transformer_xl_hubconf.py 5.72 KB
Newer Older
1
2
from pytorch_pretrained_bert.tokenization_transfo_xl import TransfoXLTokenizer
from pytorch_pretrained_bert.modeling_transfo_xl import (
VictorSanh's avatar
VictorSanh committed
3
4
    TransfoXLModel,
    TransfoXLLMHeadModel
5
6
7
8
9
10
11
12
13
)

# A lot of models share the same param doc. Use a decorator
# to save typing
transformer_xl_docstring = """
    Transformer XL use a relative positioning (with sinusiodal patterns) and adaptive softmax inputs which means that:
    - you don't need to specify positioning embeddings indices
    - the tokens in the vocabulary have to be sorted to decreasing frequency.

VictorSanh's avatar
VictorSanh committed
14
15
16
17
18
19
20
21
22
23
24
25
26
27
    Params:
        pretrained_model_name_or_path: either:
            - a str with the name of a pre-trained model to load selected in the list of:
                . `transfo-xl-wt103`
            - a path or url to a pretrained model archive containing:
                . `transfo_xl_config.json` a configuration file for the model
                . `pytorch_model.bin` a PyTorch dump of a TransfoXLModel instance
            - a path or url to a pretrained model archive containing:
                . `transfo_xl_config.json` a configuration file for the model
                . `model.chkpt` a TensorFlow checkpoint
        from_tf: should we load the weights from a locally saved TensorFlow checkpoint
        cache_dir: an optional path to a folder in which the pre-trained models will be cached.
        state_dict: an optional state dictionnary (collections.OrderedDict object) to use instead of pre-trained models
        *inputs, **kwargs: additional input for the specific TransformerXL class
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
"""


def _append_from_pretrained_docstring(docstr):
    def docstring_decorator(fn):
        fn.__doc__ = fn.__doc__ + docstr
        return fn
    return docstring_decorator


def transformerXLTokenizer(*args, **kwargs):
    """
    Instantiate a Transformer-XL tokenizer adapted from Vocab class in https://github.com/kimiyoung/transformer-xl

    Args:
    pretrained_model_name_or_path: Path to pretrained model archive
                                   or one of pre-trained vocab configs below.
                                       * transfo-xl-wt103

    Example:
VictorSanh's avatar
VictorSanh committed
48
        >>> import torch
49
        >>> tokenizer = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'transformerXLTokenizer', 'transfo-xl-wt103')
VictorSanh's avatar
VictorSanh committed
50
51
        
        >>> text = "Who was Jim Henson ?"
52
        >>> tokenized_text = tokenizer.tokenize(tokenized_text)
VictorSanh's avatar
VictorSanh committed
53
        >>> indexed_tokens = tokenizer.convert_tokens_to_ids(tokenized_text)
54
55
56
57
58
59
60
61
    """
    tokenizer = TransfoXLTokenizer.from_pretrained(*args, **kwargs)
    return tokenizer


@_append_from_pretrained_docstring(transformer_xl_docstring)
def transformerXLModel(*args, **kwargs):
    """
VictorSanh's avatar
VictorSanh committed
62
    transformerXLModel is the basic Transformer XL model.
63
64
65

    Example:
        # Load the tokenizer
VictorSanh's avatar
VictorSanh committed
66
        >>> import torch
67
68
69
70
        >>> tokenizer = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'transformerXLTokenizer', 'transfo-xl-wt103')

        #  Prepare tokenized input
        >>> text_1 = "Who was Jim Henson ?"
VictorSanh's avatar
VictorSanh committed
71
72
73
        >>> text_2 = "Jim Henson was a puppeteer"
        >>> tokenized_text_1 = tokenizer.tokenize(text_1)
        >>> tokenized_text_2 = tokenizer.tokenize(text_2)
74
75
        >>> indexed_tokens_1 = tokenizer.convert_tokens_to_ids(tokenized_text_1)
        >>> indexed_tokens_2 = tokenizer.convert_tokens_to_ids(tokenized_text_2)
VictorSanh's avatar
VictorSanh committed
76
77
        >>> tokens_tensor_1 = torch.tensor([indexed_tokens_1])
        >>> tokens_tensor_2 = torch.tensor([indexed_tokens_2])
78
79
80
81
82
83

        # Load transformerXLModel
        >>> model = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'transformerXLModel', 'transfo-xl-wt103')
        >>> model.eval()

        # Predict hidden states features for each layer
VictorSanh's avatar
VictorSanh committed
84
        # We can re-use the memory cells in a subsequent call to attend a longer context
85
86
        >>> with torch.no_grad():
                hidden_states_1, mems_1 = model(tokens_tensor_1)
VictorSanh's avatar
VictorSanh committed
87
                hidden_states_2, mems_2 = model(tokens_tensor_2, mems=mems_1)
88
89
90
91
92
93
94
95
    """
    model = TransfoXLModel.from_pretrained(*args, **kwargs)
    return model


@_append_from_pretrained_docstring(transformer_xl_docstring)
def transformerXLLMHeadModel(*args, **kwargs):
    """
VictorSanh's avatar
VictorSanh committed
96
    transformerXLModel is the basic Transformer XL model with the
VictorSanh's avatar
VictorSanh committed
97
    tied (pre-trained) language modeling head on top.
98

VictorSanh's avatar
VictorSanh committed
99
    Example:
100
        # Load the tokenizer
VictorSanh's avatar
VictorSanh committed
101
        >>> import torch
102
103
104
105
        >>> tokenizer = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'transformerXLTokenizer', 'transfo-xl-wt103')

        #  Prepare tokenized input
        >>> text_1 = "Who was Jim Henson ?"
VictorSanh's avatar
VictorSanh committed
106
107
108
        >>> text_2 = "Jim Henson was a puppeteer"
        >>> tokenized_text_1 = tokenizer.tokenize(text_1)
        >>> tokenized_text_2 = tokenizer.tokenize(text_2)
109
110
        >>> indexed_tokens_1 = tokenizer.convert_tokens_to_ids(tokenized_text_1)
        >>> indexed_tokens_2 = tokenizer.convert_tokens_to_ids(tokenized_text_2)
VictorSanh's avatar
VictorSanh committed
111
112
        >>> tokens_tensor_1 = torch.tensor([indexed_tokens_1])
        >>> tokens_tensor_2 = torch.tensor([indexed_tokens_2])
113
114
115
116
117
118

        # Load transformerXLLMHeadModel
        >>> model = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'transformerXLLMHeadModel', 'transfo-xl-wt103')
        >>> model.eval()

        # Predict hidden states features for each layer
VictorSanh's avatar
VictorSanh committed
119
        # We can re-use the memory cells in a subsequent call to attend a longer context
120
121
        >>> with torch.no_grad():
                predictions_1, mems_1 = model(tokens_tensor_1)
VictorSanh's avatar
VictorSanh committed
122
                predictions_2, mems_2 = model(tokens_tensor_2, mems=mems_1)
123

VictorSanh's avatar
VictorSanh committed
124
125
126
127
        # Get the predicted last token
        >>> predicted_index = torch.argmax(predictions_2[0, -1, :]).item()
        >>> predicted_token = tokenizer.convert_ids_to_tokens([predicted_index])[0]
        >>> assert predicted_token == 'who'
128
129
130
    """
    model = TransfoXLLMHeadModel.from_pretrained(*args, **kwargs)
    return model