Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
chenpangpang
transformers
Commits
cdf0f2fe
Commit
cdf0f2fe
authored
Jun 01, 2019
by
VictorSanh
Browse files
fix typo/presentation
parent
8f97f6c5
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
97 additions
and
97 deletions
+97
-97
hubconfs/gpt2_hubconf.py
hubconfs/gpt2_hubconf.py
+53
-53
hubconfs/transformer_xl_hubconf.py
hubconfs/transformer_xl_hubconf.py
+44
-44
No files found.
hubconfs/gpt2_hubconf.py
View file @
cdf0f2fe
from
pytorch_pretrained_bert.tokenization_gpt2
import
GPT2Tokenizer
from
pytorch_pretrained_bert.tokenization_gpt2
import
GPT2Tokenizer
from
pytorch_pretrained_bert.modeling_gpt2
import
(
from
pytorch_pretrained_bert.modeling_gpt2
import
(
GPT2Model
,
GPT2Model
,
GPT2LMHeadModel
,
GPT2LMHeadModel
,
GPT2DoubleHeadsModel
GPT2DoubleHeadsModel
)
)
# A lot of models share the same param doc. Use a decorator
# A lot of models share the same param doc. Use a decorator
# to save typing
# to save typing
gpt2_docstring
=
"""
gpt2_docstring
=
"""
Params:
Params:
pretrained_model_name_or_path: either:
pretrained_model_name_or_path: either:
- a str with the name of a pre-trained model to load selected in the list of:
- a str with the name of a pre-trained model to load selected in the list of:
. `gpt2`
. `gpt2`
- a path or url to a pretrained model archive containing:
- a path or url to a pretrained model archive containing:
. `gpt2_config.json` a configuration file for the model
. `gpt2_config.json` a configuration file for the model
. `pytorch_model.bin` a PyTorch dump of a GPT2Model instance
. `pytorch_model.bin` a PyTorch dump of a GPT2Model instance
- a path or url to a pretrained model archive containing:
- a path or url to a pretrained model archive containing:
. `gpt2_config.json` a configuration file for the model
. `gpt2_config.json` a configuration file for the model
. a TensorFlow checkpoint with trained weights
. a TensorFlow checkpoint with trained weights
from_tf: should we load the weights from a locally saved TensorFlow checkpoint
from_tf: should we load the weights from a locally saved TensorFlow checkpoint
cache_dir: an optional path to a folder in which the pre-trained models will be cached.
cache_dir: an optional path to a folder in which the pre-trained models will be cached.
state_dict: an optional state dictionary (collections.OrderedDict object) to use instead of pre-trained models
state_dict: an optional state dictionary (collections.OrderedDict object) to use instead of pre-trained models
*inputs, **kwargs: additional input for the specific GPT-2 class
*inputs, **kwargs: additional input for the specific GPT-2 class
"""
"""
...
@@ -35,27 +35,27 @@ def _append_from_pretrained_docstring(docstr):
...
@@ -35,27 +35,27 @@ def _append_from_pretrained_docstring(docstr):
def
gpt2Tokenizer
(
*
args
,
**
kwargs
):
def
gpt2Tokenizer
(
*
args
,
**
kwargs
):
"""
"""
Instantiate a GPT-2 BPE tokenizer for OpenAI GPT-2 from a pre-trained/customized vocab file.
Instantiate a GPT-2 BPE tokenizer for OpenAI GPT-2 from a pre-trained/customized vocab file.
Peculiarities:
Peculiarities:
- Byte-level BPE
- Byte-level BPE
Args:
Args:
pretrained_model_name_or_path: Path to pretrained model archive
pretrained_model_name_or_path: Path to pretrained model archive
or one of pre-trained vocab configs below.
or one of pre-trained vocab configs below.
*
openai-
gpt
* gpt
2
Keyword args:
Keyword args:
special_tokens: Special tokens in vocabulary that are not pretrained ([SEP], [CLS]...)
special_tokens: Special tokens in vocabulary that are not pretrained ([SEP], [CLS]...)
