test_accelerate_examples.py 11.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
# coding=utf-8
# Copyright 2018 HuggingFace Inc..
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import argparse
import json
import logging
import os
import sys
from unittest.mock import patch

import torch

from transformers.testing_utils import TestCasePlus, get_gpu_count, slow, torch_device
from transformers.utils import is_apex_available


SRC_DIRS = [
    os.path.join(os.path.dirname(__file__), dirname)
    for dirname in [
        "text-generation",
        "text-classification",
        "token-classification",
        "language-modeling",
        "multiple-choice",
        "question-answering",
        "summarization",
        "translation",
        "image-classification",
        "speech-recognition",
        "audio-classification",
        "speech-pretraining",
        "image-pretraining",
46
        "semantic-segmentation",
47
48
49
50
51
52
53
54
55
56
57
    ]
]
sys.path.extend(SRC_DIRS)


if SRC_DIRS is not None:
    import run_clm_no_trainer
    import run_glue_no_trainer
    import run_mlm_no_trainer
    import run_ner_no_trainer
    import run_qa_no_trainer as run_squad_no_trainer
58
    import run_semantic_segmentation_no_trainer
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
    import run_summarization_no_trainer
    import run_swag_no_trainer
    import run_translation_no_trainer

logging.basicConfig(level=logging.DEBUG)

logger = logging.getLogger()


def get_setup_file():
    parser = argparse.ArgumentParser()
    parser.add_argument("-f")
    args = parser.parse_args()
    return args.f


def get_results(output_dir):
    results = {}
    path = os.path.join(output_dir, "all_results.json")
    if os.path.exists(path):
        with open(path, "r") as f:
            results = json.load(f)
    else:
        raise ValueError(f"can't find {path}")
    return results


def is_cuda_and_apex_available():
    is_using_cuda = torch.cuda.is_available() and torch_device == "cuda"
    return is_using_cuda and is_apex_available()


91
92
93
94
stream_handler = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)


95
96
97
98
99
100
101
102
103
104
105
106
107
108
class ExamplesTestsNoTrainer(TestCasePlus):
    def test_run_glue_no_trainer(self):
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
            run_glue_no_trainer.py
            --model_name_or_path distilbert-base-uncased
            --output_dir {tmp_dir}
            --train_file ./tests/fixtures/tests_samples/MRPC/train.csv
            --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv
            --per_device_train_batch_size=2
            --per_device_eval_batch_size=1
            --learning_rate=1e-4
            --seed=42
            --checkpointing_steps epoch
109
110
            --with_tracking
        """.split()
111
112
113
114
115
116
117
118
119

        if is_cuda_and_apex_available():
            testargs.append("--fp16")

        with patch.object(sys, "argv", testargs):
            run_glue_no_trainer.main()
            result = get_results(tmp_dir)
            self.assertGreaterEqual(result["eval_accuracy"], 0.75)
            self.assertTrue(os.path.exists(os.path.join(tmp_dir, "epoch_0")))
120
            self.assertTrue(os.path.exists(os.path.join(tmp_dir, "glue_no_trainer")))
121
122
123
124
125
126
127
128
129
130
131
132
133
134

    def test_run_clm_no_trainer(self):
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
            run_clm_no_trainer.py
            --model_name_or_path distilgpt2
            --train_file ./tests/fixtures/sample_text.txt
            --validation_file ./tests/fixtures/sample_text.txt
            --block_size 128
            --per_device_train_batch_size 5
            --per_device_eval_batch_size 5
            --num_train_epochs 2
            --output_dir {tmp_dir}
            --checkpointing_steps epoch
135
136
            --with_tracking
        """.split()
137
138
139
140
141
142
143
144
145
146

        if torch.cuda.device_count() > 1:
            # Skipping because there are not enough batches to train the model + would need a drop_last to work.
            return

        with patch.object(sys, "argv", testargs):
            run_clm_no_trainer.main()
            result = get_results(tmp_dir)
            self.assertLess(result["perplexity"], 100)
            self.assertTrue(os.path.exists(os.path.join(tmp_dir, "epoch_0")))
147
            self.assertTrue(os.path.exists(os.path.join(tmp_dir, "clm_no_trainer")))
148
149
150
151
152
153
154
155
156
157
158

    def test_run_mlm_no_trainer(self):
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
            run_mlm_no_trainer.py
            --model_name_or_path distilroberta-base
            --train_file ./tests/fixtures/sample_text.txt
            --validation_file ./tests/fixtures/sample_text.txt
            --output_dir {tmp_dir}
            --num_train_epochs=1
            --checkpointing_steps epoch
159
            --with_tracking
160
161
162
163
164
165
166
        """.split()

        with patch.object(sys, "argv", testargs):
            run_mlm_no_trainer.main()
            result = get_results(tmp_dir)
            self.assertLess(result["perplexity"], 42)
            self.assertTrue(os.path.exists(os.path.join(tmp_dir, "epoch_0")))
167
            self.assertTrue(os.path.exists(os.path.join(tmp_dir, "mlm_no_trainer")))
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185

    def test_run_ner_no_trainer(self):
        # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu
        epochs = 7 if get_gpu_count() > 1 else 2

        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
            run_ner_no_trainer.py
            --model_name_or_path bert-base-uncased
            --train_file tests/fixtures/tests_samples/conll/sample.json
            --validation_file tests/fixtures/tests_samples/conll/sample.json
            --output_dir {tmp_dir}
            --learning_rate=2e-4
            --per_device_train_batch_size=2
            --per_device_eval_batch_size=2
            --num_train_epochs={epochs}
            --seed 7
            --checkpointing_steps epoch
186
            --with_tracking
187
188
189
190
191
192
193
194
        """.split()

        with patch.object(sys, "argv", testargs):
            run_ner_no_trainer.main()
            result = get_results(tmp_dir)
            self.assertGreaterEqual(result["eval_accuracy"], 0.75)
            self.assertLess(result["train_loss"], 0.5)
            self.assertTrue(os.path.exists(os.path.join(tmp_dir, "epoch_0")))
195
            self.assertTrue(os.path.exists(os.path.join(tmp_dir, "ner_no_trainer")))
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211

    def test_run_squad_no_trainer(self):
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
            run_qa_no_trainer.py
            --model_name_or_path bert-base-uncased
            --version_2_with_negative=False
            --train_file tests/fixtures/tests_samples/SQUAD/sample.json
            --validation_file tests/fixtures/tests_samples/SQUAD/sample.json
            --output_dir {tmp_dir}
            --max_train_steps=10
            --num_warmup_steps=2
            --learning_rate=2e-4
            --per_device_train_batch_size=2
            --per_device_eval_batch_size=1
            --checkpointing_steps epoch
212
            --with_tracking
213
214
215
216
217
218
219
220
        """.split()

        with patch.object(sys, "argv", testargs):
            run_squad_no_trainer.main()
            result = get_results(tmp_dir)
            self.assertGreaterEqual(result["eval_f1"], 30)
            self.assertGreaterEqual(result["eval_exact"], 30)
            self.assertTrue(os.path.exists(os.path.join(tmp_dir, "epoch_0")))
221
            self.assertTrue(os.path.exists(os.path.join(tmp_dir, "qa_no_trainer")))
222
223
224
225
226
227
228
229
230
231
232
233
234
235

    def test_run_swag_no_trainer(self):
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
            run_swag_no_trainer.py
            --model_name_or_path bert-base-uncased
            --train_file tests/fixtures/tests_samples/swag/sample.json
            --validation_file tests/fixtures/tests_samples/swag/sample.json
            --output_dir {tmp_dir}
            --max_train_steps=20
            --num_warmup_steps=2
            --learning_rate=2e-4
            --per_device_train_batch_size=2
            --per_device_eval_batch_size=1
236
            --with_tracking
237
238
239
240
241
242
        """.split()

        with patch.object(sys, "argv", testargs):
            run_swag_no_trainer.main()
            result = get_results(tmp_dir)
            self.assertGreaterEqual(result["eval_accuracy"], 0.8)
243
            self.assertTrue(os.path.exists(os.path.join(tmp_dir, "swag_no_trainer")))
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259

    @slow
    def test_run_summarization_no_trainer(self):
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
            run_summarization_no_trainer.py
            --model_name_or_path t5-small
            --train_file tests/fixtures/tests_samples/xsum/sample.json
            --validation_file tests/fixtures/tests_samples/xsum/sample.json
            --output_dir {tmp_dir}
            --max_train_steps=50
            --num_warmup_steps=8
            --learning_rate=2e-4
            --per_device_train_batch_size=2
            --per_device_eval_batch_size=1
            --checkpointing_steps epoch
260
            --with_tracking
261
262
263
264
265
266
267
268
269
270
        """.split()

        with patch.object(sys, "argv", testargs):
            run_summarization_no_trainer.main()
            result = get_results(tmp_dir)
            self.assertGreaterEqual(result["eval_rouge1"], 10)
            self.assertGreaterEqual(result["eval_rouge2"], 2)
            self.assertGreaterEqual(result["eval_rougeL"], 7)
            self.assertGreaterEqual(result["eval_rougeLsum"], 7)
            self.assertTrue(os.path.exists(os.path.join(tmp_dir, "epoch_0")))
271
            self.assertTrue(os.path.exists(os.path.join(tmp_dir, "summarization_no_trainer")))
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291

    @slow
    def test_run_translation_no_trainer(self):
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
            run_translation_no_trainer.py
            --model_name_or_path sshleifer/student_marian_en_ro_6_1
            --source_lang en
            --target_lang ro
            --train_file tests/fixtures/tests_samples/wmt16/sample.json
            --validation_file tests/fixtures/tests_samples/wmt16/sample.json
            --output_dir {tmp_dir}
            --max_train_steps=50
            --num_warmup_steps=8
            --learning_rate=3e-3
            --per_device_train_batch_size=2
            --per_device_eval_batch_size=1
            --source_lang en_XX
            --target_lang ro_RO
            --checkpointing_steps epoch
292
            --with_tracking
293
294
295
296
297
298
299
        """.split()

        with patch.object(sys, "argv", testargs):
            run_translation_no_trainer.main()
            result = get_results(tmp_dir)
            self.assertGreaterEqual(result["eval_bleu"], 30)
            self.assertTrue(os.path.exists(os.path.join(tmp_dir, "epoch_0")))
300
            self.assertTrue(os.path.exists(os.path.join(tmp_dir, "translation_no_trainer")))
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

    @slow
    def test_run_semantic_segmentation_no_trainer(self):
        stream_handler = logging.StreamHandler(sys.stdout)
        logger.addHandler(stream_handler)

        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
            run_semantic_segmentation_no_trainer.py
            --dataset_name huggingface/semantic-segmentation-test-sample
            --output_dir {tmp_dir}
            --max_train_steps=10
            --num_warmup_steps=2
            --learning_rate=2e-4
            --per_device_train_batch_size=2
            --per_device_eval_batch_size=1
            --checkpointing_steps epoch
        """.split()

        with patch.object(sys, "argv", testargs):
            run_semantic_segmentation_no_trainer.main()
            result = get_results(tmp_dir)
            self.assertGreaterEqual(result["eval_overall_accuracy"], 0.10)