"tests/vscode:/vscode.git/clone" did not exist on "851f253f4d3fa2414451eeaac82b7a9ad6084675"
test_modeling_ctrl.py 9.36 KB
Newer Older
keskarnitish's avatar
keskarnitish committed
1
2
3
4
5
6
7
8
9
10
11
12
13
# coding=utf-8
# Copyright 2018 Salesforce and HuggingFace Inc. team.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
14

keskarnitish's avatar
keskarnitish committed
15

Yih-Dar's avatar
Yih-Dar committed
16
import gc
17
18
import unittest

19
from transformers import CTRLConfig, is_torch_available
20
from transformers.testing_utils import require_torch, slow, torch_device
keskarnitish's avatar
keskarnitish committed
21

22
from ...generation.test_utils import GenerationTesterMixin
Yih-Dar's avatar
Yih-Dar committed
23
24
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
keskarnitish's avatar
keskarnitish committed
25
26


Aymeric Augustin's avatar
Aymeric Augustin committed
27
if is_torch_available():
28
    import torch
29

30
31
32
33
34
35
    from transformers import (
        CTRL_PRETRAINED_MODEL_ARCHIVE_LIST,
        CTRLForSequenceClassification,
        CTRLLMHeadModel,
        CTRLModel,
    )
Aymeric Augustin's avatar
Aymeric Augustin committed
36
37


38
39
class CTRLModelTester:
    def __init__(
Lysandre's avatar
Lysandre committed
40
41
        self,
        parent,
Yih-Dar's avatar
Yih-Dar committed
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
        batch_size=14,
        seq_length=7,
        is_training=True,
        use_token_type_ids=True,
        use_input_mask=True,
        use_labels=True,
        use_mc_token_ids=True,
        vocab_size=99,
        hidden_size=32,
        num_hidden_layers=5,
        num_attention_heads=4,
        intermediate_size=37,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        max_position_embeddings=512,
        type_vocab_size=16,
        type_sequence_label_size=2,
        initializer_range=0.02,
        num_labels=3,
        num_choices=4,
        scope=None,
64
65
    ):
        self.parent = parent
Yih-Dar's avatar
Yih-Dar committed
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.is_training = is_training
        self.use_token_type_ids = use_token_type_ids
        self.use_input_mask = use_input_mask
        self.use_labels = use_labels
        self.use_mc_token_ids = use_mc_token_ids
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.max_position_embeddings = max_position_embeddings
        self.type_vocab_size = type_vocab_size
        self.type_sequence_label_size = type_sequence_label_size
        self.initializer_range = initializer_range
        self.num_labels = num_labels
        self.num_choices = num_choices
        self.scope = scope
88
        self.pad_token_id = self.vocab_size - 1
89
90
91
92
93
94

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        input_mask = None
        if self.use_input_mask:
95
            input_mask = random_attention_mask([self.batch_size, self.seq_length])
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112

        token_type_ids = None
        if self.use_token_type_ids:
            token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)

        mc_token_ids = None
        if self.use_mc_token_ids:
            mc_token_ids = ids_tensor([self.batch_size, self.num_choices], self.seq_length)

        sequence_labels = None
        token_labels = None
        choice_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            choice_labels = ids_tensor([self.batch_size], self.num_choices)

113
        config = self.get_config()
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128

        head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2)

        return (
            config,
            input_ids,
            input_mask,
            head_mask,
            token_type_ids,
            mc_token_ids,
            sequence_labels,
            token_labels,
            choice_labels,
        )

129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
    def get_config(self):
        return CTRLConfig(
            vocab_size=self.vocab_size,
            n_embd=self.hidden_size,
            n_layer=self.num_hidden_layers,
            n_head=self.num_attention_heads,
            # intermediate_size=self.intermediate_size,
            # hidden_act=self.hidden_act,
            # hidden_dropout_prob=self.hidden_dropout_prob,
            # attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            n_positions=self.max_position_embeddings,
            # type_vocab_size=self.type_vocab_size,
            # initializer_range=self.initializer_range,
            pad_token_id=self.pad_token_id,
        )

145
146
147
148
149
150
151
    def create_and_check_ctrl_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
        model = CTRLModel(config=config)
        model.to(torch_device)
        model.eval()

        model(input_ids, token_type_ids=token_type_ids, head_mask=head_mask)
        model(input_ids, token_type_ids=token_type_ids)
Sylvain Gugger's avatar
Sylvain Gugger committed
152
        result = model(input_ids)
Stas Bekman's avatar
Stas Bekman committed
153
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
154
        self.parent.assertEqual(len(result.past_key_values), config.n_layer)
155
156
157
158
159
160

    def create_and_check_lm_head_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
        model = CTRLLMHeadModel(config)
        model.to(torch_device)
        model.eval()