Default: None
Default: None
max_len: An artificial maximum length to truncate tokenized sequences to;
max_len: An artificial maximum length to truncate tokenized sequences to;
Effective maximum length is always the minimum of this
Effective maximum length is always the minimum of this
value (if specified) and the underlying BERT model's
value (if specified) and the underlying BERT model's
sequence length.
sequence length.
Default: None
Default: None
Example:
Example:
>>> import torch
>>> import torch
>>> tokenizer = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'gpt2Tokenizer', 'gpt2')
>>> tokenizer = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'gpt2Tokenizer', 'gpt2')
>>> text = "Who was Jim Henson ?"
>>> text = "Who was Jim Henson ?"
>>> indexed_tokens = tokenizer.encode(tokenized_text)
>>> indexed_tokens = tokenizer.encode(tokenized_text)
"""
"""
tokenizer
=
GPT2Tokenizer
.
from_pretrained
(
*
args
,
**
kwargs
)
tokenizer
=
GPT2Tokenizer
.
from_pretrained
(
*
args
,
**
kwargs
)
...
@@ -66,31 +66,31 @@ def gpt2Tokenizer(*args, **kwargs):
...
@@ -66,31 +66,31 @@ def gpt2Tokenizer(*args, **kwargs):
def
gpt2Model
(
*
args
,
**
kwargs
):
def
gpt2Model
(
*
args
,
**
kwargs
):
"""
"""
gpt2Model is the basic OpenAI GPT-2 Transformer model based on
gpt2Model is the basic OpenAI GPT-2 Transformer model based on
identical stacked masked self-attention blocks and pre-trained
identical stacked masked self-attention blocks and pre-trained
on large scale dataset using language modeling signal.
on large scale dataset using language modeling signal.
Example:
Example:
# Load the tokenizer
# Load the tokenizer
>>> import torch
>>> import torch
>>> tokenizer = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'gpt2Tokenizer', 'gpt2')
>>> tokenizer = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'gpt2Tokenizer', 'gpt2')
# Prepare tokenized input
# Prepare tokenized input
>>> text_1 = "Who was Jim Henson ?"
>>> text_1 = "Who was Jim Henson ?"
>>> text_2 = "Jim Henson was a puppeteer"
>>> text_2 = "Jim Henson was a puppeteer"
>>> indexed_tokens_1 = tokenizer.encode(text_1)
>>> indexed_tokens_1 = tokenizer.encode(text_1)
>>> indexed_tokens_2 = tokenizer.encode(text_2)
>>> indexed_tokens_2 = tokenizer.encode(text_2)
>>> tokens_tensor_1 = torch.tensor([indexed_tokens_1])
>>> tokens_tensor_1 = torch.tensor([indexed_tokens_1])
>>> tokens_tensor_2 = torch.tensor([indexed_tokens_2])
>>> tokens_tensor_2 = torch.tensor([indexed_tokens_2])
# Load gpt2Model
# Load gpt2Model
>>> model = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'gpt2Model', 'gpt2')
>>> model = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'gpt2Model', 'gpt2')
>>> model.eval()
>>> model.eval()
# Predict hidden states features for each layer
# Predict hidden states features for each layer
# past can be used to reuse precomputed hidden state in a subsequent predictions
# past can be used to reuse precomputed hidden state in a subsequent predictions
>>> with torch.no_grad():
>>> with torch.no_grad():
hidden_states_1, past = model(tokens_tensor_1)
hidden_states_1, past = model(tokens_tensor_1)
hidden_states_2, past = model(tokens_tensor_2, past=past)
hidden_states_2, past = model(tokens_tensor_2, past=past)
"""
"""
model
=
GPT2Model
.
from_pretrained
(
*
args
,
**
kwargs
)
model
=
GPT2Model
.
from_pretrained
(
*
args
,
**
kwargs
)
return
model
return
model
...
@@ -100,34 +100,34 @@ def gpt2Model(*args, **kwargs):
...
