test_accelerate_examples.py 13.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# coding=utf-8
# Copyright 2018 HuggingFace Inc..
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import argparse
import json
import logging
import os
21
import shutil
22
import sys
23
import tempfile
Zachary Mueller's avatar
Zachary Mueller committed
24
from unittest import mock
25
26
27

import torch

28
from accelerate.utils import write_basic_config
29
from transformers.testing_utils import TestCasePlus, get_gpu_count, is_flaky, run_command, slow, torch_device
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
from transformers.utils import is_apex_available


logging.basicConfig(level=logging.DEBUG)

logger = logging.getLogger()


def get_setup_file():
    parser = argparse.ArgumentParser()
    parser.add_argument("-f")
    args = parser.parse_args()
    return args.f


def get_results(output_dir):
    results = {}
    path = os.path.join(output_dir, "all_results.json")
    if os.path.exists(path):
        with open(path, "r") as f:
            results = json.load(f)
    else:
        raise ValueError(f"can't find {path}")
    return results


def is_cuda_and_apex_available():
    is_using_cuda = torch.cuda.is_available() and torch_device == "cuda"
    return is_using_cuda and is_apex_available()


61
62
63
64
stream_handler = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)


65
class ExamplesTestsNoTrainer(TestCasePlus):
66
67
68
69
70
71
72
73
74
75
76
77
    @classmethod
    def setUpClass(cls):
        # Write Accelerate config, will pick up on CPU, GPU, and multi-GPU
        cls.tmpdir = tempfile.mkdtemp()
        cls.configPath = os.path.join(cls.tmpdir, "default_config.yml")
        write_basic_config(save_location=cls.configPath)
        cls._launch_args = ["accelerate", "launch", "--config_file", cls.configPath]

    @classmethod
    def tearDownClass(cls):
        shutil.rmtree(cls.tmpdir)

Zachary Mueller's avatar
Zachary Mueller committed
78
    @mock.patch.dict(os.environ, {"WANDB_MODE": "offline"})
79
80
81
    def test_run_glue_no_trainer(self):
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
82
            {self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py
83
84
85
86
87
88
89
90
91
            --model_name_or_path distilbert-base-uncased
            --output_dir {tmp_dir}
            --train_file ./tests/fixtures/tests_samples/MRPC/train.csv
            --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv
            --per_device_train_batch_size=2
            --per_device_eval_batch_size=1
            --learning_rate=1e-4
            --seed=42
            --checkpointing_steps epoch
92
93
            --with_tracking
        """.split()
94
95
96
97

        if is_cuda_and_apex_available():
            testargs.append("--fp16")

Zachary Mueller's avatar
Zachary Mueller committed
98
        run_command(self._launch_args + testargs)
99
100
101
102
        result = get_results(tmp_dir)
        self.assertGreaterEqual(result["eval_accuracy"], 0.75)
        self.assertTrue(os.path.exists(os.path.join(tmp_dir, "epoch_0")))
        self.assertTrue(os.path.exists(os.path.join(tmp_dir, "glue_no_trainer")))
103

Zachary Mueller's avatar
Zachary Mueller committed
104
    @mock.patch.dict(os.environ, {"WANDB_MODE": "offline"})
105
106
107
    def test_run_clm_no_trainer(self):
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
108
            {self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py
109
110
111
112
113
114
115
116
117
            --model_name_or_path distilgpt2
            --train_file ./tests/fixtures/sample_text.txt
            --validation_file ./tests/fixtures/sample_text.txt
            --block_size 128
            --per_device_train_batch_size 5
            --per_device_eval_batch_size 5
            --num_train_epochs 2
            --output_dir {tmp_dir}
            --checkpointing_steps epoch
118
119
            --with_tracking
        """.split()
120
121
122
123
124

        if torch.cuda.device_count() > 1:
            # Skipping because there are not enough batches to train the model + would need a drop_last to work.
            return

Zachary Mueller's avatar
Zachary Mueller committed
125
        run_command(self._launch_args + testargs)
126
127
128
129
        result = get_results(tmp_dir)
        self.assertLess(result["perplexity"], 100)
        self.assertTrue(os.path.exists(os.path.join(tmp_dir, "epoch_0")))
        self.assertTrue(os.path.exists(os.path.join(tmp_dir, "clm_no_trainer")))
130

Zachary Mueller's avatar
Zachary Mueller committed
131
    @mock.patch.dict(os.environ, {"WANDB_MODE": "offline"})
132
133
134
    def test_run_mlm_no_trainer(self):
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
135
            {self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py
136
137
138
139
140
141
            --model_name_or_path distilroberta-base
            --train_file ./tests/fixtures/sample_text.txt
            --validation_file ./tests/fixtures/sample_text.txt
            --output_dir {tmp_dir}
            --num_train_epochs=1
            --checkpointing_steps epoch
142
            --with_tracking
143
144
        """.split()

