test_tokenization_common.py 170 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2019 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

16

17
import inspect
18
import itertools
thomwolf's avatar
thomwolf committed
19
import os
20
import pickle
21
import re
Aymeric Augustin's avatar
Aymeric Augustin committed
22
import shutil
23
import tempfile
Sylvain Gugger's avatar
Sylvain Gugger committed
24
import unittest
25
from collections import OrderedDict
26
from itertools import takewhile
27
from typing import TYPE_CHECKING, Any, Dict, List, Tuple, Union
Aymeric Augustin's avatar
Aymeric Augustin committed
28

Sylvain Gugger's avatar
Sylvain Gugger committed
29
30
from huggingface_hub import HfApi
from requests.exceptions import HTTPError
31
from transformers import (
32
33
    AlbertTokenizer,
    AlbertTokenizerFast,
Sylvain Gugger's avatar
Sylvain Gugger committed
34
    BertTokenizer,
35
    BertTokenizerFast,
36
37
38
    PreTrainedTokenizer,
    PreTrainedTokenizerBase,
    PreTrainedTokenizerFast,
39
    SpecialTokensMixin,
40
41
42
    is_tf_available,
    is_torch_available,
)
43
from transformers.testing_utils import (
Sylvain Gugger's avatar
Sylvain Gugger committed
44
45
46
    ENDPOINT_STAGING,
    PASS,
    USER,
47
48
    get_tests_dir,
    is_pt_tf_cross_test,
Sylvain Gugger's avatar
Sylvain Gugger committed
49
    is_staging_test,
50
51
52
53
54
    require_tf,
    require_tokenizers,
    require_torch,
    slow,
)
Anthony MOI's avatar
Anthony MOI committed
55
from transformers.tokenization_utils import AddedToken
56

57

58
if TYPE_CHECKING:
59
    from transformers import PretrainedConfig, PreTrainedModel, TFPreTrainedModel
60
61


62
63
NON_ENGLISH_TAGS = ["chinese", "dutch", "french", "finnish", "german", "multilingual"]

64
65
66
67
68
SMALL_TRAINING_CORPUS = [
    ["This is the first sentence.", "This is the second one."],
    ["This sentence (contains #) over symbols and numbers 12 3.", "But not this one."],
]

69
70

def filter_non_english(_, pretrained_name: str):
Patrick von Platen's avatar
Patrick von Platen committed
71
    """Filter all the model for non-english language"""
72
73
74
75
76
77
78
    return not any([lang in pretrained_name for lang in NON_ENGLISH_TAGS])


def filter_roberta_detectors(_, pretrained_name: str):
    return "detector" not in pretrained_name


79
def merge_model_tokenizer_mappings(
LysandreJik's avatar
LysandreJik committed
80
81
82
83
84
85
    model_mapping: Dict["PretrainedConfig", Union["PreTrainedModel", "TFPreTrainedModel"]],
    tokenizer_mapping: Dict["PretrainedConfig", Tuple["PreTrainedTokenizer", "PreTrainedTokenizerFast"]],
) -> Dict[
    Union["PreTrainedTokenizer", "PreTrainedTokenizerFast"],
    Tuple["PretrainedConfig", Union["PreTrainedModel", "TFPreTrainedModel"]],
]:
86
87
88
89
    configurations = list(model_mapping.keys())
    model_tokenizer_mapping = OrderedDict([])

    for configuration in configurations:
90
91
92
93
94
95
96
97
        if configuration in model_mapping and configuration in tokenizer_mapping:
            model = model_mapping[configuration]
            tokenizer = tokenizer_mapping[configuration][0]
            tokenizer_fast = tokenizer_mapping[configuration][1]

            model_tokenizer_mapping.update({tokenizer: (configuration, model)})
            if tokenizer_fast is not None:
                model_tokenizer_mapping.update({tokenizer_fast: (configuration, model)})
98
99
100
101

    return model_tokenizer_mapping


102
class TokenizerTesterMixin:
103

104
    tokenizer_class = None
105
    rust_tokenizer_class = None
106
107
    test_slow_tokenizer = True
    test_rust_tokenizer = True
108
    space_between_special_tokens = False
109
110
111
    from_pretrained_kwargs = None
    from_pretrained_filter = None
    from_pretrained_vocab_key = "vocab_file"
112
    test_seq2seq = True
113

114
115
116
117
118
119
120
    # set to True to test a sentencepiece tokenizer
    test_sentencepiece = False

    # set to True to ignore casing when testing a sentencepiece tokenizer
    # test_sentencepiece must also be set to True
    test_sentencepiece_ignore_case = False

121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
    def setUp(self) -> None:
        # Tokenizer.filter makes it possible to filter which Tokenizer to case based on all the
        # information available in Tokenizer (name, rust class, python class, vocab key name)
        if self.test_rust_tokenizer:
            tokenizers_list = [
                (
                    self.rust_tokenizer_class,
                    pretrained_name,
                    self.from_pretrained_kwargs if self.from_pretrained_kwargs is not None else {},
                )
                for pretrained_name in self.rust_tokenizer_class.pretrained_vocab_files_map[
                    self.from_pretrained_vocab_key
                ].keys()
                if self.from_pretrained_filter is None
                or (self.from_pretrained_filter is not None and self.from_pretrained_filter(pretrained_name))
            ]
            self.tokenizers_list = tokenizers_list[:1]  # Let's just test the first pretrained vocab for speed
        else:
            self.tokenizers_list = []
        with open(f"{get_tests_dir()}/fixtures/sample_text.txt", encoding="utf-8") as f_data:
            self._data = f_data.read().replace("\n\n", "\n").strip()
142

143
        self.tmpdirname = tempfile.mkdtemp()
144

145
146
    def tearDown(self):
        shutil.rmtree(self.tmpdirname)
147

148
149
150
151
    def get_input_output_texts(self, tokenizer):
        input_txt = self.get_clean_sequence(tokenizer)[0]
        return input_txt, input_txt

152
    def get_clean_sequence(self, tokenizer, with_prefix_space=False, max_length=20, min_length=5) -> Tuple[str, list]:
153
154
155
156
157
        toks = [(i, tokenizer.decode([i], clean_up_tokenization_spaces=False)) for i in range(len(tokenizer))]
        toks = list(filter(lambda t: re.match(r"^[ a-zA-Z]+$", t[1]), toks))
        toks = list(filter(lambda t: [t[0]] == tokenizer.encode(t[1], add_special_tokens=False), toks))
        if max_length is not None and len(toks) > max_length:
            toks = toks[:max_length]
158
159
160
        if min_length is not None and len(toks) < min_length and len(toks) > 0:
            while len(toks) < min_length:
                toks = toks + toks
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
        # toks_str = [t[1] for t in toks]
        toks_ids = [t[0] for t in toks]