@@ -100,34 +100,34 @@ def gpt2Model(*args, **kwargs):
def
gpt2LMHeadModel
(
*
args
,
**
kwargs
):
def
gpt2LMHeadModel
(
*
args
,
**
kwargs
):
"""
"""
gpt2LMHeadModel is the OpenAI GPT-2 Transformer model with the
gpt2LMHeadModel is the OpenAI GPT-2 Transformer model with the
tied (pre-trained) language modeling head on top.
tied (pre-trained) language modeling head on top.
Example:
Example:
# Load the tokenizer
# Load the tokenizer
>>> import torch
>>> import torch
>>> tokenizer = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'gpt2Tokenizer', 'gpt2')
>>> tokenizer = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'gpt2Tokenizer', 'gpt2')
# Prepare tokenized input
# Prepare tokenized input
>>> text_1 = "Who was Jim Henson ?"
>>> text_1 = "Who was Jim Henson ?"
>>> text_2 = "Jim Henson was a puppeteer"
>>> text_2 = "Jim Henson was a puppeteer"
>>> indexed_tokens_1 = tokenizer.encode(text_1)
>>> indexed_tokens_1 = tokenizer.encode(text_1)
>>> indexed_tokens_2 = tokenizer.encode(text_2)
>>> indexed_tokens_2 = tokenizer.encode(text_2)
>>> tokens_tensor_1 = torch.tensor([indexed_tokens_1])
>>> tokens_tensor_1 = torch.tensor([indexed_tokens_1])
>>> tokens_tensor_2 = torch.tensor([indexed_tokens_2])
>>> tokens_tensor_2 = torch.tensor([indexed_tokens_2])
# Load gpt2LMHeadModel
# Load gpt2LMHeadModel
>>> model = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'gpt2LMHeadModel', 'gpt2')
>>> model = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'gpt2LMHeadModel', 'gpt2')
>>> model.eval()
>>> model.eval()
# Predict hidden states features for each layer
# Predict hidden states features for each layer
# past can be used to reuse precomputed hidden state in a subsequent predictions
# past can be used to reuse precomputed hidden state in a subsequent predictions
>>> with torch.no_grad():
>>> with torch.no_grad():
predictions_1, past = model(tokens_tensor_1)
predictions_1, past = model(tokens_tensor_1)
predictions_2, past = model(tokens_tensor_2, past=past)
predictions_2, past = model(tokens_tensor_2, past=past)
# Get the predicted last token
# Get the predicted last token
>>> predicted_index = torch.argmax(predictions_2[0, -1, :]).item()
>>> predicted_index = torch.argmax(predictions_2[0, -1, :]).item()
>>> predicted_token = tokenizer.decode([predicted_index])
>>> predicted_token = tokenizer.decode([predicted_index])
>>> assert predicted_token == ' who'
>>> assert predicted_token == ' who'
"""
"""
model
=
GPT2LMHeadModel
.
from_pretrained
(
*
args
,
**
kwargs
)
model
=
GPT2LMHeadModel
.
from_pretrained
(
*
args
,
**
kwargs
)
...
@@ -138,19 +138,19 @@ def gpt2LMHeadModel(*args, **kwargs):
...
@@ -138,19 +138,19 @@ def gpt2LMHeadModel(*args, **kwargs):
def
gpt2DoubleHeadsModel
(
*
args
,
**
kwargs
):
def
gpt2DoubleHeadsModel
(
*
args
,
**
kwargs
):
"""
"""
gpt2DoubleHeadsModel is the OpenAI GPT-2 Transformer model with the
gpt2DoubleHeadsModel is the OpenAI GPT-2 Transformer model with the
tied (pre-trained) language modeling head and a multiple choice
tied (pre-trained) language modeling head and a multiple choice
classification head (only initialized, not pre-trained).
classification head (only initialized, not pre-trained).
Example:
Example:
# Load the tokenizer
# Load the tokenizer
>>> import torch
>>> import torch
>>> tokenizer = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'gpt2Tokenizer', 'gpt2')
>>> tokenizer = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'gpt2Tokenizer', 'gpt2')
# Prepare tokenized input
# Prepare tokenized input
>>> text = "Who was Jim Henson ?"
