test_examples.py 17.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2018 HuggingFace Inc..
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

16
17

import argparse
18
import json
19
import logging
20
import os
Aymeric Augustin's avatar
Aymeric Augustin committed
21
import sys
Aymeric Augustin's avatar
Aymeric Augustin committed
22
from unittest.mock import patch
Aymeric Augustin's avatar
Aymeric Augustin committed
23

Stas Bekman's avatar
Stas Bekman committed
24
25
import torch

26
from transformers import Wav2Vec2ForPreTraining
27
from transformers.file_utils import is_apex_available
28
from transformers.testing_utils import CaptureLogger, TestCasePlus, get_gpu_count, slow, torch_device
29

30
31
32

SRC_DIRS = [
    os.path.join(os.path.dirname(__file__), dirname)
33
34
35
36
37
    for dirname in [
        "text-generation",
        "text-classification",
        "token-classification",
        "language-modeling",
38
        "multiple-choice",
39
        "question-answering",
Sylvain Gugger's avatar
Sylvain Gugger committed
40
41
        "summarization",
        "translation",
42
        "image-classification",
43
        "speech-recognition",
44
        "audio-classification",
45
        "speech-pretraining",
46
    ]
47
48
49
50
51
]
sys.path.extend(SRC_DIRS)


if SRC_DIRS is not None:
52
    import run_audio_classification
Sylvain Gugger's avatar
Sylvain Gugger committed
53
    import run_clm
54
55
    import run_generation
    import run_glue
56
    import run_image_classification
57
    import run_mlm
58
    import run_ner
Sylvain Gugger's avatar
Sylvain Gugger committed
59
    import run_qa as run_squad
60
    import run_seq2seq_qa as run_squad_seq2seq
61
    import run_speech_recognition_ctc
62
    import run_summarization
63
    import run_swag
64
    import run_translation
65
    import run_wav2vec2_pretraining_no_trainer
Aymeric Augustin's avatar
Aymeric Augustin committed
66

67

68
69
70
logging.basicConfig(level=logging.DEBUG)

logger = logging.getLogger()
71

72

73
74
def get_setup_file():
    parser = argparse.ArgumentParser()
75
    parser.add_argument("-f")
76
77
78
79
    args = parser.parse_args()
    return args.f


80
81
82
83
84
85
86
87
88
89
90
def get_results(output_dir):
    results = {}
    path = os.path.join(output_dir, "all_results.json")
    if os.path.exists(path):
        with open(path, "r") as f:
            results = json.load(f)
    else:
        raise ValueError(f"can't find {path}")
    return results


91
def is_cuda_and_apex_available():
92
93
94
95
    is_using_cuda = torch.cuda.is_available() and torch_device == "cuda"
    return is_using_cuda and is_apex_available()


96
class ExamplesTests(TestCasePlus):
97
98
99
100
    def test_run_glue(self):
        stream_handler = logging.StreamHandler(sys.stdout)
        logger.addHandler(stream_handler)

101
102
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
103
            run_glue.py
104
            --model_name_or_path distilbert-base-uncased
105
106
            --output_dir {tmp_dir}
            --overwrite_output_dir
Sylvain Gugger's avatar
Sylvain Gugger committed
107
108
            --train_file ./tests/fixtures/tests_samples/MRPC/train.csv
            --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv
109
110
            --do_train
            --do_eval
111
112
            --per_device_train_batch_size=2
            --per_device_eval_batch_size=1
113
114
115
116
117
            --learning_rate=1e-4
            --max_steps=10
            --warmup_steps=2
            --seed=42
            --max_seq_length=128
118
            """.split()
119

120
        if is_cuda_and_apex_available():
121
            testargs.append("--fp16")
122

123
        with patch.object(sys, "argv", testargs):
124
125
            run_glue.main()
            result = get_results(tmp_dir)
126
            self.assertGreaterEqual(result["eval_accuracy"], 0.75)
127

Sylvain Gugger's avatar
Sylvain Gugger committed
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
    def test_run_clm(self):
        stream_handler = logging.StreamHandler(sys.stdout)
        logger.addHandler(stream_handler)

        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
            run_clm.py
            --model_name_or_path distilgpt2
            --train_file ./tests/fixtures/sample_text.txt
            --validation_file ./tests/fixtures/sample_text.txt
            --do_train
            --do_eval
            --block_size 128
            --per_device_train_batch_size 5
            --per_device_eval_batch_size 5
            --num_train_epochs 2
            --output_dir {tmp_dir}
            --overwrite_output_dir
            """.split()

        if torch.cuda.device_count() > 1:
            # Skipping because there are not enough batches to train the model + would need a drop_last to work.
            return

        if torch_device != "cuda":
            testargs.append("--no_cuda")

        with patch.object(sys, "argv", testargs):
156
157
            run_clm.main()
            result = get_results(tmp_dir)
Sylvain Gugger's avatar
Sylvain Gugger committed
158
159
            self.assertLess(result["perplexity"], 100)