Zachary Mueller's avatar
Zachary Mueller committed
145
        run_command(self._launch_args + testargs)
146
147
148
149
        result = get_results(tmp_dir)
        self.assertLess(result["perplexity"], 42)
        self.assertTrue(os.path.exists(os.path.join(tmp_dir, "epoch_0")))
        self.assertTrue(os.path.exists(os.path.join(tmp_dir, "mlm_no_trainer")))
150

Zachary Mueller's avatar
Zachary Mueller committed
151
    @mock.patch.dict(os.environ, {"WANDB_MODE": "offline"})
152
153
154
155
156
157
    def test_run_ner_no_trainer(self):
        # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu
        epochs = 7 if get_gpu_count() > 1 else 2

        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
158
            {self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py
159
160
161
162
163
164
165
166
167
168
            --model_name_or_path bert-base-uncased
            --train_file tests/fixtures/tests_samples/conll/sample.json
            --validation_file tests/fixtures/tests_samples/conll/sample.json
            --output_dir {tmp_dir}
            --learning_rate=2e-4
            --per_device_train_batch_size=2
            --per_device_eval_batch_size=2
            --num_train_epochs={epochs}
            --seed 7
            --checkpointing_steps epoch
169
            --with_tracking
170
171
        """.split()

Zachary Mueller's avatar
Zachary Mueller committed
172
        run_command(self._launch_args + testargs)
173
174
175
176
177
        result = get_results(tmp_dir)
        self.assertGreaterEqual(result["eval_accuracy"], 0.75)
        self.assertLess(result["train_loss"], 0.5)
        self.assertTrue(os.path.exists(os.path.join(tmp_dir, "epoch_0")))
        self.assertTrue(os.path.exists(os.path.join(tmp_dir, "ner_no_trainer")))
178

179
    @is_flaky()
Zachary Mueller's avatar
Zachary Mueller committed
180
    @mock.patch.dict(os.environ, {"WANDB_MODE": "offline"})
181
182
183
    def test_run_squad_no_trainer(self):
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
184
            {self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py
185
            --model_name_or_path bert-base-uncased
186
            --version_2_with_negative
187
188
189
190
191
192
193
194
195
            --train_file tests/fixtures/tests_samples/SQUAD/sample.json
            --validation_file tests/fixtures/tests_samples/SQUAD/sample.json
            --output_dir {tmp_dir}
            --max_train_steps=10
            --num_warmup_steps=2
            --learning_rate=2e-4
            --per_device_train_batch_size=2
            --per_device_eval_batch_size=1
            --checkpointing_steps epoch
196
            --with_tracking
197
198
        """.split()

Zachary Mueller's avatar
Zachary Mueller committed
199
        run_command(self._launch_args + testargs)
200
201
        result = get_results(tmp_dir)
        # Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics.
202
203
        self.assertGreaterEqual(result["eval_f1"], 28)
        self.assertGreaterEqual(result["eval_exact"], 28)
204
205
        self.assertTrue(os.path.exists(os.path.join(tmp_dir, "epoch_0")))
        self.assertTrue(os.path.exists(os.path.join(tmp_dir, "qa_no_trainer")))
206

Zachary Mueller's avatar
Zachary Mueller committed
207
    @mock.patch.dict(os.environ, {"WANDB_MODE": "offline"})
208
209
210
    def test_run_swag_no_trainer(self):
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
211
            {self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py
212
213
214
215
216
217
218
219
220
            --model_name_or_path bert-base-uncased
            --train_file tests/fixtures/tests_samples/swag/sample.json
            --validation_file tests/fixtures/tests_samples/swag/sample.json
            --output_dir {tmp_dir}
            --max_train_steps=20
            --num_warmup_steps=2
            --learning_rate=2e-4
            --per_device_train_batch_size=2
            --per_device_eval_batch_size=1
221
            --with_tracking
222
223
        """.split()

Zachary Mueller's avatar
Zachary Mueller committed
224
        run_command(self._launch_args + testargs)
225
226
227
        result = get_results(tmp_dir)
        self.assertGreaterEqual(result["eval_accuracy"], 0.8)
        self.assertTrue(os.path.exists(os.path.join(tmp_dir, "swag_no_trainer")))
228
229