>>> text = "Who was Jim Henson ?"
>>> indexed_tokens = tokenizer.encode(text)
>>> indexed_tokens = tokenizer.encode(text)
>>> tokens_tensor = torch.tensor([indexed_tokens])
>>> tokens_tensor = torch.tensor([indexed_tokens])
>>> mc_token_ids = torch.LongTensor([ [len(indexed_tokens)] ])
>>> mc_token_ids = torch.LongTensor([ [len(indexed_tokens)] ])
# Load gpt2DoubleHeadsModel
# Load gpt2DoubleHeadsModel
>>> model = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'gpt2DoubleHeadsModel', 'gpt2')
>>> model = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'gpt2DoubleHeadsModel', 'gpt2')
...
...
hubconfs/transformer_xl_hubconf.py
View file @
cdf0f2fe
from
pytorch_pretrained_bert.tokenization_transfo_xl
import
TransfoXLTokenizer
from
pytorch_pretrained_bert.tokenization_transfo_xl
import
TransfoXLTokenizer
from
pytorch_pretrained_bert.modeling_transfo_xl
import
(
from
pytorch_pretrained_bert.modeling_transfo_xl
import
(
TransfoXLModel
,
TransfoXLModel
,
TransfoXLLMHeadModel
TransfoXLLMHeadModel
)
)
# A lot of models share the same param doc. Use a decorator
# A lot of models share the same param doc. Use a decorator
...
@@ -11,20 +11,20 @@ transformer_xl_docstring = """
...
@@ -11,20 +11,20 @@ transformer_xl_docstring = """
- you don't need to specify positioning embeddings indices
- you don't need to specify positioning embeddings indices
- the tokens in the vocabulary have to be sorted to decreasing frequency.
- the tokens in the vocabulary have to be sorted to decreasing frequency.
Params:
Params:
pretrained_model_name_or_path: either:
pretrained_model_name_or_path: either:
- a str with the name of a pre-trained model to load selected in the list of:
- a str with the name of a pre-trained model to load selected in the list of:
. `transfo-xl-wt103`
. `transfo-xl-wt103`
- a path or url to a pretrained model archive containing:
- a path or url to a pretrained model archive containing:
. `transfo_xl_config.json` a configuration file for the model
. `transfo_xl_config.json` a configuration file for the model
. `pytorch_model.bin` a PyTorch dump of a TransfoXLModel instance
. `pytorch_model.bin` a PyTorch dump of a TransfoXLModel instance
- a path or url to a pretrained model archive containing:
- a path or url to a pretrained model archive containing:
. `transfo_xl_config.json` a configuration file for the model
. `transfo_xl_config.json` a configuration file for the model
. `model.chkpt` a TensorFlow checkpoint
. `model.chkpt` a TensorFlow checkpoint
from_tf: should we load the weights from a locally saved TensorFlow checkpoint
from_tf: should we load the weights from a locally saved TensorFlow checkpoint
cache_dir: an optional path to a folder in which the pre-trained models will be cached.
cache_dir: an optional path to a folder in which the pre-trained models will be cached.
state_dict: an optional state dictionnary (collections.OrderedDict object) to use instead of pre-trained models
state_dict: an optional state dictionnary (collections.OrderedDict object) to use instead of pre-trained models
*inputs, **kwargs: additional input for the specific TransformerXL class
*inputs, **kwargs: additional input for the specific TransformerXL class
"""
"""
...
@@ -45,12 +45,12 @@ def transformerXLTokenizer(*args, **kwargs):
...
@@ -45,12 +45,12 @@ def transformerXLTokenizer(*args, **kwargs):
* transfo-xl-wt103
* transfo-xl-wt103
Example:
Example:
>>> import torch
>>> import torch
>>> tokenizer = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'transformerXLTokenizer', 'transfo-xl-wt103')
>>> tokenizer = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'transformerXLTokenizer', 'transfo-xl-wt103')
>>> text = "Who was Jim Henson ?"
