test_accelerate_examples.py 13.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# coding=utf-8
# Copyright 2018 HuggingFace Inc..
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import argparse
import json
import logging
import os
21
import shutil
22
import sys
23
import tempfile
24
import unittest
Zachary Mueller's avatar
Zachary Mueller committed
25
from unittest import mock
26

27
from accelerate.utils import write_basic_config
28

29
30
31
32
33
34
35
from transformers.testing_utils import (
    TestCasePlus,
    backend_device_count,
    run_command,
    slow,
    torch_device,
)
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


logging.basicConfig(level=logging.DEBUG)

logger = logging.getLogger()


def get_setup_file():
    parser = argparse.ArgumentParser()
    parser.add_argument("-f")
    args = parser.parse_args()
    return args.f


def get_results(output_dir):
    results = {}
    path = os.path.join(output_dir, "all_results.json")
    if os.path.exists(path):
        with open(path, "r") as f:
            results = json.load(f)
    else:
        raise ValueError(f"can't find {path}")
    return results


61
62
63
64
stream_handler = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)


65
class ExamplesTestsNoTrainer(TestCasePlus):
66
67
68
69
70
71
72
73
74
75
76
77
    @classmethod
    def setUpClass(cls):
        # Write Accelerate config, will pick up on CPU, GPU, and multi-GPU
        cls.tmpdir = tempfile.mkdtemp()
        cls.configPath = os.path.join(cls.tmpdir, "default_config.yml")
        write_basic_config(save_location=cls.configPath)
        cls._launch_args = ["accelerate", "launch", "--config_file", cls.configPath]

    @classmethod
    def tearDownClass(cls):
        shutil.rmtree(cls.tmpdir)

78
    @mock.patch.dict(os.environ, {"WANDB_MODE": "offline", "DVCLIVE_TEST": "true"})
79
80
81
    def test_run_glue_no_trainer(self):
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
82
            {self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py
83
84
85
86
87
88
89
90
            --model_name_or_path distilbert-base-uncased
            --output_dir {tmp_dir}
            --train_file ./tests/fixtures/tests_samples/MRPC/train.csv
            --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv
            --per_device_train_batch_size=2
            --per_device_eval_batch_size=1
            --learning_rate=1e-4
            --seed=42
91
            --num_warmup_steps=2
92
            --checkpointing_steps epoch
93
94
            --with_tracking
        """.split()
95

Zachary Mueller's avatar
Zachary Mueller committed
96
        run_command(self._launch_args + testargs)
97
98
99
100
        result = get_results(tmp_dir)
        self.assertGreaterEqual(result["eval_accuracy"], 0.75)
        self.assertTrue(os.path.exists(os.path.join(tmp_dir, "epoch_0")))
        self.assertTrue(os.path.exists(os.path.join(tmp_dir, "glue_no_trainer")))
101

102
    @unittest.skip("Zach is working on this.")
103
    @mock.patch.dict(os.environ, {"WANDB_MODE": "offline", "DVCLIVE_TEST": "true"})
104
105
106
    def test_run_clm_no_trainer(self):
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
107
            {self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py
108
109
110
111
112
113
114
115
116
            --model_name_or_path distilgpt2
            --train_file ./tests/fixtures/sample_text.txt
            --validation_file ./tests/fixtures/sample_text.txt
            --block_size 128
            --per_device_train_batch_size 5
            --per_device_eval_batch_size 5
            --num_train_epochs 2
            --output_dir {tmp_dir}
            --checkpointing_steps epoch
117
118
            --with_tracking
        """.split()
119

120
        if backend_device_count(torch_device) > 1:
121
122
123
            # Skipping because there are not enough batches to train the model + would need a drop_last to work.
            return

Zachary Mueller's avatar
Zachary Mueller committed
124
        run_command(self._launch_args + testargs)
125
126
127
128
        result = get_results(tmp_dir)
        self.assertLess(result["perplexity"], 100)
        self.assertTrue(os.path.exists(os.path.join(tmp_dir, "epoch_0")))
        self.assertTrue(os.path.exists(os.path.join(tmp_dir, "clm_no_trainer")))
129

130
    @unittest.skip("Zach is working on this.")
131
    @mock.patch.dict(os.environ, {"WANDB_MODE": "offline", "DVCLIVE_TEST": "true"})
132
133
134
    def test_run_mlm_no_trainer(self):
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
135
            {self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py
136
137
138
139
140
141
            --model_name_or_path distilroberta-base
            --train_file ./tests/fixtures/sample_text.txt
            --validation_file ./tests/fixtures/sample_text.txt
            --output_dir {tmp_dir}
            --num_train_epochs=1
            --checkpointing_steps epoch
142
            --with_tracking
143
144
        """.split()