Sylvain Gugger's avatar
Sylvain Gugger committed
161
        result = model(input_ids, token_type_ids=token_type_ids, labels=input_ids)
Stas Bekman's avatar
Stas Bekman committed
162
163
        self.parent.assertEqual(result.loss.shape, ())
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()

        (
            config,
            input_ids,
            input_mask,
            head_mask,
            token_type_ids,
            mc_token_ids,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = config_and_inputs

        inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "head_mask": head_mask}

        return config, inputs_dict

184
185
186
187
188
189
190
191
192
    def create_and_check_ctrl_for_sequence_classification(self, config, input_ids, head_mask, token_type_ids, *args):
        config.num_labels = self.num_labels
        model = CTRLForSequenceClassification(config)
        model.to(torch_device)
        model.eval()
        sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
        result = model(input_ids, token_type_ids=token_type_ids, labels=sequence_labels)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))

193

194
@require_torch
195
class CTRLModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase):
196
    all_model_classes = (CTRLModel, CTRLLMHeadModel, CTRLForSequenceClassification) if is_torch_available() else ()
197
    all_generative_model_classes = (CTRLLMHeadModel,) if is_torch_available() else ()
198
    test_pruning = True
keskarnitish's avatar
keskarnitish committed
199
200
201
202
    test_resize_embeddings = False
    test_head_masking = False

    def setUp(self):
203
        self.model_tester = CTRLModelTester(self)
keskarnitish's avatar
keskarnitish committed
204
205
        self.config_tester = ConfigTester(self, config_class=CTRLConfig, n_embd=37)

Yih-Dar's avatar
Yih-Dar committed
206
207
208
209
210
211
    def tearDown(self):
        super().tearDown()
        # clean-up as much as possible GPU memory occupied by PyTorch
        gc.collect()
        torch.cuda.empty_cache()

keskarnitish's avatar
keskarnitish committed
212
213
214
215
216
217
218
219
220
221
222
    def test_config(self):
        self.config_tester.run_common_tests()

    def test_ctrl_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_ctrl_model(*config_and_inputs)

    def test_ctrl_lm_head_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_lm_head_model(*config_and_inputs)

223
    @slow
keskarnitish's avatar
keskarnitish committed
224
    def test_model_from_pretrained(self):
225
        for model_name in CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
226
            model = CTRLModel.from_pretrained(model_name)
keskarnitish's avatar
keskarnitish committed
227
            self.assertIsNotNone(model)
228
229


230
@require_torch
231
class CTRLModelLanguageGenerationTest(unittest.TestCase):
Yih-Dar's avatar
Yih-Dar committed
232
233
234
235
236
237
    def tearDown(self):
        super().tearDown()
        # clean-up as much as possible GPU memory occupied by PyTorch
        gc.collect()
        torch.cuda.empty_cache()

238
239
240
    @slow
    def test_lm_generate_ctrl(self):
        model = CTRLLMHeadModel.from_pretrained("ctrl")
241
        model.to(torch_device)
patrickvonplaten's avatar
patrickvonplaten committed
242
        input_ids = torch.tensor(
Patrick von Platen's avatar
Patrick von Platen committed
243
244
            [[11859, 0, 1611, 8]], dtype=torch.long, device=torch_device
        )  # Legal the president is
245
246
        expected_output_ids = [
            11859,
Patrick von Platen's avatar
Patrick von Platen committed
247
248
            0,
            1611,
249
            8,
Patrick von Platen's avatar
Patrick von Platen committed
250
251
252
            5,
            150,
            26449,
253
            2,
Patrick von Platen's avatar
Patrick von Platen committed
254
255
256
            19,
            348,
            469,
257
            3,
Patrick von Platen's avatar
Patrick von Platen committed
258
259
260
261
262
263
264
265
266
            2595,
            48,
            20740,
            246533,
            246533,
            19,
            30,
            5,
        ]  # Legal the president is a good guy and I don't want to lose my job. \n \n I have a
267

patrickvonplaten's avatar
patrickvonplaten committed
268
        output_ids = model.generate(input_ids, do_sample=False)
Patrick von Platen's avatar
Patrick von Platen committed
269
        self.assertListEqual(output_ids[0].tolist(), expected_output_ids)