160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
    def test_run_clm_config_overrides(self):
        # test that config_overrides works, despite the misleading dumps of default un-updated
        # config via tokenizer

        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
            run_clm.py
            --model_type gpt2
            --tokenizer_name gpt2
            --train_file ./tests/fixtures/sample_text.txt
            --output_dir {tmp_dir}
            --config_overrides n_embd=10,n_head=2
            """.split()

        if torch_device != "cuda":
            testargs.append("--no_cuda")

        logger = run_clm.logger
        with patch.object(sys, "argv", testargs):
            with CaptureLogger(logger) as cl:
                run_clm.main()

        self.assertIn('"n_embd": 10', cl.out)
        self.assertIn('"n_head": 2', cl.out)

185
    def test_run_mlm(self):
Julien Chaumond's avatar
Julien Chaumond committed
186
187
188
        stream_handler = logging.StreamHandler(sys.stdout)
        logger.addHandler(stream_handler)

189
190
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
191
            run_mlm.py
Julien Chaumond's avatar
Julien Chaumond committed
192
            --model_name_or_path distilroberta-base
193
194
            --train_file ./tests/fixtures/sample_text.txt
            --validation_file ./tests/fixtures/sample_text.txt
195
            --output_dir {tmp_dir}
Julien Chaumond's avatar
Julien Chaumond committed
196
197
198
            --overwrite_output_dir
            --do_train
            --do_eval
199
            --prediction_loss_only
Julien Chaumond's avatar
Julien Chaumond committed
200
            --num_train_epochs=1
201
        """.split()
202
203
204

        if torch_device != "cuda":
            testargs.append("--no_cuda")
205

Julien Chaumond's avatar
Julien Chaumond committed
206
        with patch.object(sys, "argv", testargs):
207
208
            run_mlm.main()
            result = get_results(tmp_dir)
209
            self.assertLess(result["perplexity"], 42)
Julien Chaumond's avatar
Julien Chaumond committed
210

211
212
213
214
    def test_run_ner(self):
        stream_handler = logging.StreamHandler(sys.stdout)
        logger.addHandler(stream_handler)

215
216
217
        # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu
        epochs = 7 if get_gpu_count() > 1 else 2

218
219
220
221
222
223
224
225
226
227
228
229
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
            run_ner.py
            --model_name_or_path bert-base-uncased
            --train_file tests/fixtures/tests_samples/conll/sample.json
            --validation_file tests/fixtures/tests_samples/conll/sample.json
            --output_dir {tmp_dir}
            --overwrite_output_dir
            --do_train
            --do_eval
            --warmup_steps=2
            --learning_rate=2e-4
Sylvain Gugger's avatar
Sylvain Gugger committed
230
231
            --per_device_train_batch_size=2
            --per_device_eval_batch_size=2
232
            --num_train_epochs={epochs}
233
            --seed 7
234
235
236
237
238
239
        """.split()

        if torch_device != "cuda":
            testargs.append("--no_cuda")

        with patch.object(sys, "argv", testargs):
240
241
            run_ner.main()
            result = get_results(tmp_dir)
242
            self.assertGreaterEqual(result["eval_accuracy"], 0.75)
243
244
            self.assertLess(result["eval_loss"], 0.5)

245
246
247
248
    def test_run_squad(self):
        stream_handler = logging.StreamHandler(sys.stdout)
        logger.addHandler(stream_handler)

249
250
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
Russell Klopfer's avatar
Russell Klopfer committed
251
            run_qa.py
Sylvain Gugger's avatar
Sylvain Gugger committed
252
253
254
255
            --model_name_or_path bert-base-uncased
            --version_2_with_negative
            --train_file tests/fixtures/tests_samples/SQUAD/sample.json
            --validation_file tests/fixtures/tests_samples/SQUAD/sample.json
256
257
            --output_dir {tmp_dir}
            --overwrite_output_dir
258
259
260
261
262
            --max_steps=10
            --warmup_steps=2
            --do_train
            --do_eval
            --learning_rate=2e-4
Sylvain Gugger's avatar
Sylvain Gugger committed
263
264
            --per_device_train_batch_size=2
            --per_device_eval_batch_size=1
265
266
        """.split()

267
        with patch.object(sys, "argv", testargs):
268
269
            run_squad.main()
            result = get_results(tmp_dir)
Russell Klopfer's avatar
Russell Klopfer committed
270
271
            self.assertGreaterEqual(result["eval_f1"], 30)
            self.assertGreaterEqual(result["eval_exact"], 30)
272