>>> text = "Who was Jim Henson ?"
>>> tokenized_text = tokenizer.tokenize(tokenized_text)
>>> tokenized_text = tokenizer.tokenize(tokenized_text)
>>> indexed_tokens = tokenizer.convert_tokens_to_ids(tokenized_text)
>>> indexed_tokens = tokenizer.convert_tokens_to_ids(tokenized_text)
"""
"""
tokenizer
=
TransfoXLTokenizer
.
from_pretrained
(
*
args
,
**
kwargs
)
tokenizer
=
TransfoXLTokenizer
.
from_pretrained
(
*
args
,
**
kwargs
)
return
tokenizer
return
tokenizer
...
@@ -60,33 +60,33 @@ def transformerXLTokenizer(*args, **kwargs):
...
@@ -60,33 +60,33 @@ def transformerXLTokenizer(*args, **kwargs):
def
transformerXLModel
(
*
args
,
**
kwargs
):
def
transformerXLModel
(
*
args
,
**
kwargs
):
"""
"""
gpt2Model is the basic OpenAI GPT-2 Transformer model based on
gpt2Model is the basic OpenAI GPT-2 Transformer model based on
identical stacked masked self-attention blocks and pre-trained
identical stacked masked self-attention blocks and pre-trained
on large scale dataset using language modeling signal.
on large scale dataset using language modeling signal.
Example:
Example:
# Load the tokenizer
# Load the tokenizer
>>> import torch
>>> import torch
>>> tokenizer = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'transformerXLTokenizer', 'transfo-xl-wt103')
>>> tokenizer = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'transformerXLTokenizer', 'transfo-xl-wt103')
# Prepare tokenized input
# Prepare tokenized input
>>> text_1 = "Who was Jim Henson ?"
>>> text_1 = "Who was Jim Henson ?"
>>> text_2 = "Jim Henson was a puppeteer"
>>> text_2 = "Jim Henson was a puppeteer"
>>> tokenized_text_1 = tokenizer.tokenize(text_1)
>>> tokenized_text_1 = tokenizer.tokenize(text_1)
>>> tokenized_text_2 = tokenizer.tokenize(text_2)
>>> tokenized_text_2 = tokenizer.tokenize(text_2)
>>> indexed_tokens_1 = tokenizer.convert_tokens_to_ids(tokenized_text_1)
>>> indexed_tokens_1 = tokenizer.convert_tokens_to_ids(tokenized_text_1)
>>> indexed_tokens_2 = tokenizer.convert_tokens_to_ids(tokenized_text_2)
>>> indexed_tokens_2 = tokenizer.convert_tokens_to_ids(tokenized_text_2)
>>> tokens_tensor_1 = torch.tensor([indexed_tokens_1])
>>> tokens_tensor_1 = torch.tensor([indexed_tokens_1])
>>> tokens_tensor_2 = torch.tensor([indexed_tokens_2])
>>> tokens_tensor_2 = torch.tensor([indexed_tokens_2])
# Load transformerXLModel
# Load transformerXLModel
>>> model = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'transformerXLModel', 'transfo-xl-wt103')
>>> model = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'transformerXLModel', 'transfo-xl-wt103')
>>> model.eval()
>>> model.eval()
# Predict hidden states features for each layer
# Predict hidden states features for each layer
# We can re-use the memory cells in a subsequent call to attend a longer context
# We can re-use the memory cells in a subsequent call to attend a longer context
>>> with torch.no_grad():
>>> with torch.no_grad():
hidden_states_1, mems_1 = model(tokens_tensor_1)
hidden_states_1, mems_1 = model(tokens_tensor_1)
hidden_states_2, mems_2 = model(tokens_tensor_2, mems=mems_1)
hidden_states_2, mems_2 = model(tokens_tensor_2, mems=mems_1)
"""
"""
model
=
TransfoXLModel
.
from_pretrained
(
*
args
,
**
kwargs
)
model
=
TransfoXLModel
.
from_pretrained
(
*
args
,
**
kwargs
)
return
model
return
model
...
