"megatron/legacy/model/realm_model.py" did not exist on "275d4e642534b97139ad32a7edf519c965a6654f"
transformer_xl_hubconf.py 5.85 KB
Newer Older
1
2
from pytorch_pretrained_bert.tokenization_transfo_xl import TransfoXLTokenizer
from pytorch_pretrained_bert.modeling_transfo_xl import (
VictorSanh's avatar
VictorSanh committed
3
4
    TransfoXLModel,
    TransfoXLLMHeadModel
5
6
7
8
9
10
11
12
13
)

# A lot of models share the same param doc. Use a decorator
# to save typing
transformer_xl_docstring = """
    Transformer XL use a relative positioning (with sinusiodal patterns) and adaptive softmax inputs which means that:
    - you don't need to specify positioning embeddings indices
    - the tokens in the vocabulary have to be sorted to decreasing frequency.

VictorSanh's avatar
VictorSanh committed
14
15
16
17
18
19
20
21
22
23
24
25
26
27
    Params:
        pretrained_model_name_or_path: either:
            - a str with the name of a pre-trained model to load selected in the list of:
                . `transfo-xl-wt103`
            - a path or url to a pretrained model archive containing:
                . `transfo_xl_config.json` a configuration file for the model
                . `pytorch_model.bin` a PyTorch dump of a TransfoXLModel instance
            - a path or url to a pretrained model archive containing:
                . `transfo_xl_config.json` a configuration file for the model
                . `model.chkpt` a TensorFlow checkpoint
        from_tf: should we load the weights from a locally saved TensorFlow checkpoint
        cache_dir: an optional path to a folder in which the pre-trained models will be cached.
        state_dict: an optional state dictionnary (collections.OrderedDict object) to use instead of pre-trained models
        *inputs, **kwargs: additional input for the specific TransformerXL class
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
"""


def _append_from_pretrained_docstring(docstr):
    def docstring_decorator(fn):
        fn.__doc__ = fn.__doc__ + docstr
        return fn
    return docstring_decorator


def transformerXLTokenizer(*args, **kwargs):
    """
    Instantiate a Transformer-XL tokenizer adapted from Vocab class in https://github.com/kimiyoung/transformer-xl

    Args:
    pretrained_model_name_or_path: Path to pretrained model archive
                                   or one of pre-trained vocab configs below.
                                       * transfo-xl-wt103

    Example:
VictorSanh's avatar
VictorSanh committed
48
        >>> import torch
49
        >>> tokenizer = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'transformerXLTokenizer', 'transfo-xl-wt103')
VictorSanh's avatar
VictorSanh committed
50
51
        
        >>> text = "Who was Jim Henson ?"
52
        >>> tokenized_text = tokenizer.tokenize(tokenized_text)
VictorSanh's avatar
VictorSanh committed
53
        >>> indexed_tokens = tokenizer.convert_tokens_to_ids(tokenized_text)
54
55
56
57
58
59
60
61
62
    """
    tokenizer = TransfoXLTokenizer.from_pretrained(*args, **kwargs)
    return tokenizer


@_append_from_pretrained_docstring(transformer_xl_docstring)
def transformerXLModel(*args, **kwargs):
    """
    gpt2Model is the basic OpenAI GPT-2 Transformer model based on
VictorSanh's avatar
VictorSanh committed
63
64
    identical stacked masked self-attention blocks and pre-trained
    on large scale dataset using language modeling signal.
65
66
67

    Example:
        # Load the tokenizer
VictorSanh's avatar
VictorSanh committed
68
        >>> import torch
69
70
71
72
        >>> tokenizer = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'transformerXLTokenizer', 'transfo-xl-wt103')