273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
    def test_run_squad_seq2seq(self):
        stream_handler = logging.StreamHandler(sys.stdout)
        logger.addHandler(stream_handler)

        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
            run_seq2seq_qa.py
            --model_name_or_path t5-small
            --context_column context
            --question_column question
            --answer_column answers
            --version_2_with_negative
            --train_file tests/fixtures/tests_samples/SQUAD/sample.json
            --validation_file tests/fixtures/tests_samples/SQUAD/sample.json
            --output_dir {tmp_dir}
            --overwrite_output_dir
            --max_steps=10
            --warmup_steps=2
            --do_train
            --do_eval
            --learning_rate=2e-4
            --per_device_train_batch_size=2
            --per_device_eval_batch_size=1
            --predict_with_generate
        """.split()

        with patch.object(sys, "argv", testargs):
            run_squad_seq2seq.main()
            result = get_results(tmp_dir)
302
303
            self.assertGreaterEqual(result["eval_f1"], 30)
            self.assertGreaterEqual(result["eval_exact"], 30)
304

305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
    def test_run_swag(self):
        stream_handler = logging.StreamHandler(sys.stdout)
        logger.addHandler(stream_handler)

        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
            run_swag.py
            --model_name_or_path bert-base-uncased
            --train_file tests/fixtures/tests_samples/swag/sample.json
            --validation_file tests/fixtures/tests_samples/swag/sample.json
            --output_dir {tmp_dir}
            --overwrite_output_dir
            --max_steps=20
            --warmup_steps=2
            --do_train
            --do_eval
            --learning_rate=2e-4
            --per_device_train_batch_size=2
            --per_device_eval_batch_size=1
        """.split()

        with patch.object(sys, "argv", testargs):
327
328
            run_swag.main()
            result = get_results(tmp_dir)
329
330
            self.assertGreaterEqual(result["eval_accuracy"], 0.8)

331
332
333
334
    def test_generation(self):
        stream_handler = logging.StreamHandler(sys.stdout)
        logger.addHandler(stream_handler)

335
        testargs = ["run_generation.py", "--prompt=Hello", "--length=10", "--seed=42"]
336

337
        if is_cuda_and_apex_available():
338
339
340
341
342
343
            testargs.append("--fp16")

        model_type, model_name = (
            "--model_type=gpt2",
            "--model_name_or_path=sshleifer/tiny-gpt2",
        )
344
        with patch.object(sys, "argv", testargs + [model_type, model_name]):
345
            result = run_generation.main()
346
            self.assertGreaterEqual(len(result[0]), 10)
347
348

    @slow
349
    def test_run_summarization(self):
350
351
352
353
354
        stream_handler = logging.StreamHandler(sys.stdout)
        logger.addHandler(stream_handler)

        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
355
            run_summarization.py
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
            --model_name_or_path t5-small
            --train_file tests/fixtures/tests_samples/xsum/sample.json
            --validation_file tests/fixtures/tests_samples/xsum/sample.json
            --output_dir {tmp_dir}
            --overwrite_output_dir
            --max_steps=50
            --warmup_steps=8
            --do_train
            --do_eval
            --learning_rate=2e-4
            --per_device_train_batch_size=2
            --per_device_eval_batch_size=1
            --predict_with_generate
        """.split()

        with patch.object(sys, "argv", testargs):
372
            run_summarization.main()
373
            result = get_results(tmp_dir)
374
375
376
377
378
379
            self.assertGreaterEqual(result["eval_rouge1"], 10)
            self.assertGreaterEqual(result["eval_rouge2"], 2)
            self.assertGreaterEqual(result["eval_rougeL"], 7)
            self.assertGreaterEqual(result["eval_rougeLsum"], 7)

    @slow
380
    def test_run_translation(self):
381
382
383
384
385
        stream_handler = logging.StreamHandler(sys.stdout)
        logger.addHandler(stream_handler)

        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
386
            run_translation.py
387
            --model_name_or_path sshleifer/student_marian_en_ro_6_1
388
389
            --source_lang en
            --target_lang ro
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
            --train_file tests/fixtures/tests_samples/wmt16/sample.json
            --validation_file tests/fixtures/tests_samples/wmt16/sample.json
            --output_dir {tmp_dir}
            --overwrite_output_dir
            --max_steps=50
            --warmup_steps=8
            --do_train
            --do_eval
            --learning_rate=3e-3
            --per_device_train_batch_size=2
            --per_device_eval_batch_size=1
            --predict_with_generate
            --source_lang en_XX
            --target_lang ro_RO
        """.split()

        with patch.object(sys, "argv", testargs):
407
            run_translation.main()
408
            result = get_results(tmp_dir)
409
            self.assertGreaterEqual(result["eval_bleu"], 30)
410
411
412
413
414
415
416
417
418
419

    def test_run_image_classification(self):
        stream_handler = logging.StreamHandler(sys.stdout)
        logger.addHandler(stream_handler)

