test_modeling_ctrl.py 10.6 KB
Newer Older
keskarnitish's avatar
keskarnitish committed
1
2
3
4
5
6
7
8
9
10
11
12
13
# coding=utf-8
# Copyright 2018 Salesforce and HuggingFace Inc. team.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
14

keskarnitish's avatar
keskarnitish committed
15

Yih-Dar's avatar
Yih-Dar committed
16
import gc
17
18
import unittest

19
from transformers import CTRLConfig, is_torch_available
20
from transformers.testing_utils import require_torch, slow, torch_device
keskarnitish's avatar
keskarnitish committed
21

22
from ...generation.test_utils import GenerationTesterMixin
Yih-Dar's avatar
Yih-Dar committed
23
24
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
25
from ...test_pipeline_mixin import PipelineTesterMixin
keskarnitish's avatar
keskarnitish committed
26
27


Aymeric Augustin's avatar
Aymeric Augustin committed
28
if is_torch_available():
29
    import torch
30

31
32
33
34
35
36
    from transformers import (
        CTRL_PRETRAINED_MODEL_ARCHIVE_LIST,
        CTRLForSequenceClassification,
        CTRLLMHeadModel,
        CTRLModel,
    )
Aymeric Augustin's avatar
Aymeric Augustin committed
37
38


39
40
class CTRLModelTester:
    def __init__(
Lysandre's avatar
Lysandre committed
41
42
        self,
        parent,
Yih-Dar's avatar
Yih-Dar committed
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
        batch_size=14,
        seq_length=7,
        is_training=True,
        use_token_type_ids=True,
        use_input_mask=True,
        use_labels=True,
        use_mc_token_ids=True,
        vocab_size=99,
        hidden_size=32,
        num_hidden_layers=5,
        num_attention_heads=4,
        intermediate_size=37,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        max_position_embeddings=512,
        type_vocab_size=16,
        type_sequence_label_size=2,
        initializer_range=0.02,
        num_labels=3,
        num_choices=4,
        scope=None,
65
66
    ):
        self.parent = parent
Yih-Dar's avatar
Yih-Dar committed
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.is_training = is_training
        self.use_token_type_ids = use_token_type_ids
        self.use_input_mask = use_input_mask
        self.use_labels = use_labels
        self.use_mc_token_ids = use_mc_token_ids
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.max_position_embeddings = max_position_embeddings
        self.type_vocab_size = type_vocab_size
        self.type_sequence_label_size = type_sequence_label_size
        self.initializer_range = initializer_range
        self.num_labels = num_labels
        self.num_choices = num_choices
        self.scope = scope
89
        self.pad_token_id = self.vocab_size - 1
90
91
92
93
94
95

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        input_mask = None
        if self.use_input_mask:
96
            input_mask = random_attention_mask([self.batch_size, self.seq_length])
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113

        token_type_ids = None
        if self.use_token_type_ids:
            token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)

        mc_token_ids = None
        if self.use_mc_token_ids:
            mc_token_ids = ids_tensor([self.batch_size, self.num_choices], self.seq_length)

        sequence_labels = None
        token_labels = None
        choice_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            choice_labels = ids_tensor([self.batch_size], self.num_choices)

114
        config = self.get_config()
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129

        head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2)

        return (
            config,
            input_ids,
            input_mask,
            head_mask,
            token_type_ids,
            mc_token_ids,
            sequence_labels,
            token_labels,
            choice_labels,
        )

130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
    def get_config(self):
        return CTRLConfig(
            vocab_size=self.vocab_size,
            n_embd=self.hidden_size,
            n_layer=self.num_hidden_layers,
            n_head=self.num_attention_heads,
            # intermediate_size=self.intermediate_size,
            # hidden_act=self.hidden_act,
            # hidden_dropout_prob=self.hidden_dropout_prob,
            # attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            n_positions=self.max_position_embeddings,
            # type_vocab_size=self.type_vocab_size,
            # initializer_range=self.initializer_range,
            pad_token_id=self.pad_token_id,
        )

146
147
148
149
150
151
152
    def create_and_check_ctrl_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
        model = CTRLModel(config=config)
        model.to(torch_device)
        model.eval()

        model(input_ids, token_type_ids=token_type_ids, head_mask=head_mask)
        model(input_ids, token_type_ids=token_type_ids)
Sylvain Gugger's avatar
Sylvain Gugger committed
153
        result = model(input_ids)
Stas Bekman's avatar
Stas Bekman committed
154
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
155
        self.parent.assertEqual(len(result.past_key_values), config.n_layer)
156
157
158
159
160
161

    def create_and_check_lm_head_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
        model = CTRLLMHeadModel(config)
        model.to(torch_device)
        model.eval()

Sylvain Gugger's avatar
Sylvain Gugger committed
162
        result = model(input_ids, token_type_ids=token_type_ids, labels=input_ids)
Stas Bekman's avatar
Stas Bekman committed
163
164
        self.parent.assertEqual(result.loss.shape, ())
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()