    @slow
Zachary Mueller's avatar
Zachary Mueller committed
230
    @mock.patch.dict(os.environ, {"WANDB_MODE": "offline"})
231
232
233
    def test_run_summarization_no_trainer(self):
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
234
            {self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py
235
236
237
238
239
240
241
242
243
244
            --model_name_or_path t5-small
            --train_file tests/fixtures/tests_samples/xsum/sample.json
            --validation_file tests/fixtures/tests_samples/xsum/sample.json
            --output_dir {tmp_dir}
            --max_train_steps=50
            --num_warmup_steps=8
            --learning_rate=2e-4
            --per_device_train_batch_size=2
            --per_device_eval_batch_size=1
            --checkpointing_steps epoch
245
            --with_tracking
246
247
        """.split()

Zachary Mueller's avatar
Zachary Mueller committed
248
        run_command(self._launch_args + testargs)
249
250
251
252
253
254
255
        result = get_results(tmp_dir)
        self.assertGreaterEqual(result["eval_rouge1"], 10)
        self.assertGreaterEqual(result["eval_rouge2"], 2)
        self.assertGreaterEqual(result["eval_rougeL"], 7)
        self.assertGreaterEqual(result["eval_rougeLsum"], 7)
        self.assertTrue(os.path.exists(os.path.join(tmp_dir, "epoch_0")))
        self.assertTrue(os.path.exists(os.path.join(tmp_dir, "summarization_no_trainer")))
256
257

    @slow
Zachary Mueller's avatar
Zachary Mueller committed
258
    @mock.patch.dict(os.environ, {"WANDB_MODE": "offline"})
259
260
261
    def test_run_translation_no_trainer(self):
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
262
            {self.examples_dir}/pytorch/translation/run_translation_no_trainer.py
263
264
265
266
267
268
269
270
271
272
273
274
275
276
            --model_name_or_path sshleifer/student_marian_en_ro_6_1
            --source_lang en
            --target_lang ro
            --train_file tests/fixtures/tests_samples/wmt16/sample.json
            --validation_file tests/fixtures/tests_samples/wmt16/sample.json
            --output_dir {tmp_dir}
            --max_train_steps=50
            --num_warmup_steps=8
            --learning_rate=3e-3
            --per_device_train_batch_size=2
            --per_device_eval_batch_size=1
            --source_lang en_XX
            --target_lang ro_RO
            --checkpointing_steps epoch
277
            --with_tracking
278
279
        """.split()

Zachary Mueller's avatar
Zachary Mueller committed
280
        run_command(self._launch_args + testargs)
281
282
283
284
        result = get_results(tmp_dir)
        self.assertGreaterEqual(result["eval_bleu"], 30)
        self.assertTrue(os.path.exists(os.path.join(tmp_dir, "epoch_0")))
        self.assertTrue(os.path.exists(os.path.join(tmp_dir, "translation_no_trainer")))
285
286
287
288
289
290
291
292

    @slow
    def test_run_semantic_segmentation_no_trainer(self):
        stream_handler = logging.StreamHandler(sys.stdout)
        logger.addHandler(stream_handler)

        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
293
            {self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py
294
295
296
297
298
299
300
301
302
303
            --dataset_name huggingface/semantic-segmentation-test-sample
            --output_dir {tmp_dir}
            --max_train_steps=10
            --num_warmup_steps=2
            --learning_rate=2e-4
            --per_device_train_batch_size=2
            --per_device_eval_batch_size=1
            --checkpointing_steps epoch
        """.split()

Zachary Mueller's avatar
Zachary Mueller committed
304
        run_command(self._launch_args + testargs)
305
306
        result = get_results(tmp_dir)
        self.assertGreaterEqual(result["eval_overall_accuracy"], 0.10)
307

Zachary Mueller's avatar
Zachary Mueller committed
308
    @mock.patch.dict(os.environ, {"WANDB_MODE": "offline"})
309
310
311
    def test_run_image_classification_no_trainer(self):
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
312
            {self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py
313
314
315
316
317
318
319
320
            --model_name_or_path google/vit-base-patch16-224-in21k
            --dataset_name hf-internal-testing/cats_vs_dogs_sample
            --learning_rate 1e-4
            --per_device_train_batch_size 2
            --per_device_eval_batch_size 1
            --max_train_steps 2
            --train_val_split 0.1
            --seed 42
321
322
            --output_dir {tmp_dir}
            --with_tracking
323
            --checkpointing_steps 1
324
325
        """.split()

326
327
328
        if is_cuda_and_apex_available():
            testargs.append("--fp16")

Zachary Mueller's avatar
Zachary Mueller committed
329
        run_command(self._launch_args + testargs)
330
        result = get_results(tmp_dir)
331
        # The base model scores a 25%
Zachary Mueller's avatar
Zachary Mueller committed
332
        self.assertGreaterEqual(result["eval_accuracy"], 0.6)
333
        self.assertTrue(os.path.exists(os.path.join(tmp_dir, "step_1")))
334
        self.assertTrue(os.path.exists(os.path.join(tmp_dir, "image_classification_no_trainer")))