Zachary Mueller's avatar
Zachary Mueller committed
145
        run_command(self._launch_args + testargs)
146
147
148
149
        result = get_results(tmp_dir)
        self.assertLess(result["perplexity"], 42)
        self.assertTrue(os.path.exists(os.path.join(tmp_dir, "epoch_0")))
        self.assertTrue(os.path.exists(os.path.join(tmp_dir, "mlm_no_trainer")))
150

151
    @mock.patch.dict(os.environ, {"WANDB_MODE": "offline", "DVCLIVE_TEST": "true"})
152
153
    def test_run_ner_no_trainer(self):
        # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu
154
        epochs = 7 if backend_device_count(torch_device) > 1 else 2
155
156
157

        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
158
            {self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py
159
160
161
162
163
164
165
166
167
168
            --model_name_or_path bert-base-uncased
            --train_file tests/fixtures/tests_samples/conll/sample.json
            --validation_file tests/fixtures/tests_samples/conll/sample.json
            --output_dir {tmp_dir}
            --learning_rate=2e-4
            --per_device_train_batch_size=2
            --per_device_eval_batch_size=2
            --num_train_epochs={epochs}
            --seed 7
            --checkpointing_steps epoch
169
            --with_tracking
170
171
        """.split()

Zachary Mueller's avatar
Zachary Mueller committed
172
        run_command(self._launch_args + testargs)
173
174
        result = get_results(tmp_dir)
        self.assertGreaterEqual(result["eval_accuracy"], 0.75)
Zach Mueller's avatar
Zach Mueller committed
175
        self.assertLess(result["train_loss"], 0.6)
176
177
        self.assertTrue(os.path.exists(os.path.join(tmp_dir, "epoch_0")))
        self.assertTrue(os.path.exists(os.path.join(tmp_dir, "ner_no_trainer")))
178

179
    @mock.patch.dict(os.environ, {"WANDB_MODE": "offline", "DVCLIVE_TEST": "true"})
180
181
182
    def test_run_squad_no_trainer(self):
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
183
            {self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py
184
            --model_name_or_path bert-base-uncased
185
            --version_2_with_negative
186
187
188
            --train_file tests/fixtures/tests_samples/SQUAD/sample.json
            --validation_file tests/fixtures/tests_samples/SQUAD/sample.json
            --output_dir {tmp_dir}
189
            --seed=42
190
191
192
193
194
195
            --max_train_steps=10
            --num_warmup_steps=2
            --learning_rate=2e-4
            --per_device_train_batch_size=2
            --per_device_eval_batch_size=1
            --checkpointing_steps epoch
196
            --with_tracking
197
198
        """.split()

Zachary Mueller's avatar
Zachary Mueller committed
199
        run_command(self._launch_args + testargs)
200
201
        result = get_results(tmp_dir)
        # Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics.
202
203
        self.assertGreaterEqual(result["eval_f1"], 28)
        self.assertGreaterEqual(result["eval_exact"], 28)
204
205
        self.assertTrue(os.path.exists(os.path.join(tmp_dir, "epoch_0")))
        self.assertTrue(os.path.exists(os.path.join(tmp_dir, "qa_no_trainer")))
206

207
    @mock.patch.dict(os.environ, {"WANDB_MODE": "offline", "DVCLIVE_TEST": "true"})
208
209
210
    def test_run_swag_no_trainer(self):
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
211
            {self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py
212
213
214
215
216
217
218
219
220
            --model_name_or_path bert-base-uncased
            --train_file tests/fixtures/tests_samples/swag/sample.json
            --validation_file tests/fixtures/tests_samples/swag/sample.json
            --output_dir {tmp_dir}
            --max_train_steps=20
            --num_warmup_steps=2
            --learning_rate=2e-4
            --per_device_train_batch_size=2
            --per_device_eval_batch_size=1
221
            --with_tracking
222
223
        """.split()

Zachary Mueller's avatar
Zachary Mueller committed
224
        run_command(self._launch_args + testargs)
225
226
227
        result = get_results(tmp_dir)
        self.assertGreaterEqual(result["eval_accuracy"], 0.8)
        self.assertTrue(os.path.exists(os.path.join(tmp_dir, "swag_no_trainer")))
228
229