        (
            config,
            input_ids,
            input_mask,
            head_mask,
            token_type_ids,
            mc_token_ids,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = config_and_inputs

        inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "head_mask": head_mask}

        return config, inputs_dict

185
186
187
188
189
190
191
192
193
    def create_and_check_ctrl_for_sequence_classification(self, config, input_ids, head_mask, token_type_ids, *args):
        config.num_labels = self.num_labels
        model = CTRLForSequenceClassification(config)
        model.to(torch_device)
        model.eval()
        sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
        result = model(input_ids, token_type_ids=token_type_ids, labels=sequence_labels)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))

194

195
@require_torch
196
class CTRLModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
197
    all_model_classes = (CTRLModel, CTRLLMHeadModel, CTRLForSequenceClassification) if is_torch_available() else ()
198
    all_generative_model_classes = (CTRLLMHeadModel,) if is_torch_available() else ()
199
200
201
202
203
204
205
206
207
208
    pipeline_model_mapping = (
        {
            "feature-extraction": CTRLModel,
            "text-classification": CTRLForSequenceClassification,
            "text-generation": CTRLLMHeadModel,
            "zero-shot": CTRLForSequenceClassification,
        }
        if is_torch_available()
        else {}
    )
209
    test_pruning = True
keskarnitish's avatar
keskarnitish committed
210
211
212
    test_resize_embeddings = False
    test_head_masking = False

213
214
215
216
217
218
219
220
221
222
223
224
    # TODO: Fix the failed tests
    def is_pipeline_test_to_skip(
        self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name
    ):
        if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests":
            # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers.
            # `CTRLConfig` was never used in pipeline tests, either because of a missing checkpoint or because a tiny
            # config could not be created.
            return True

        return False

keskarnitish's avatar
keskarnitish committed
225
    def setUp(self):
226
        self.model_tester = CTRLModelTester(self)
keskarnitish's avatar
keskarnitish committed
227
228
        self.config_tester = ConfigTester(self, config_class=CTRLConfig, n_embd=37)

Yih-Dar's avatar
Yih-Dar committed
229
230
231
232
233
234
    def tearDown(self):
        super().tearDown()
        # clean-up as much as possible GPU memory occupied by PyTorch
        gc.collect()
        torch.cuda.empty_cache()

keskarnitish's avatar
keskarnitish committed
235
236
237
238
239
240
241
242
243
244
245
    def test_config(self):
        self.config_tester.run_common_tests()

    def test_ctrl_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_ctrl_model(*config_and_inputs)

    def test_ctrl_lm_head_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_lm_head_model(*config_and_inputs)

246
247
248
249
    @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests.")
    def test_model_is_small(self):
        pass

250
    @slow
keskarnitish's avatar
keskarnitish committed
251
    def test_model_from_pretrained(self):
252
        for model_name in CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
253
            model = CTRLModel.from_pretrained(model_name)
keskarnitish's avatar
keskarnitish committed
254
            self.assertIsNotNone(model)
255

256
257
258
259
    @unittest.skip("The model doesn't support left padding")  # and it's not used enough to be worth fixing :)
    def test_left_padding_compatibility(self):
        pass

260

261
@require_torch
262
class CTRLModelLanguageGenerationTest(unittest.TestCase):
Yih-Dar's avatar
Yih-Dar committed
263
264
265
266
267
268
    def tearDown(self):
        super().tearDown()
        # clean-up as much as possible GPU memory occupied by PyTorch
        gc.collect()
        torch.cuda.empty_cache()

269
270
271
    @slow
    def test_lm_generate_ctrl(self):
        model = CTRLLMHeadModel.from_pretrained("ctrl")
272
        model.to(torch_device)
patrickvonplaten's avatar
patrickvonplaten committed
273
        input_ids = torch.tensor(
Patrick von Platen's avatar
Patrick von Platen committed
274
275
            [[11859, 0, 1611, 8]], dtype=torch.long, device=torch_device
        )  # Legal the president is
276
277
        expected_output_ids = [
            11859,
Patrick von Platen's avatar
Patrick von Platen committed
278
279
            0,
            1611,
280
            8,
Patrick von Platen's avatar
Patrick von Platen committed
281
282
283
            5,
            150,
            26449,
284
            2,
Patrick von Platen's avatar
Patrick von Platen committed
285
286
287
            19,
            348,
            469,
288
            3,
Patrick von Platen's avatar
Patrick von Platen committed
289
290
291
292
293
294
295
296
297
            2595,
            48,
            20740,
            246533,
            246533,
            19,
            30,
            5,
        ]  # Legal the president is a good guy and I don't want to lose my job. \n \n I have a
298

patrickvonplaten's avatar
patrickvonplaten committed
299
        output_ids = model.generate(input_ids, do_sample=False)
Patrick von Platen's avatar
Patrick von Platen committed
300
        self.assertListEqual(output_ids[0].tolist(), expected_output_ids)