        # Ensure consistency
        output_txt = tokenizer.decode(toks_ids, clean_up_tokenization_spaces=False)
        if " " not in output_txt and len(toks_ids) > 1:
            output_txt = (
                tokenizer.decode([toks_ids[0]], clean_up_tokenization_spaces=False)
                + " "
                + tokenizer.decode(toks_ids[1:], clean_up_tokenization_spaces=False)
            )
        if with_prefix_space:
            output_txt = " " + output_txt
        output_ids = tokenizer.encode(output_txt, add_special_tokens=False)
        return output_txt, output_ids

177
    def get_tokenizers(self, fast=True, **kwargs) -> List[PreTrainedTokenizerBase]:
178
        if fast and self.test_rust_tokenizer and self.test_slow_tokenizer:
179
            return [self.get_tokenizer(**kwargs), self.get_rust_tokenizer(**kwargs)]
180
181
182
183
184
185
        elif fast and self.test_rust_tokenizer:
            return [self.get_rust_tokenizer(**kwargs)]
        elif self.test_slow_tokenizer:
            return [self.get_tokenizer(**kwargs)]
        else:
            raise ValueError("This tokenizer class has no tokenizer to be tested.")
186

187
188
    def get_tokenizer(self, **kwargs) -> PreTrainedTokenizer:
        return self.tokenizer_class.from_pretrained(self.tmpdirname, **kwargs)
189

190
    def get_rust_tokenizer(self, **kwargs) -> PreTrainedTokenizerFast:
191
        return self.rust_tokenizer_class.from_pretrained(self.tmpdirname, **kwargs)
192

193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
    def tokenizer_integration_test_util(
        self,
        expected_encoding: Dict,
        model_name: str,
        revision: str = None,
        sequences: List[str] = None,
        decode_kwargs: Dict[str, Any] = None,
        padding: bool = True,
    ):
        """
        Util for integration test.

        Text is tokenized and then reverted back to text. Both results are then checked.

        Args:
            expected_encoding:
                The expected result of the tokenizer output.
            model_name:
                The model name of the tokenizer to load and use.
            revision:
                The full git revision number of the model. This is to pin the
                tokenizer config and to avoid that tests start to fail if the
                config gets changed upstream.
            sequences:
                Can overwrite the texts that are used to check the tokenizer.
                This is useful if the tokenizer supports non english languages
                like france.
            decode_kwargs:
                Additional args for the ``decode`` function which reverts the
                tokenized text back to a string.
            padding:
                Activates and controls padding of the tokenizer.
        """
        decode_kwargs = {} if decode_kwargs is None else decode_kwargs

        if sequences is None:
            sequences = [
                "Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides "
                "general-purpose architectures (BERT, GPT-2, RoBERTa, XLM, DistilBert, XLNet...) for Natural "
                "Language Understanding (NLU) and Natural Language Generation (NLG) with over 32+ pretrained "
                "models in 100+ languages and deep interoperability between Jax, PyTorch and TensorFlow.",
                "BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly "
                "conditioning on both left and right context in all layers.",
                "The quick brown fox jumps over the lazy dog.",
            ]

239
240
241
        if self.test_sentencepiece_ignore_case:
            sequences = [sequence.lower() for sequence in sequences]

242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
        tokenizer_classes = [self.tokenizer_class]
        if self.test_rust_tokenizer:
            tokenizer_classes.append(self.rust_tokenizer_class)

        for tokenizer_class in tokenizer_classes:
            tokenizer = tokenizer_class.from_pretrained(
                model_name,
                revision=revision,  # to pin the tokenizer version
            )

            encoding = tokenizer(sequences, padding=padding)
            decoded_sequences = [
                tokenizer.decode(seq, skip_special_tokens=True, **decode_kwargs) for seq in encoding["input_ids"]
            ]

            encoding_data = encoding.data
            self.assertDictEqual(encoding_data, expected_encoding)

            for expected, decoded in zip(sequences, decoded_sequences):
                if self.test_sentencepiece_ignore_case:
                    expected = expected.lower()
                self.assertEqual(expected, decoded)
thomwolf's avatar
thomwolf committed
264

265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
    def assert_padded_input_match(self, input_r: list, input_p: list, max_length: int, pad_token_id: int):
        # Ensure we match max_length
        self.assertEqual(len(input_r), max_length)
        self.assertEqual(len(input_p), max_length)

        # Ensure the number of padded tokens is the same
        padded_tokens_r = list(takewhile(lambda i: i == pad_token_id, reversed(input_r)))
        padded_tokens_p = list(takewhile(lambda i: i == pad_token_id, reversed(input_p)))
        self.assertSequenceEqual(padded_tokens_r, padded_tokens_p)

    def assert_batch_padded_input_match(
        self,
        input_r: dict,
        input_p: dict,
        max_length: int,
        pad_token_id: int,
        model_main_input_name: str = "input_ids",
    ):
        for i_r in input_r.values():
            self.assertEqual(len(i_r), 2), self.assertEqual(len(i_r[0]), max_length), self.assertEqual(
                len(i_r[1]), max_length
            )
            self.assertEqual(len(i_r), 2), self.assertEqual(len(i_r[0]), max_length), self.assertEqual(
                len(i_r[1]), max_length
            )

        for i_r, i_p in zip(input_r[model_main_input_name], input_p[model_main_input_name]):
            self.assert_padded_input_match(i_r, i_p, max_length, pad_token_id)

        for i_r, i_p in zip(input_r["attention_mask"], input_p["attention_mask"]):
            self.assertSequenceEqual(i_r, i_p)

297
298
299
    @staticmethod
    def convert_batch_encode_plus_format_to_encode_plus(batch_encode_plus_sequences):
        # Switch from batch_encode_plus format:   {'input_ids': [[...], [...]], ...}
300
        # to the list of examples/ encode_plus format: [{'input_ids': [...], ...}, {'input_ids': [...], ...}]
301
302
        return [
            {value: batch_encode_plus_sequences[value][i] for value in batch_encode_plus_sequences.keys()}
Lysandre Debut's avatar
Lysandre Debut committed
303
            for i in range(len(batch_encode_plus_sequences["input_ids"]))
304
305
        ]

306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
    # TODO: this test could be extended to all tokenizers - not just the sentencepiece
    def test_sentencepiece_tokenize_and_convert_tokens_to_string(self):
        """Test ``_tokenize`` and ``convert_tokens_to_string``."""
        if not self.test_sentencepiece:
            return

        tokenizer = self.get_tokenizer()
        text = "This is text to test the tokenizer."

        if self.test_sentencepiece_ignore_case:
            text = text.lower()

        tokens = tokenizer.tokenize(text)

        self.assertTrue(len(tokens) > 0)

        # check if converting back to original text works
        reverse_text = tokenizer.convert_tokens_to_string(tokens)

        if self.test_sentencepiece_ignore_case:
            reverse_text = reverse_text.lower()

        self.assertEqual(reverse_text, text)

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
    def test_subword_regularization_tokenizer(self) -> None:
        if not self.test_sentencepiece:
            return

