids=input_ids, attention_mask=attn_mask)[0]
        output_slice = hidden_states[1, -1, :5]
        expected_output_slice = torch.tensor(
Lysandre's avatar
Lysandre committed
1032
1033
1034
            [0.0256, -0.0121, 0.0636, 0.0024, -0.0393],
            dtype=torch.float,
            device=torch_device,
Patrick von Platen's avatar
Patrick von Platen committed
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
        )
        self.assertTrue(torch.allclose(output_slice, expected_output_slice, atol=1e-3))

    def test_local_lm_model_grad(self):
        config = self._get_basic_config_and_input()
        config["attn_layers"] = ["local", "local", "local", "local"]
        config["hidden_dropout_prob"] = 0.0
        config["local_attention_probs_dropout_prob"] = 0.0
        torch.manual_seed(0)
        model = ReformerModelWithLMHead(ReformerConfig(**config)).to(torch_device)
        model.train()
        model.zero_grad()
        input_ids, _ = self._get_input_ids_and_mask()
        loss = model(input_ids=input_ids, labels=input_ids)[0]

        self.assertTrue(torch.allclose(loss, torch.tensor(5.7786, dtype=torch.float, device=torch_device), atol=1e-3))
        loss.backward()

        # check last grads to cover all proable errors
        grad_slice_word = model.reformer.embeddings.word_embeddings.weight.grad[0, :5]
        expected_grad_slice_word = torch.tensor(
Lysandre's avatar
Lysandre committed
1056
1057
1058
            [-0.0005, 0.0001, 0.0002, 0.0003, 0.0006],
            dtype=torch.float,
            device=torch_device,
Patrick von Platen's avatar
Patrick von Platen committed
1059
1060
1061
        )
        grad_slice_position_factor_1 = model.reformer.embeddings.position_embeddings.weights[0][1, 0, -5:]
        expected_grad_slice_pos_fac_1 = torch.tensor(
Lysandre's avatar
Lysandre committed
1062
1063
1064
            [0.0037, -1.3793, -1.0231, -1.5230, -2.5306],
            dtype=torch.float,
            device=torch_device,
Patrick von Platen's avatar
Patrick von Platen committed
1065
1066
1067
        )
        grad_slice_position_factor_2 = model.reformer.embeddings.position_embeddings.weights[1][0, 1, :5]
        expected_grad_slice_pos_fac_2 = torch.tensor(
Lysandre's avatar
Lysandre committed
1068
1069
1070
            [-1.3165, 0.5168, 0.7785, 1.0811, -0.9830],
            dtype=torch.float,
            device=torch_device,
Patrick von Platen's avatar
Patrick von Platen committed
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
        )
        self.assertTrue(torch.allclose(grad_slice_word, expected_grad_slice_word, atol=1e-3))
        self.assertTrue(torch.allclose(grad_slice_position_factor_1, expected_grad_slice_pos_fac_1, atol=1e-3))
        self.assertTrue(torch.allclose(grad_slice_position_factor_2, expected_grad_slice_pos_fac_2, atol=1e-3))

    def test_lsh_lm_model_grad(self):
        config = self._get_basic_config_and_input()
        config["attn_layers"] = ["lsh", "lsh", "lsh", "lsh"]
        config["hidden_dropout_prob"] = 0.0
        config["lsh_attention_probs_dropout_prob"] = 0.0
        config["num_buckets"] = [2, 4]
        config["num_hashes"] = 6
        torch.manual_seed(0)
        model = ReformerModelWithLMHead(ReformerConfig(**config)).to(torch_device)
        model.train()
        model.zero_grad()
        input_ids, _ = self._get_input_ids_and_mask()
        loss = model(input_ids=input_ids, labels=input_ids)[0]

        self.assertTrue(torch.allclose(loss, torch.tensor(5.7819, dtype=torch.float, device=torch_device), atol=1e-3))
        loss.backward()
        # check last grads to cover all proable errors
        grad_slice_word = model.reformer.embeddings.word_embeddings.weight.grad[0, :5]
        expected_grad_slice_word = torch.tensor(
Lysandre's avatar
Lysandre committed
1095
1096
1097
            [2.6357e-05, 4.3358e-04, -8.4985e-04, 1.0094e-04, 3.8954e-04],
            dtype=torch.float,
            device=torch_device,
Patrick von Platen's avatar
Patrick von Platen committed
1098
1099
1100
        )
        grad_slice_position_factor_1 = model.reformer.embeddings.position_embeddings.weights[0][1, 0, -5:]
        expected_grad_slice_pos_fac_1 = torch.tensor(
Lysandre's avatar
Lysandre committed
1101
1102
1103
            [-0.0984, 0.6283, 0.4282, 1.2960, 0.6897],
            dtype=torch.float,
            device=torch_device,
Patrick von Platen's avatar
Patrick von Platen committed
1104
1105
1106
        )
        grad_slice_position_factor_2 = model.reformer.embeddings.position_embeddings.weights[1][0, 1, :5]
        expected_grad_slice_pos_fac_2 = torch.tensor(
Lysandre's avatar
Lysandre committed
1107
1108
1109
            [0.4626, -0.0231, -0.0172, 0.1081, 0.3805],
            dtype=torch.float,
            device=torch_device,
Patrick von Platen's avatar
Patrick von Platen committed
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
        )
        self.assertTrue(torch.allclose(grad_slice_word, expected_grad_slice_word, atol=1e-3))
        self.assertTrue(torch.allclose(grad_slice_position_factor_1, expected_grad_slice_pos_fac_1, atol=1e-3))
        self.assertTrue(torch.allclose(grad_slice_position_factor_2, expected_grad_slice_pos_fac_2, atol=1e-3))

    @slow
    def test_pretrained_generate_crime_and_punish(self):
        model = ReformerModelWithLMHead.from_pretrained("google/reformer-crime-and-punishment").to(torch_device)
        tokenizer = ReformerTokenizer.from_pretrained("google/reformer-crime-and-punishment")
        model.eval()

        input_ids = tokenizer.encode("A few months later", return_tensors="pt").to(torch_device)
        output_ids = model.generate(
            input_ids, max_length=50, num_beams=4, early_stopping=True, do_sample=False, num_hashes=8
        )
1125
1126
        output = tokenizer.decode(output_ids[0])

Patrick von Platen's avatar
Patrick von Platen committed
1127
        self.assertEqual(
1128
            output,
Patrick von Platen's avatar
Patrick von Platen committed
1129
1130
            "A few months later state expression in his ideas, at the first entrance. He was positively for an inst",
        )
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144

    @slow
    def test_pretrained_generate_use_cache_equality(self):
        model = ReformerModelWithLMHead.from_pretrained("google/reformer-crime-and-punishment").to(torch_device)
        tokenizer = ReformerTokenizer.from_pretrained("google/reformer-crime-and-punishment")
        model.eval()
        input_ids = tokenizer.encode("A few months later", return_tensors="pt").to(torch_device)
        output_ids_with_cache = model.generate(input_ids, max_length=130, num_hashes=8, use_cache=False)
        output_ids_without_cache = model.generate(input_ids, max_length=130, num_hashes=8, use_cache=True)

        output_with_cache = tokenizer.decode(output_ids_with_cache[0])
        output_without_cache = tokenizer.decode(output_ids_without_cache[0])

        self.assertEqual(output_with_cache, output_without_cache)