        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
            run_image_classification.py
            --output_dir {tmp_dir}
            --model_name_or_path google/vit-base-patch16-224-in21k
420
            --dataset_name hf-internal-testing/cats_vs_dogs_sample
421
422
            --do_train
            --do_eval
423
            --learning_rate 1e-4
424
425
426
427
428
429
            --per_device_train_batch_size 2
            --per_device_eval_batch_size 1
            --remove_unused_columns False
            --overwrite_output_dir True
            --dataloader_num_workers 16
            --metric_for_best_model accuracy
430
            --max_steps 10
431
            --train_val_split 0.1
432
            --seed 42
433
434
435
436
437
438
439
440
441
        """.split()

        if is_cuda_and_apex_available():
            testargs.append("--fp16")

        with patch.object(sys, "argv", testargs):
            run_image_classification.main()
            result = get_results(tmp_dir)
            self.assertGreaterEqual(result["eval_accuracy"], 0.8)
442
443
444
445
446
447
448
449
450
451

    def test_run_speech_recognition_ctc(self):
        stream_handler = logging.StreamHandler(sys.stdout)
        logger.addHandler(stream_handler)

        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
            run_speech_recognition_ctc.py
            --output_dir {tmp_dir}
            --model_name_or_path hf-internal-testing/tiny-random-wav2vec2
Patrick von Platen's avatar
Patrick von Platen committed
452
            --dataset_name hf-internal-testing/librispeech_asr_dummy
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
            --dataset_config_name clean
            --train_split_name validation
            --eval_split_name validation
            --do_train
            --do_eval
            --learning_rate 1e-4
            --per_device_train_batch_size 2
            --per_device_eval_batch_size 1
            --remove_unused_columns False
            --overwrite_output_dir True
            --preprocessing_num_workers 16
            --max_steps 10
            --seed 42
        """.split()

        if is_cuda_and_apex_available():
            testargs.append("--fp16")

        with patch.object(sys, "argv", testargs):
            run_speech_recognition_ctc.main()
            result = get_results(tmp_dir)
            self.assertLess(result["eval_loss"], result["train_loss"])
475
476
477
478
479
480
481
482
483
484
485
486
487
488

    def test_run_audio_classification(self):
        stream_handler = logging.StreamHandler(sys.stdout)
        logger.addHandler(stream_handler)

        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
            run_audio_classification.py
            --output_dir {tmp_dir}
            --model_name_or_path hf-internal-testing/tiny-random-wav2vec2
            --dataset_name anton-l/superb_demo
            --dataset_config_name ks
            --train_split_name test
            --eval_split_name test
489
            --audio_column_name audio
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
            --label_column_name label
            --do_train
            --do_eval
            --learning_rate 1e-4
            --per_device_train_batch_size 2
            --per_device_eval_batch_size 1
            --remove_unused_columns False
            --overwrite_output_dir True
            --num_train_epochs 10
            --max_steps 50
            --seed 42
        """.split()

        if is_cuda_and_apex_available():
            testargs.append("--fp16")

        with patch.object(sys, "argv", testargs):
            run_audio_classification.main()
            result = get_results(tmp_dir)
            self.assertLess(result["eval_loss"], result["train_loss"])
510
511
512
513
514
515
516
517
518
519

    def test_run_wav2vec2_pretraining(self):
        stream_handler = logging.StreamHandler(sys.stdout)
        logger.addHandler(stream_handler)

        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
            run_wav2vec2_pretraining_no_trainer.py
            --output_dir {tmp_dir}
            --model_name_or_path hf-internal-testing/tiny-random-wav2vec2
Patrick von Platen's avatar
Patrick von Platen committed
520
            --dataset_name hf-internal-testing/librispeech_asr_dummy
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
            --dataset_config_names clean
            --dataset_split_names validation
            --learning_rate 1e-4
            --per_device_train_batch_size 2
            --per_device_eval_batch_size 2
            --preprocessing_num_workers 16
            --max_train_steps 5
            --validation_split_percentage 5
            --seed 42
        """.split()

        if is_cuda_and_apex_available():
            testargs.append("--fp16")

        with patch.object(sys, "argv", testargs):
            run_wav2vec2_pretraining_no_trainer.main()
            model = Wav2Vec2ForPreTraining.from_pretrained(tmp_dir)
            self.assertIsNotNone(model)