        # Subword regularization is only available for the slow tokenizer.
        sp_model_kwargs = {"enable_sampling": True, "alpha": 0.1, "nbest_size": -1}
        tokenizer = self.get_tokenizer(sp_model_kwargs=sp_model_kwargs)

        self.assertTrue(hasattr(tokenizer, "sp_model_kwargs"))
        self.assertIsNotNone(tokenizer.sp_model_kwargs)
        self.assertTrue(isinstance(tokenizer.sp_model_kwargs, dict))
        self.assertEqual(tokenizer.sp_model_kwargs, sp_model_kwargs)
        self.check_subword_sampling(tokenizer)

    def test_pickle_subword_regularization_tokenizer(self) -> None:
        if not self.test_sentencepiece:
            return

        """Google pickle __getstate__ __setstate__ if you are struggling with this."""
        # Subword regularization is only available for the slow tokenizer.
        sp_model_kwargs = {"enable_sampling": True, "alpha": 0.1, "nbest_size": -1}
        tokenizer = self.get_tokenizer(sp_model_kwargs=sp_model_kwargs)
        tokenizer_bin = pickle.dumps(tokenizer)
        del tokenizer
        tokenizer_new = pickle.loads(tokenizer_bin)

        self.assertTrue(hasattr(tokenizer_new, "sp_model_kwargs"))
        self.assertIsNotNone(tokenizer_new.sp_model_kwargs)
        self.assertTrue(isinstance(tokenizer_new.sp_model_kwargs, dict))
        self.assertEqual(tokenizer_new.sp_model_kwargs, sp_model_kwargs)
        self.check_subword_sampling(tokenizer_new)

362
363
364
365
366
367
368
369
370
371
372
373
    def test_model_input_names_signature(self):
        accepted_model_main_input_names = [
            "input_ids",  # nlp models
            "input_values",  # speech models
        ]

        tokenizers = self.get_tokenizers()
        for tokenizer in tokenizers:
            # first name of model_input_names has to correspond to main model input name
            # to make sure `tokenizer.pad(...)` works correctly
            self.assertTrue(tokenizer.model_input_names[0] in accepted_model_main_input_names)

374
375
376
377
378
379
380
381
382
    def test_rust_tokenizer_signature(self):
        if not self.test_rust_tokenizer:
            return

        signature = inspect.signature(self.rust_tokenizer_class.__init__)

        self.assertIn("tokenizer_file", signature.parameters)
        self.assertIsNone(signature.parameters["tokenizer_file"].default)

383
    def test_tokenizer_slow_store_full_signature(self):
384
385
386
        if not self.test_slow_tokenizer:
            return

387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
        signature = inspect.signature(self.tokenizer_class.__init__)
        tokenizer = self.get_tokenizer()

        for parameter_name, parameter in signature.parameters.items():
            if parameter.default != inspect.Parameter.empty:
                self.assertIn(parameter_name, tokenizer.init_kwargs)

    def test_tokenizer_fast_store_full_signature(self):
        if not self.test_rust_tokenizer:
            return

        signature = inspect.signature(self.rust_tokenizer_class.__init__)
        tokenizer = self.get_rust_tokenizer()

        for parameter_name, parameter in signature.parameters.items():
402
403
404
405
406
            if parameter.default != inspect.Parameter.empty and parameter_name not in [
                "vocab_file",
                "merges_file",
                "tokenizer_file",
            ]:
407
408
                self.assertIn(parameter_name, tokenizer.init_kwargs)

409
410
411
412
    def test_rust_and_python_full_tokenizers(self):
        if not self.test_rust_tokenizer:
            return

413
414
415
416
        if not self.test_slow_tokenizer:
            # as we don't have a slow version, we can't compare the outputs between slow and fast versions
            return

417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
        tokenizer = self.get_tokenizer()
        rust_tokenizer = self.get_rust_tokenizer()

        sequence, _ = self.get_input_output_texts(tokenizer)

        # We don't have an exact equivalence on `tokenize()` between Rust and Slow
        # Slow tokenizer only split tokens, Rust tokenizers will replace with <unk>
        # tokens = tokenizer.tokenize(sequence)
        # rust_tokens = rust_tokenizer.tokenize(sequence)
        # self.assertListEqual(tokens, rust_tokens)

        ids = tokenizer.encode(sequence, add_special_tokens=False)
        rust_ids = rust_tokenizer.encode(sequence, add_special_tokens=False)
        self.assertListEqual(ids, rust_ids)

        ids = tokenizer.encode(sequence, add_special_tokens=True)
        rust_ids = rust_tokenizer.encode(sequence, add_special_tokens=True)
        self.assertListEqual(ids, rust_ids)

436
    def test_tokenizers_common_properties(self):
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
        tokenizers = self.get_tokenizers()
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                attributes_list = [
                    "bos_token",
                    "eos_token",
                    "unk_token",
                    "sep_token",
                    "pad_token",
                    "cls_token",
                    "mask_token",
                ]
                for attr in attributes_list:
                    self.assertTrue(hasattr(tokenizer, attr))
                    self.assertTrue(hasattr(tokenizer, attr + "_id"))

                self.assertTrue(hasattr(tokenizer, "additional_special_tokens"))
                self.assertTrue(hasattr(tokenizer, "additional_special_tokens_ids"))

                attributes_list = [
                    "model_max_length",
                    "init_inputs",
                    "init_kwargs",
                ]
                if not isinstance(tokenizer, PreTrainedTokenizerFast):
                    attributes_list += [
                        "added_tokens_encoder",
                        "added_tokens_decoder",
                    ]
                for attr in attributes_list:
                    self.assertTrue(hasattr(tokenizer, attr))
468

469
470
    def test_save_and_load_tokenizer(self):
        # safety check on max_len default value so we are sure the test works
471
        tokenizers = self.get_tokenizers()
472
473
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
Stas Bekman's avatar
Stas Bekman committed
474
                self.assertNotEqual(tokenizer.model_max_length, 42)
475

476
        # Now let's start the test
477
        tokenizers = self.get_tokenizers()
478
479
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
480
481
482
483
                # Isolate this from the other tests because we save additional tokens/etc
                tmpdirname = tempfile.mkdtemp()

                sample_text = " He is very happy, UNwant\u00E9d,running"
484
                before_tokens = tokenizer.encode(sample_text, add_special_tokens=False)
485
486
487
488
489
490
491
492
493
494
                before_vocab = tokenizer.get_vocab()
                tokenizer.save_pretrained(tmpdirname)

                after_tokenizer = tokenizer.__class__.from_pretrained(tmpdirname)
                after_tokens = after_tokenizer.encode(sample_text, add_special_tokens=False)
                after_vocab = after_tokenizer.get_vocab()
                self.assertListEqual(before_tokens, after_tokens)
                self.assertDictEqual(before_vocab, after_vocab)

                shutil.rmtree(tmpdirname)
495

496
497
498
499
500
501
502
503
504
505
506
507
508
509
        tokenizers = self.get_tokenizers(model_max_length=42)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                # Isolate this from the other tests because we save additional tokens/etc
                tmpdirname = tempfile.mkdtemp()

                sample_text = " He is very happy, UNwant\u00E9d,running"
                tokenizer.add_tokens(["bim", "bambam"])
                additional_special_tokens = tokenizer.additional_special_tokens
                additional_special_tokens.append("new_additional_special_token")
                tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
                before_tokens = tokenizer.encode(sample_text, add_special_tokens=False)
                before_vocab = tokenizer.get_vocab()
                tokenizer.save_pretrained(tmpdirname)
510