@@ -96,37 +96,37 @@ def transformerXLModel(*args, **kwargs):
...
@@ -96,37 +96,37 @@ def transformerXLModel(*args, **kwargs):
def
transformerXLLMHeadModel
(
*
args
,
**
kwargs
):
def
transformerXLLMHeadModel
(
*
args
,
**
kwargs
):
"""
"""
gpt2LMHeadModel is the OpenAI GPT-2 Transformer model with the
gpt2LMHeadModel is the OpenAI GPT-2 Transformer model with the
tied (pre-trained) language modeling head on top.
tied (pre-trained) language modeling head on top.
Example:
Example:
# Load the tokenizer
# Load the tokenizer
>>> import torch
>>> import torch
>>> tokenizer = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'transformerXLTokenizer', 'transfo-xl-wt103')
>>> tokenizer = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'transformerXLTokenizer', 'transfo-xl-wt103')
# Prepare tokenized input
# Prepare tokenized input
>>> text_1 = "Who was Jim Henson ?"
>>> text_1 = "Who was Jim Henson ?"
>>> text_2 = "Jim Henson was a puppeteer"
>>> text_2 = "Jim Henson was a puppeteer"
>>> tokenized_text_1 = tokenizer.tokenize(text_1)
>>> tokenized_text_1 = tokenizer.tokenize(text_1)
>>> tokenized_text_2 = tokenizer.tokenize(text_2)
>>> tokenized_text_2 = tokenizer.tokenize(text_2)
>>> indexed_tokens_1 = tokenizer.convert_tokens_to_ids(tokenized_text_1)
>>> indexed_tokens_1 = tokenizer.convert_tokens_to_ids(tokenized_text_1)
>>> indexed_tokens_2 = tokenizer.convert_tokens_to_ids(tokenized_text_2)
>>> indexed_tokens_2 = tokenizer.convert_tokens_to_ids(tokenized_text_2)
>>> tokens_tensor_1 = torch.tensor([indexed_tokens_1])
>>> tokens_tensor_1 = torch.tensor([indexed_tokens_1])
>>> tokens_tensor_2 = torch.tensor([indexed_tokens_2])
>>> tokens_tensor_2 = torch.tensor([indexed_tokens_2])
# Load transformerXLLMHeadModel
# Load transformerXLLMHeadModel
>>> model = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'transformerXLLMHeadModel', 'transfo-xl-wt103')
>>> model = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'transformerXLLMHeadModel', 'transfo-xl-wt103')
>>> model.eval()
>>> model.eval()
# Predict hidden states features for each layer
# Predict hidden states features for each layer
# We can re-use the memory cells in a subsequent call to attend a longer context
# We can re-use the memory cells in a subsequent call to attend a longer context
>>> with torch.no_grad():
>>> with torch.no_grad():
predictions_1, mems_1 = model(tokens_tensor_1)
predictions_1, mems_1 = model(tokens_tensor_1)
predictions_2, mems_2 = model(tokens_tensor_2, mems=mems_1)
predictions_2, mems_2 = model(tokens_tensor_2, mems=mems_1)
# Get the predicted last token
# Get the predicted last token
>>> predicted_index = torch.argmax(predictions_2[0, -1, :]).item()
>>> predicted_index = torch.argmax(predictions_2[0, -1, :]).item()
>>> predicted_token = tokenizer.convert_ids_to_tokens([predicted_index])[0]
>>> predicted_token = tokenizer.convert_ids_to_tokens([predicted_index])[0]
>>> assert predicted_token == 'who'
>>> assert predicted_token == 'who'
"""
"""
model
=
TransfoXLLMHeadModel
.
from_pretrained
(
*
args
,
**
kwargs
)
model
=
TransfoXLLMHeadModel
.
from_pretrained
(
*
args
,
**
kwargs
)
return
model
return
model
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment