test_modeling_ctrl.py 8.5 KB
Newer Older
keskarnitish's avatar
keskarnitish committed
1
2
3
4
5
6
7
8
9
10
11
12
13
# coding=utf-8
# Copyright 2018 Salesforce and HuggingFace Inc. team.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
14

keskarnitish's avatar
keskarnitish committed
15

Yih-Dar's avatar
Yih-Dar committed
16
import gc
17
18
import unittest

19
from transformers import CTRLConfig, is_torch_available
20
from transformers.testing_utils import require_torch, slow, torch_device
keskarnitish's avatar
keskarnitish committed
21

Yih-Dar's avatar
Yih-Dar committed
22
23
24
from ...generation.test_generation_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
keskarnitish's avatar
keskarnitish committed
25
26


Aymeric Augustin's avatar
Aymeric Augustin committed
27
if is_torch_available():
28
    import torch
29

30
31
32
33
34
35
    from transformers import (
        CTRL_PRETRAINED_MODEL_ARCHIVE_LIST,
        CTRLForSequenceClassification,
        CTRLLMHeadModel,
        CTRLModel,
    )
Aymeric Augustin's avatar
Aymeric Augustin committed
36
37


38
39
class CTRLModelTester:
    def __init__(
Lysandre's avatar
Lysandre committed
40
41
        self,
        parent,
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
    ):
        self.parent = parent
        self.batch_size = 14
        self.seq_length = 7
        self.is_training = True
        self.use_token_type_ids = True
        self.use_input_mask = True
        self.use_labels = True
        self.use_mc_token_ids = True
        self.vocab_size = 99
        self.hidden_size = 32
        self.num_hidden_layers = 5
        self.num_attention_heads = 4
        self.intermediate_size = 37
        self.hidden_act = "gelu"
        self.hidden_dropout_prob = 0.1
        self.attention_probs_dropout_prob = 0.1
        self.max_position_embeddings = 512
        self.type_vocab_size = 16
        self.type_sequence_label_size = 2
        self.initializer_range = 0.02
        self.num_labels = 3
        self.num_choices = 4
        self.scope = None
66
        self.pad_token_id = self.vocab_size - 1
67
68
69
70
71
72

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        input_mask = None
        if self.use_input_mask:
73
            input_mask = random_attention_mask([self.batch_size, self.seq_length])
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90

        token_type_ids = None
        if self.use_token_type_ids:
            token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)

        mc_token_ids = None
        if self.use_mc_token_ids:
            mc_token_ids = ids_tensor([self.batch_size, self.num_choices], self.seq_length)

        sequence_labels = None
        token_labels = None
        choice_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            choice_labels = ids_tensor([self.batch_size], self.num_choices)

91
        config = self.get_config()
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106

        head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2)

        return (
            config,
            input_ids,
            input_mask,
            head_mask,
            token_type_ids,
            mc_token_ids,
            sequence_labels,
            token_labels,
            choice_labels,
        )

107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
    def get_config(self):
        return CTRLConfig(
            vocab_size=self.vocab_size,
            n_embd=self.hidden_size,
            n_layer=self.num_hidden_layers,
            n_head=self.num_attention_heads,
            # intermediate_size=self.intermediate_size,
            # hidden_act=self.hidden_act,
            # hidden_dropout_prob=self.hidden_dropout_prob,
            # attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            n_positions=self.max_position_embeddings,
            # type_vocab_size=self.type_vocab_size,
            # initializer_range=self.initializer_range,
            pad_token_id=self.pad_token_id,
        )

123
124
125
126
127
128
129
    def create_and_check_ctrl_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
        model = CTRLModel(config=config)
        model.to(torch_device)
        model.eval()

        model(input_ids, token_type_ids=token_type_ids, head_mask=head_mask)
        model(input_ids, token_type_ids=token_type_ids)
Sylvain Gugger's avatar
Sylvain Gugger committed
130
        result = model(input_ids)
Stas Bekman's avatar
Stas Bekman committed
131
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
132
        self.parent.assertEqual(len(result.past_key_values), config.n_layer)
133
134
135
136
137
138

    def create_and_check_lm_head_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
        model = CTRLLMHeadModel(config)
        model.to(torch_device)
        model.eval()