511
512
513
                after_tokenizer = tokenizer.__class__.from_pretrained(tmpdirname)
                after_tokens = after_tokenizer.encode(sample_text, add_special_tokens=False)
                after_vocab = after_tokenizer.get_vocab()
514
                self.assertListEqual(before_tokens, after_tokens)
515
516
517
518
519
                self.assertDictEqual(before_vocab, after_vocab)
                self.assertIn("bim", after_vocab)
                self.assertIn("bambam", after_vocab)
                self.assertIn("new_additional_special_token", after_tokenizer.additional_special_tokens)
                self.assertEqual(after_tokenizer.model_max_length, 42)
520

521
                tokenizer = tokenizer.__class__.from_pretrained(tmpdirname, model_max_length=43)
522
                self.assertEqual(tokenizer.model_max_length, 43)
523

524
525
                shutil.rmtree(tmpdirname)

526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
        # Test that we can also use the non-legacy saving format for fast tokenizers
        tokenizers = self.get_tokenizers(model_max_length=42)
        for tokenizer in tokenizers:
            if not tokenizer.is_fast:
                continue
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                # Isolate this from the other tests because we save additional tokens/etc
                tmpdirname = tempfile.mkdtemp()

                sample_text = " He is very happy, UNwant\u00E9d,running"
                tokenizer.add_tokens(["bim", "bambam"])
                additional_special_tokens = tokenizer.additional_special_tokens
                additional_special_tokens.append("new_additional_special_token")
                tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens})
                before_tokens = tokenizer.encode(sample_text, add_special_tokens=False)
                before_vocab = tokenizer.get_vocab()
                tokenizer.save_pretrained(tmpdirname)

                after_tokenizer = tokenizer.__class__.from_pretrained(tmpdirname)
                after_tokens = after_tokenizer.encode(sample_text, add_special_tokens=False)
                after_vocab = after_tokenizer.get_vocab()
                self.assertListEqual(before_tokens, after_tokens)
                self.assertDictEqual(before_vocab, after_vocab)
                self.assertIn("bim", after_vocab)
                self.assertIn("bambam", after_vocab)
                self.assertIn("new_additional_special_token", after_tokenizer.additional_special_tokens)
                self.assertEqual(after_tokenizer.model_max_length, 42)

                tokenizer = tokenizer.__class__.from_pretrained(tmpdirname, model_max_length=43)
                self.assertEqual(tokenizer.model_max_length, 43)

                shutil.rmtree(tmpdirname)

559
    def test_pickle_tokenizer(self):
560
        """Google pickle __getstate__ __setstate__ if you are struggling with this."""
561
562
563
564
        tokenizers = self.get_tokenizers()
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                self.assertIsNotNone(tokenizer)
565

566
567
                text = "Munich and Berlin are nice cities"
                subwords = tokenizer.tokenize(text)
568

569
570
571
                filename = os.path.join(self.tmpdirname, "tokenizer.bin")
                with open(filename, "wb") as handle:
                    pickle.dump(tokenizer, handle)
572

573
574
                with open(filename, "rb") as handle:
                    tokenizer_new = pickle.load(handle)
575

576
                subwords_loaded = tokenizer_new.tokenize(text)
577

578
                self.assertListEqual(subwords, subwords_loaded)
579

580
    @require_tokenizers
Anthony MOI's avatar
Anthony MOI committed
581
582
583
584
585
586
    def test_pickle_added_tokens(self):
        tok1 = AddedToken("<s>", rstrip=True, lstrip=True, normalized=False, single_word=True)
        tok2 = pickle.loads(pickle.dumps(tok1))

        self.assertEqual(tok1.__getstate__(), tok2.__getstate__())

587
    def test_added_tokens_do_lower_case(self):
588
589
        # TODO(thom) activate fast tokenizer tests once Rust tokenizers accepts white spaces in added tokens.
        tokenizers = [self.get_tokenizer(do_lower_case=True)] if self.test_slow_tokenizer else []
590
591
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
592
593
594
                if not hasattr(tokenizer, "do_lower_case") or not tokenizer.do_lower_case:
                    continue

595
                special_token = tokenizer.all_special_tokens[0]
596

597
598
                text = special_token + " aaaaa bbbbbb low cccccccccdddddddd l " + special_token
                text2 = special_token + " AAAAA BBBBBB low CCCCCCCCCDDDDDDDD l " + special_token
599

600
                toks0 = tokenizer.tokenize(text)  # toks before adding new_toks
601

602
603
604
                new_toks = ["aaaaa bbbbbb", "cccccccccdddddddd", "AAAAA BBBBBB", "CCCCCCCCCDDDDDDDD"]
                added = tokenizer.add_tokens(new_toks)
                self.assertEqual(added, 2)
605

606
607
                toks = tokenizer.tokenize(text)
                toks2 = tokenizer.tokenize(text2)
608

609
610
611
612
613
614
                self.assertEqual(len(toks), len(toks2))
                self.assertListEqual(toks, toks2)
                if not isinstance(tokenizer, PreTrainedTokenizerFast):
                    # Python tokenizers can have added tokens with spaces inside them
                    # cf https://github.com/huggingface/tokenizers/issues/302
                    self.assertNotEqual(len(toks), len(toks0))  # toks0 should be longer
615

616
617
618
                # Check that none of the special tokens are lowercased
                sequence_with_special_tokens = "A " + " yEs ".join(tokenizer.all_special_tokens) + " B"
                tokenized_sequence = tokenizer.tokenize(sequence_with_special_tokens)
619

620
621
                for special_token in tokenizer.all_special_tokens:
                    self.assertTrue(special_token in tokenized_sequence)
622

623
        tokenizers = [self.get_tokenizer(do_lower_case=True)] if self.test_slow_tokenizer else []
624
625
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
626
627
628
                if hasattr(tokenizer, "do_lower_case") and tokenizer.do_lower_case:
                    continue

629
                special_token = tokenizer.all_special_tokens[0]
630

631
632
                text = special_token + " aaaaa bbbbbb low cccccccccdddddddd l " + special_token
                text2 = special_token + " AAAAA BBBBBB low CCCCCCCCCDDDDDDDD l " + special_token
633

634
                new_toks = ["aaaaa bbbbbb", "cccccccccdddddddd", "AAAAA BBBBBB", "CCCCCCCCCDDDDDDDD"]
635

636
                toks0 = tokenizer.tokenize(text)  # toks before adding new_toks
thomwolf's avatar
thomwolf committed
637