    @slow
230
    @mock.patch.dict(os.environ, {"WANDB_MODE": "offline", "DVCLIVE_TEST": "true"})
231
232
233
    def test_run_summarization_no_trainer(self):
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
234
            {self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py
235
236
237
238
239
240
241
242
243
244
            --model_name_or_path t5-small
            --train_file tests/fixtures/tests_samples/xsum/sample.json
            --validation_file tests/fixtures/tests_samples/xsum/sample.json
            --output_dir {tmp_dir}
            --max_train_steps=50
            --num_warmup_steps=8
            --learning_rate=2e-4
            --per_device_train_batch_size=2
            --per_device_eval_batch_size=1
            --checkpointing_steps epoch
245
            --with_tracking
246
247
        """.split()

Zachary Mueller's avatar
Zachary Mueller committed
248
        run_command(self._launch_args + testargs)
249
250
251
252
253
254
255
        result = get_results(tmp_dir)
        self.assertGreaterEqual(result["eval_rouge1"], 10)
        self.assertGreaterEqual(result["eval_rouge2"], 2)
        self.assertGreaterEqual(result["eval_rougeL"], 7)
        self.assertGreaterEqual(result["eval_rougeLsum"], 7)
        self.assertTrue(os.path.exists(os.path.join(tmp_dir, "epoch_0")))
        self.assertTrue(os.path.exists(os.path.join(tmp_dir, "summarization_no_trainer")))
256
257

    @slow
258
    @mock.patch.dict(os.environ, {"WANDB_MODE": "offline", "DVCLIVE_TEST": "true"})
259
260
261
    def test_run_translation_no_trainer(self):
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
262
            {self.examples_dir}/pytorch/translation/run_translation_no_trainer.py
263
264
265
266
267
268
269
270
            --model_name_or_path sshleifer/student_marian_en_ro_6_1
            --source_lang en
            --target_lang ro
            --train_file tests/fixtures/tests_samples/wmt16/sample.json
            --validation_file tests/fixtures/tests_samples/wmt16/sample.json
            --output_dir {tmp_dir}
            --max_train_steps=50
            --num_warmup_steps=8
271
            --num_beams=6
272
273
274
275
276
277
            --learning_rate=3e-3
            --per_device_train_batch_size=2
            --per_device_eval_batch_size=1
            --source_lang en_XX
            --target_lang ro_RO
            --checkpointing_steps epoch
278
            --with_tracking
279
280
        """.split()

Zachary Mueller's avatar
Zachary Mueller committed
281
        run_command(self._launch_args + testargs)
282
283
284
285
        result = get_results(tmp_dir)
        self.assertGreaterEqual(result["eval_bleu"], 30)
        self.assertTrue(os.path.exists(os.path.join(tmp_dir, "epoch_0")))
        self.assertTrue(os.path.exists(os.path.join(tmp_dir, "translation_no_trainer")))
286
287
288
289
290
291
292
293

    @slow
    def test_run_semantic_segmentation_no_trainer(self):
        stream_handler = logging.StreamHandler(sys.stdout)
        logger.addHandler(stream_handler)

        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
294
            {self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py
295
296
297
298
299
300
301
302
303
304
            --dataset_name huggingface/semantic-segmentation-test-sample
            --output_dir {tmp_dir}
            --max_train_steps=10
            --num_warmup_steps=2
            --learning_rate=2e-4
            --per_device_train_batch_size=2
            --per_device_eval_batch_size=1
            --checkpointing_steps epoch
        """.split()

Zachary Mueller's avatar
Zachary Mueller committed
305
        run_command(self._launch_args + testargs)
306
307
        result = get_results(tmp_dir)
        self.assertGreaterEqual(result["eval_overall_accuracy"], 0.10)
308

309
    @mock.patch.dict(os.environ, {"WANDB_MODE": "offline", "DVCLIVE_TEST": "true"})
310
311
312
    def test_run_image_classification_no_trainer(self):
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
313
            {self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py
314
315
316
317
318
319
320
321
            --model_name_or_path google/vit-base-patch16-224-in21k
            --dataset_name hf-internal-testing/cats_vs_dogs_sample
            --learning_rate 1e-4
            --per_device_train_batch_size 2
            --per_device_eval_batch_size 1
            --max_train_steps 2
            --train_val_split 0.1
            --seed 42
322
323
            --output_dir {tmp_dir}
            --with_tracking
324
            --checkpointing_steps 1
325
            --label_column_name labels
326
327
        """.split()

Zachary Mueller's avatar
Zachary Mueller committed
328
        run_command(self._launch_args + testargs)
329
        result = get_results(tmp_dir)
330
        # The base model scores a 25%
331
        self.assertGreaterEqual(result["eval_accuracy"], 0.4)
332
        self.assertTrue(os.path.exists(os.path.join(tmp_dir, "step_1")))
333
        self.assertTrue(os.path.exists(os.path.join(tmp_dir, "image_classification_no_trainer")))