Sylvain Gugger's avatar
Sylvain Gugger committed
139
        result = model(input_ids, token_type_ids=token_type_ids, labels=input_ids)
Stas Bekman's avatar
Stas Bekman committed
140
141
        self.parent.assertEqual(result.loss.shape, ())
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()

        (
            config,
            input_ids,
            input_mask,
            head_mask,
            token_type_ids,
            mc_token_ids,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = config_and_inputs

        inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "head_mask": head_mask}

        return config, inputs_dict

162
163
164
165
166
167
168
169
170
    def create_and_check_ctrl_for_sequence_classification(self, config, input_ids, head_mask, token_type_ids, *args):
        config.num_labels = self.num_labels
        model = CTRLForSequenceClassification(config)
        model.to(torch_device)
        model.eval()
        sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
        result = model(input_ids, token_type_ids=token_type_ids, labels=sequence_labels)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))

171

172
@require_torch
173
class CTRLModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase):
keskarnitish's avatar
keskarnitish committed
174

175
    all_model_classes = (CTRLModel, CTRLLMHeadModel, CTRLForSequenceClassification) if is_torch_available() else ()
176
    all_generative_model_classes = (CTRLLMHeadModel,) if is_torch_available() else ()
177
    test_pruning = True
keskarnitish's avatar
keskarnitish committed
178
179
180
181
    test_resize_embeddings = False
    test_head_masking = False

    def setUp(self):
182
        self.model_tester = CTRLModelTester(self)
keskarnitish's avatar
keskarnitish committed
183
184
        self.config_tester = ConfigTester(self, config_class=CTRLConfig, n_embd=37)

Yih-Dar's avatar
Yih-Dar committed
185
186
187
188
189
190
    def tearDown(self):
        super().tearDown()
        # clean-up as much as possible GPU memory occupied by PyTorch
        gc.collect()
        torch.cuda.empty_cache()

keskarnitish's avatar
keskarnitish committed
191
192
193
194
195
196
197
198
199
200
201
    def test_config(self):
        self.config_tester.run_common_tests()

    def test_ctrl_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_ctrl_model(*config_and_inputs)

    def test_ctrl_lm_head_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_lm_head_model(*config_and_inputs)

202
    @slow
keskarnitish's avatar
keskarnitish committed
203
    def test_model_from_pretrained(self):
204
        for model_name in CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
205
            model = CTRLModel.from_pretrained(model_name)
keskarnitish's avatar
keskarnitish committed
206
            self.assertIsNotNone(model)
207
208


209
@require_torch
210
class CTRLModelLanguageGenerationTest(unittest.TestCase):
Yih-Dar's avatar
Yih-Dar committed
211
212
213
214
215
216
    def tearDown(self):
        super().tearDown()
        # clean-up as much as possible GPU memory occupied by PyTorch
        gc.collect()
        torch.cuda.empty_cache()

217
218
219
    @slow
    def test_lm_generate_ctrl(self):
        model = CTRLLMHeadModel.from_pretrained("ctrl")
220
        model.to(torch_device)
patrickvonplaten's avatar
patrickvonplaten committed
221
        input_ids = torch.tensor(
Patrick von Platen's avatar
Patrick von Platen committed
222
223
            [[11859, 0, 1611, 8]], dtype=torch.long, device=torch_device
        )  # Legal the president is
224
225
        expected_output_ids = [
            11859,
Patrick von Platen's avatar
Patrick von Platen committed
226
227
            0,
            1611,
228
            8,
Patrick von Platen's avatar
Patrick von Platen committed
229
230
231
            5,
            150,
            26449,
232
            2,
Patrick von Platen's avatar
Patrick von Platen committed
233
234
235
            19,
            348,
            469,
236
            3,
Patrick von Platen's avatar
Patrick von Platen committed
237
238
239
240
241
242
243
244
245
            2595,
            48,
            20740,
            246533,
            246533,
            19,
            30,
            5,
        ]  # Legal the president is a good guy and I don't want to lose my job. \n \n I have a
246

patrickvonplaten's avatar
patrickvonplaten committed
247
        output_ids = model.generate(input_ids, do_sample=False)
Patrick von Platen's avatar
Patrick von Platen committed
248
        self.assertListEqual(output_ids[0].tolist(), expected_output_ids)