638
                added = tokenizer.add_tokens(new_toks)
639
                self.assertIn(added, [2, 4])
640

641
642
                toks = tokenizer.tokenize(text)
                toks2 = tokenizer.tokenize(text2)
643

644
645
646
647
648
649
                self.assertEqual(len(toks), len(toks2))  # Length should still be the same
                self.assertNotEqual(toks[1], toks2[1])  # But at least the first non-special tokens should differ
                if not isinstance(tokenizer, PreTrainedTokenizerFast):
                    # Python tokenizers can have added tokens with spaces inside them
                    # cf https://github.com/huggingface/tokenizers/issues/302
                    self.assertNotEqual(len(toks), len(toks0))  # toks0 should be longer
650

651
652
653
654
655
656
657
658
    def test_add_tokens_tokenizer(self):
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                vocab_size = tokenizer.vocab_size
                all_size = len(tokenizer)

                self.assertNotEqual(vocab_size, 0)
659
660
661
662

                # We usually have added tokens from the start in tests because our vocab fixtures are
                # smaller than the original vocabs - let's not assert this
                # self.assertEqual(vocab_size, all_size)
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700

                new_toks = ["aaaaa bbbbbb", "cccccccccdddddddd"]
                added_toks = tokenizer.add_tokens(new_toks)
                vocab_size_2 = tokenizer.vocab_size
                all_size_2 = len(tokenizer)

                self.assertNotEqual(vocab_size_2, 0)
                self.assertEqual(vocab_size, vocab_size_2)
                self.assertEqual(added_toks, len(new_toks))
                self.assertEqual(all_size_2, all_size + len(new_toks))

                tokens = tokenizer.encode("aaaaa bbbbbb low cccccccccdddddddd l", add_special_tokens=False)

                self.assertGreaterEqual(len(tokens), 4)
                self.assertGreater(tokens[0], tokenizer.vocab_size - 1)
                self.assertGreater(tokens[-2], tokenizer.vocab_size - 1)

                new_toks_2 = {"eos_token": ">>>>|||<||<<|<<", "pad_token": "<<<<<|||>|>>>>|>"}
                added_toks_2 = tokenizer.add_special_tokens(new_toks_2)
                vocab_size_3 = tokenizer.vocab_size
                all_size_3 = len(tokenizer)

                self.assertNotEqual(vocab_size_3, 0)
                self.assertEqual(vocab_size, vocab_size_3)
                self.assertEqual(added_toks_2, len(new_toks_2))
                self.assertEqual(all_size_3, all_size_2 + len(new_toks_2))

                tokens = tokenizer.encode(
                    ">>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l", add_special_tokens=False
                )

                self.assertGreaterEqual(len(tokens), 6)
                self.assertGreater(tokens[0], tokenizer.vocab_size - 1)
                self.assertGreater(tokens[0], tokens[1])
                self.assertGreater(tokens[-2], tokenizer.vocab_size - 1)
                self.assertGreater(tokens[-2], tokens[-3])
                self.assertEqual(tokens[0], tokenizer.eos_token_id)
                self.assertEqual(tokens[-2], tokenizer.pad_token_id)
701

702
    def test_add_special_tokens(self):
703
704
705
706
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                input_text, ids = self.get_clean_sequence(tokenizer)
707

708
                special_token = "[SPECIAL_TOKEN]"
709

710
711
712
                tokenizer.add_special_tokens({"cls_token": special_token})
                encoded_special_token = tokenizer.encode(special_token, add_special_tokens=False)
                self.assertEqual(len(encoded_special_token), 1)
713

714
715
                text = tokenizer.decode(ids + encoded_special_token, clean_up_tokenization_spaces=False)
                encoded = tokenizer.encode(text, add_special_tokens=False)
716

717
718
719
                input_encoded = tokenizer.encode(input_text, add_special_tokens=False)
                special_token_id = tokenizer.encode(special_token, add_special_tokens=False)
                self.assertEqual(encoded, input_encoded + special_token_id)
720

721
722
                decoded = tokenizer.decode(encoded, skip_special_tokens=True)
                self.assertTrue(special_token not in decoded)
723

724
    def test_internal_consistency(self):
725
726
727
728
        tokenizers = self.get_tokenizers()
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                input_text, output_text = self.get_input_output_texts(tokenizer)
729

730
731
732
733
                tokens = tokenizer.tokenize(input_text)
                ids = tokenizer.convert_tokens_to_ids(tokens)
                ids_2 = tokenizer.encode(input_text, add_special_tokens=False)
                self.assertListEqual(ids, ids_2)
734

735
736
737
738
                tokens_2 = tokenizer.convert_ids_to_tokens(ids)
                self.assertNotEqual(len(tokens_2), 0)
                text_2 = tokenizer.decode(ids)
                self.assertIsInstance(text_2, str)
739

740
                self.assertEqual(text_2, output_text)
741

742
    @require_tokenizers
743
    def test_encode_decode_with_spaces(self):
744
745
746
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
LysandreJik's avatar
LysandreJik committed
747

748
749
                # new_toks = ["[ABC]", "[DEF]"]  # TODO(thom) add this one back when Rust toks are ready: , "GHI IHG"]
                new_toks = [AddedToken("[ABC]", normalized=False), AddedToken("[DEF]", normalized=False)]
750
                tokenizer.add_tokens(new_toks)
751
752
753
754
755
                input = "[ABC][DEF][ABC][DEF]"  # TODO(thom) add back cf above: "[ABC] [DEF] [ABC] GHI IHG [DEF]"
                if self.space_between_special_tokens:
                    output = "[ABC] [DEF] [ABC] [DEF]"
                else:
                    output = input
756
                encoded = tokenizer.encode(input, add_special_tokens=False)
757
758
                decoded = tokenizer.decode(encoded, spaces_between_special_tokens=self.space_between_special_tokens)
                self.assertIn(decoded, [output, output.lower()])
759

760
    def test_pretrained_model_lists(self):
761
762
763
764
765
766
767
768
769
        # We should have at least one default checkpoint for each tokenizer
        # We should specify the max input length as well (used in some part to list the pretrained checkpoints)
        self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map), 1)
        self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values())[0]), 1)
        self.assertEqual(
            len(list(self.tokenizer_class.pretrained_vocab_files_map.values())[0]),
            len(self.tokenizer_class.max_model_input_sizes),
        )

770
771
772
773
        weights_list = list(self.tokenizer_class.max_model_input_sizes.keys())
        weights_lists_2 = []
        for file_id, map_list in self.tokenizer_class.pretrained_vocab_files_map.items():
            weights_lists_2.append(list(map_list.keys()))
774

775
776
        for weights_list_2 in weights_lists_2:
            self.assertListEqual(weights_list, weights_list_2)
LysandreJik's avatar
LysandreJik committed
777

778
    def test_mask_output(self):
779
        tokenizers = self.get_tokenizers(do_lower_case=False)
780
781
782
783
784
785
786
787
788
789
790
791
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):

                if (
                    tokenizer.build_inputs_with_special_tokens.__qualname__.split(".")[0] != "PreTrainedTokenizer"
                    and "token_type_ids" in tokenizer.model_input_names
                ):
                    seq_0 = "Test this method."
                    seq_1 = "With these inputs."
                    information = tokenizer.encode_plus(seq_0, seq_1, add_special_tokens=True)
                    sequences, mask = information["input_ids"], information["token_type_ids"]
                    self.assertEqual(len(sequences), len(mask))
792

793
794
795
796
797
798
799
800
    def test_token_type_ids(self):
        tokenizers = self.get_tokenizers()
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                seq_0 = "Test this method."

                # We want to have sequence 0 and sequence 1 are tagged
                # respectively with 0 and 1 token_ids
NielsRogge's avatar
NielsRogge committed
801
                # (regardless of whether the model use token type ids)
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
                # We use this assumption in the QA pipeline among other place
                output = tokenizer(seq_0, return_token_type_ids=True)
                self.assertIn(0, output["token_type_ids"])

    def test_sequence_ids(self):
        tokenizers = self.get_tokenizers()
        for tokenizer in tokenizers:
            if not tokenizer.is_fast:
                continue
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                seq_0 = "Test this method."
                seq_1 = "With these inputs."

                # We want to have sequence 0 and sequence 1 are tagged
                # respectively with 0 and 1 token_ids
NielsRogge's avatar
NielsRogge committed
817
                # (regardless of whether the model use token type ids)
818
819
820
821
822
823
824
825
826
827
828
                # We use this assumption in the QA pipeline among other place
                output = tokenizer(seq_0)
                self.assertIn(0, output.sequence_ids())

                output = tokenizer(seq_0, seq_1)
                self.assertIn(0, output.sequence_ids())
                self.assertIn(1, output.sequence_ids())

                if tokenizer.num_special_tokens_to_add(pair=True):
                    self.assertIn(None, output.sequence_ids())

829
    def test_number_of_added_tokens(self):
830
831
832
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
833

834
835
                seq_0 = "Test this method."
                seq_1 = "With these inputs."
836

837
                sequences = tokenizer.encode(seq_0, seq_1, add_special_tokens=False)
838
                attached_sequences = tokenizer.encode(seq_0, seq_1, add_special_tokens=True)
839

840
841
842
843
844
                # Method is implemented (e.g. not GPT-2)
                if len(attached_sequences) != 2:
                    self.assertEqual(
                        tokenizer.num_special_tokens_to_add(pair=True), len(attached_sequences) - len(sequences)
                    )
845
846

    def test_maximum_encoding_length_single_input(self):
847
        tokenizers = self.get_tokenizers(do_lower_case=False, model_max_length=100)
848
849
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
850
                seq_0, ids = self.get_clean_sequence(tokenizer, max_length=20)
851
852
853

                sequence = tokenizer.encode(seq_0, add_special_tokens=False)
                total_length = len(sequence)
854

855
                assert total_length > 4, "Issue with the testing sequence, please update it it's too short"
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882

                # Test with max model input length
                model_max_length = tokenizer.model_max_length
                self.assertEqual(model_max_length, 100)
                seq_1 = seq_0 * model_max_length

                sequence1 = tokenizer(seq_1, add_special_tokens=False)
                total_length1 = len(sequence1["input_ids"])
                assert (
                    total_length1 > model_max_length
                ), "Issue with the testing sequence, please update it it's too short"

                # Simple
                padding_strategies = (
                    [False, True, "longest"] if tokenizer.pad_token and tokenizer.pad_token_id >= 0 else [False]
                )
                for padding_state in padding_strategies:
                    with self.subTest(f"Padding: {padding_state}"):
                        for truncation_state in [True, "longest_first", "only_first"]:
                            with self.subTest(f"Truncation: {truncation_state}"):
                                output = tokenizer(seq_1, padding=padding_state, truncation=truncation_state)
                                self.assertEqual(len(output["input_ids"]), model_max_length)

                                output = tokenizer([seq_1], padding=padding_state, truncation=truncation_state)
                                self.assertEqual(len(output["input_ids"][0]), model_max_length)

                        # Simple with no truncation
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
                        # Reset warnings
                        tokenizer.deprecation_warnings = {}
                        with self.assertLogs("transformers", level="WARNING") as cm:
                            output = tokenizer(seq_1, padding=padding_state, truncation=False)
                            self.assertNotEqual(len(output["input_ids"]), model_max_length)
                        self.assertEqual(len(cm.records), 1)
                        self.assertTrue(
                            cm.records[0].message.startswith(
                                "Token indices sequence length is longer than the specified maximum sequence length for this model"
                            )
                        )

                        tokenizer.deprecation_warnings = {}
                        with self.assertLogs("transformers", level="WARNING") as cm:
                            output = tokenizer([seq_1], padding=padding_state, truncation=False)
                            self.assertNotEqual(len(output["input_ids"][0]), model_max_length)
                        self.assertEqual(len(cm.records), 1)
                        self.assertTrue(
                            cm.records[0].message.startswith(
                                "Token indices sequence length is longer than the specified maximum sequence length for this model"
                            )
                        )
905
906
907
908

                # Overflowing tokens
                stride = 2
                information = tokenizer(
909
910
911
912
913
914
                    seq_0,
                    max_length=total_length - 2,
                    add_special_tokens=False,
                    stride=stride,
                    truncation="longest_first",
                    return_overflowing_tokens=True,
915
                    # add_prefix_space=False,
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
                )

                # Overflowing tokens are handled quite differently in slow and fast tokenizers
                if isinstance(tokenizer, PreTrainedTokenizerFast):
                    truncated_sequence = information["input_ids"][0]
                    overflowing_tokens = information["input_ids"][1]
                    self.assertEqual(len(information["input_ids"]), 2)

                    self.assertEqual(len(truncated_sequence), total_length - 2)
                    self.assertEqual(truncated_sequence, sequence[:-2])

                    self.assertEqual(len(overflowing_tokens), 2 + stride)
                    self.assertEqual(overflowing_tokens, sequence[-(2 + stride) :])
                else:
                    truncated_sequence = information["input_ids"]
                    overflowing_tokens = information["overflowing_tokens"]
932

933
934
                    self.assertEqual(len(truncated_sequence), total_length - 2)
                    self.assertEqual(truncated_sequence, sequence[:-2])
935

936
                    self.assertEqual(len(overflowing_tokens), 2 + stride)
937