        #  Prepare tokenized input
        >>> text_1 = "Who was Jim Henson ?"
VictorSanh's avatar
VictorSanh committed
73
74
75
        >>> text_2 = "Jim Henson was a puppeteer"
        >>> tokenized_text_1 = tokenizer.tokenize(text_1)
        >>> tokenized_text_2 = tokenizer.tokenize(text_2)
76
77
        >>> indexed_tokens_1 = tokenizer.convert_tokens_to_ids(tokenized_text_1)
        >>> indexed_tokens_2 = tokenizer.convert_tokens_to_ids(tokenized_text_2)
VictorSanh's avatar
VictorSanh committed
78
79
        >>> tokens_tensor_1 = torch.tensor([indexed_tokens_1])
        >>> tokens_tensor_2 = torch.tensor([indexed_tokens_2])
80
81
82
83
84
85

        # Load transformerXLModel
        >>> model = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'transformerXLModel', 'transfo-xl-wt103')
        >>> model.eval()

        # Predict hidden states features for each layer
VictorSanh's avatar
VictorSanh committed
86
        # We can re-use the memory cells in a subsequent call to attend a longer context
87
88
        >>> with torch.no_grad():
                hidden_states_1, mems_1 = model(tokens_tensor_1)
VictorSanh's avatar
VictorSanh committed
89
                hidden_states_2, mems_2 = model(tokens_tensor_2, mems=mems_1)
90
91
92
93
94
95
96
97
98
    """
    model = TransfoXLModel.from_pretrained(*args, **kwargs)
    return model


@_append_from_pretrained_docstring(transformer_xl_docstring)
def transformerXLLMHeadModel(*args, **kwargs):
    """
    gpt2LMHeadModel is the OpenAI GPT-2 Transformer model with the
VictorSanh's avatar
VictorSanh committed
99
    tied (pre-trained) language modeling head on top.
100

VictorSanh's avatar
VictorSanh committed
101
    Example:
102
        # Load the tokenizer
VictorSanh's avatar
VictorSanh committed
103
        >>> import torch
104
105
106
107
        >>> tokenizer = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'transformerXLTokenizer', 'transfo-xl-wt103')

        #  Prepare tokenized input
        >>> text_1 = "Who was Jim Henson ?"
VictorSanh's avatar
VictorSanh committed
108
109
110
        >>> text_2 = "Jim Henson was a puppeteer"
        >>> tokenized_text_1 = tokenizer.tokenize(text_1)
        >>> tokenized_text_2 = tokenizer.tokenize(text_2)
111
112
        >>> indexed_tokens_1 = tokenizer.convert_tokens_to_ids(tokenized_text_1)
        >>> indexed_tokens_2 = tokenizer.convert_tokens_to_ids(tokenized_text_2)
VictorSanh's avatar
VictorSanh committed
113
114
        >>> tokens_tensor_1 = torch.tensor([indexed_tokens_1])
        >>> tokens_tensor_2 = torch.tensor([indexed_tokens_2])
115
116
117
118
119
120

        # Load transformerXLLMHeadModel
        >>> model = torch.hub.load('huggingface/pytorch-pretrained-BERT', 'transformerXLLMHeadModel', 'transfo-xl-wt103')
        >>> model.eval()

        # Predict hidden states features for each layer
VictorSanh's avatar
VictorSanh committed
121
        # We can re-use the memory cells in a subsequent call to attend a longer context
122
123
        >>> with torch.no_grad():
                predictions_1, mems_1 = model(tokens_tensor_1)
VictorSanh's avatar
VictorSanh committed
124
                predictions_2, mems_2 = model(tokens_tensor_2, mems=mems_1)
125

VictorSanh's avatar
VictorSanh committed
126
127
128
129
        # Get the predicted last token
        >>> predicted_index = torch.argmax(predictions_2[0, -1, :]).item()
        >>> predicted_token = tokenizer.convert_ids_to_tokens([predicted_index])[0]
        >>> assert predicted_token == 'who'
130
131
132
    """
    model = TransfoXLLMHeadModel.from_pretrained(*args, **kwargs)
    return model