938
    def test_maximum_encoding_length_pair_input(self):
939
        tokenizers = self.get_tokenizers(do_lower_case=False, model_max_length=100)
940
941
942
943
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                # Build a sequence from our model's vocabulary
                stride = 2
944
                seq_0, ids = self.get_clean_sequence(tokenizer, max_length=20)
945
                if len(ids) <= 2 + stride:
946
947
                    seq_0 = (seq_0 + " ") * (2 + stride)
                    ids = None
948
949
950
951
952
953

                seq0_tokens = tokenizer.encode(seq_0, add_special_tokens=False)
                assert len(seq0_tokens) > 2 + stride

                seq_1 = "This is another sentence to be encoded."
                seq1_tokens = tokenizer.encode(seq_1, add_special_tokens=False)
954
                if abs(len(seq0_tokens) - len(seq1_tokens)) <= 2:
955
956
957
958
959
960
961
962
963
964
                    seq1_tokens = seq1_tokens + seq1_tokens
                    seq_1 = tokenizer.decode(seq1_tokens, clean_up_tokenization_spaces=False)
                seq1_tokens = tokenizer.encode(seq_1, add_special_tokens=False)

                assert len(seq1_tokens) > 2 + stride

                smallest = seq1_tokens if len(seq0_tokens) > len(seq1_tokens) else seq0_tokens

                # We are not using the special tokens - a bit too hard to test all the tokenizers with this
                # TODO try this again later
965
                sequence = tokenizer.encode(seq_0, seq_1, add_special_tokens=False)  # , add_prefix_space=False)
966
967
968
969
970

                # Test with max model input length
                model_max_length = tokenizer.model_max_length
                self.assertEqual(model_max_length, 100)
                seq_2 = seq_0 * model_max_length
971
                assert len(seq_2) > model_max_length
972
973
974
975
976
977
978
979
980
981
982
983
984

                sequence1 = tokenizer(seq_1, add_special_tokens=False)
                total_length1 = len(sequence1["input_ids"])
                sequence2 = tokenizer(seq_2, seq_1, add_special_tokens=False)
                total_length2 = len(sequence2["input_ids"])
                assert total_length1 < model_max_length - 10, "Issue with the testing sequence, please update it."
                assert total_length2 > model_max_length, "Issue with the testing sequence, please update it."

                # Simple
                padding_strategies = (
                    [False, True, "longest"] if tokenizer.pad_token and tokenizer.pad_token_id >= 0 else [False]
                )
                for padding_state in padding_strategies:
985
                    with self.subTest(f"{tokenizer.__class__.__name__} Padding: {padding_state}"):
986
                        for truncation_state in [True, "longest_first", "only_first"]:
987
                            with self.subTest(f"{tokenizer.__class__.__name__} Truncation: {truncation_state}"):
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
                                output = tokenizer(seq_2, seq_1, padding=padding_state, truncation=truncation_state)
                                self.assertEqual(len(output["input_ids"]), model_max_length)

                                output = tokenizer(
                                    [seq_2], [seq_1], padding=padding_state, truncation=truncation_state
                                )
                                self.assertEqual(len(output["input_ids"][0]), model_max_length)

                        # Simple
                        output = tokenizer(seq_1, seq_2, padding=padding_state, truncation="only_second")
                        self.assertEqual(len(output["input_ids"]), model_max_length)

                        output = tokenizer([seq_1], [seq_2], padding=padding_state, truncation="only_second")
                        self.assertEqual(len(output["input_ids"][0]), model_max_length)

                        # Simple with no truncation
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
                        # Reset warnings
                        tokenizer.deprecation_warnings = {}
                        with self.assertLogs("transformers", level="WARNING") as cm:
                            output = tokenizer(seq_1, seq_2, padding=padding_state, truncation=False)
                            self.assertNotEqual(len(output["input_ids"]), model_max_length)
                        self.assertEqual(len(cm.records), 1)
                        self.assertTrue(
                            cm.records[0].message.startswith(
                                "Token indices sequence length is longer than the specified maximum sequence length for this model"
                            )
                        )

                        tokenizer.deprecation_warnings = {}
                        with self.assertLogs("transformers", level="WARNING") as cm:
                            output = tokenizer([seq_1], [seq_2], padding=padding_state, truncation=False)
                            self.assertNotEqual(len(output["input_ids"][0]), model_max_length)
                        self.assertEqual(len(cm.records), 1)
                        self.assertTrue(
                            cm.records[0].message.startswith(
                                "Token indices sequence length is longer than the specified maximum sequence length for this model"
                            )
                        )
1026

1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
                truncated_first_sequence = tokenizer.encode(seq_0, add_special_tokens=False)[:-2] + tokenizer.encode(
                    seq_1, add_special_tokens=False
                )
                truncated_second_sequence = (
                    tokenizer.encode(seq_0, add_special_tokens=False)
                    + tokenizer.encode(seq_1, add_special_tokens=False)[:-2]
                )
                truncated_longest_sequence = (
                    truncated_first_sequence if len(seq0_tokens) > len(seq1_tokens) else truncated_second_sequence
                )

                overflow_first_sequence = tokenizer.encode(seq_0, add_special_tokens=False)[
                    -(2 + stride) :
                ] + tokenizer.encode(seq_1, add_special_tokens=False)
                overflow_second_sequence = (
                    tokenizer.encode(seq_0, add_special_tokens=False)
                    + tokenizer.encode(seq_1, add_special_tokens=False)[-(2 + stride) :]
                )
                overflow_longest_sequence = (
                    overflow_first_sequence if len(seq0_tokens) > len(seq1_tokens) else overflow_second_sequence
                )

                information = tokenizer.encode_plus(
                    seq_0,
                    seq_1,
                    max_length=len(sequence) - 2,
                    add_special_tokens=False,
                    stride=stride,
                    truncation="longest_first",
                    return_overflowing_tokens=True,
1057
                    # add_prefix_space=False,
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
                )
                # Overflowing tokens are handled quite differently in slow and fast tokenizers
                if isinstance(tokenizer, PreTrainedTokenizerFast):
                    truncated_sequence = information["input_ids"][0]
                    overflowing_tokens = information["input_ids"][1]
                    self.assertEqual(len(information["input_ids"]), 2)

                    self.assertEqual(len(truncated_sequence), len(sequence) - 2)
                    self.assertEqual(truncated_sequence, truncated_longest_sequence)

                    self.assertEqual(len(overflowing_tokens), 2 + stride + len(smallest))
                    self.assertEqual(overflowing_tokens, overflow_longest_sequence)
                else:
                    truncated_sequence = information["input_ids"]
                    overflowing_tokens = information["overflowing_tokens"]

                    self.assertEqual(len(truncated_sequence), len(sequence) - 2)
                    self.assertEqual(truncated_sequence, truncated_longest_sequence)

                    self.assertEqual(
1078
                        len(overflowing_tokens), 2 + stride
1079
1080
                    )  # No overflowing tokens when using 'longest' in python tokenizers

1081
                information = tokenizer.encode_plus(
1082
1083
1084
1085
1086
1087
1088
                    seq_0,
                    seq_1,
                    max_length=len(sequence) - 2,
                    add_special_tokens=False,
                    stride=stride,
                    truncation=True,
                    return_overflowing_tokens=True,
1089
                    # add_prefix_space=False,
1090
1091
                )
                # Overflowing tokens are handled quite differently in slow and fast tokenizers
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
                if isinstance(tokenizer, PreTrainedTokenizerFast):
                    truncated_sequence = information["input_ids"][0]
                    overflowing_tokens = information["input_ids"][1]
                    self.assertEqual(len(information["input_ids"]), 2)

                    self.assertEqual(len(truncated_sequence), len(sequence) - 2)
                    self.assertEqual(truncated_sequence, truncated_longest_sequence)

                    self.assertEqual(len(overflowing_tokens), 2 + stride + len(smallest))
                    self.assertEqual(overflowing_tokens, overflow_longest_sequence)
                else:
                    truncated_sequence = information["input_ids"]
                    overflowing_tokens = information["overflowing_tokens"]

                    self.assertEqual(len(truncated_sequence), len(sequence) - 2)
                    self.assertEqual(truncated_sequence, truncated_longest_sequence)

                    self.assertEqual(
                        len(overflowing_tokens), 2 + stride
                    )  # No overflowing tokens when using 'longest' in python tokenizers

                information_first_truncated = tokenizer.encode_plus(
                    seq_0,
                    seq_1,
                    max_length=len(sequence) - 2,
                    add_special_tokens=False,
                    stride=stride,
                    truncation="only_first",
                    return_overflowing_tokens=True,
                    # add_prefix_space=False,
                )
                # Overflowing tokens are handled quite differently in slow and fast tokenizers
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
                if isinstance(tokenizer, PreTrainedTokenizerFast):
                    truncated_sequence = information_first_truncated["input_ids"][0]
                    overflowing_tokens = information_first_truncated["input_ids"][1]
                    self.assertEqual(len(information_first_truncated["input_ids"]), 2)

                    self.assertEqual(len(truncated_sequence), len(sequence) - 2)
                    self.assertEqual(truncated_sequence, truncated_first_sequence)

                    self.assertEqual(len(overflowing_tokens), 2 + stride + len(seq1_tokens))
                    self.assertEqual(overflowing_tokens, overflow_first_sequence)
                else:
                    truncated_sequence = information_first_truncated["input_ids"]
                    overflowing_tokens = information_first_truncated["overflowing_tokens"]

                    self.assertEqual(len(truncated_sequence), len(sequence) - 2)
                    self.assertEqual(truncated_sequence, truncated_first_sequence)

                    self.assertEqual(len(overflowing_tokens), 2 + stride)
                    self.assertEqual(overflowing_tokens, seq0_tokens[-(2 + stride) :])

                information_second_truncated = tokenizer.encode_plus(
                    seq_0,
                    seq_1,
                    max_length=len(sequence) - 2,
                    add_special_tokens=False,
                    stride=stride,
                    truncation="only_second",
                    return_overflowing_tokens=True,
1152
                    # add_prefix_space=False,
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
                )
                # Overflowing tokens are handled quite differently in slow and fast tokenizers
                if isinstance(tokenizer, PreTrainedTokenizerFast):
                    truncated_sequence = information_second_truncated["input_ids"][0]
                    overflowing_tokens = information_second_truncated["input_ids"][1]
                    self.assertEqual(len(information_second_truncated["input_ids"]), 2)

                    self.assertEqual(len(truncated_sequence), len(sequence) - 2)
                    self.assertEqual(truncated_sequence, truncated_second_sequence)

                    self.assertEqual(len(overflowing_tokens), 2 + stride + len(seq0_tokens))
                    self.assertEqual(overflowing_tokens, overflow_second_sequence)
                else:
                    truncated_sequence = information_second_truncated["input_ids"]
                    overflowing_tokens = information_second_truncated["overflowing_tokens"]

                    self.assertEqual(len(truncated_sequence), len(sequence) - 2)
                    self.assertEqual(truncated_sequence, truncated_second_sequence)
1171

1172
1173
                    self.assertEqual(len(overflowing_tokens), 2 + stride)
                    self.assertEqual(overflowing_tokens, seq1_tokens[-(2 + stride) :])
1174

1175
1176
1177
1178
1179
    # def test_encode_input_type(self):
    #     tokenizers = self.get_tokenizers(do_lower_case=False)
    #     for tokenizer in tokenizers:
    #         with self.subTest(f"{tokenizer.__class__.__name__}"):
    #             sequence = "Let's encode this sequence"
1180

1181
1182
1183
    #             tokens = sequence.split()  # tokenizer.tokenize(sequence)
    #             # input_ids = tokenizer.convert_tokens_to_ids(tokens)
    #             formatted_input = tokenizer.encode(sequence, add_special_tokens=True, add_prefix_space=False)
1184

1185
    #             self.assertEqual(
1186
    #                 tokenizer.encode(tokens, is_split_into_words=True, add_special_tokens=True), formatted_input
1187
1188
1189
    #             )
    #             # This is not supported with the Rust tokenizers
    #             # self.assertEqual(tokenizer.encode(input_ids, add_special_tokens=True), formatted_input)
1190

1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
    # def test_swap_special_token(self):
    #     tokenizers = self.get_tokenizers(do_lower_case=False)
    #     for tokenizer in tokenizers:
    #         with self.subTest(f"{tokenizer.__class__.__name__}"):
    #             # Our mask token
    #             mask = "<mask>"
    #             # We take a single word in the middle of the vocabulary
    #             all_tokens = sorted(tokenizer.get_vocab().keys())
    #             word = tokenizer.decode(tokenizer.encode(all_tokens[len(all_tokens)//2], add_special_tokens=False)[:1])

    #             sequence_0 = "Encode " + word + " sequence"
    #             sequence_masked_0 = "Encode " + mask + " sequence"

    #             sequence_1 = word + " this sequence"
    #             sequence_masked_1 = mask + " this sequence"

    #             # Add tokens so that masked token isn't split
    #             # tokens = [AddedToken(t, lstrip=True, normalized=False) for t in sequence.split()]
    #             # tokenizer.add_tokens(tokens)
    #             tokenizer.add_special_tokens(
    #                 {"mask_token": AddedToken(mask, normalized=False)}
    #             )  # Eat left space on Byte-level BPE tokenizers
    #             mask_ind = tokenizer.convert_tokens_to_ids(mask)

    #             # Test first masked sequence
    #             encoded_0 = tokenizer.encode(sequence_0, add_special_tokens=False)
    #             encoded_masked = tokenizer.encode(sequence_masked_0, add_special_tokens=False)
    #             assert len(encoded_masked) == len(encoded_0)
    #             mask_loc = encoded_masked.index(mask_ind)
    #             encoded_masked[mask_loc] = encoded_0[mask_loc]

    #             self.assertEqual(encoded_masked, encoded_0)

    #             # Test second masked sequence
    #             encoded_1 = tokenizer.encode(sequence_1, add_special_tokens=False)
    #             encoded_masked = tokenizer.encode(sequence_masked_1, add_special_tokens=False)
    #             assert len(encoded_masked) == len(encoded_1)
    #             mask_loc = encoded_masked.index(mask_ind)
    #             encoded_masked[mask_loc] = encoded_1[mask_loc]

    #             self.assertEqual(encoded_masked, encoded_1)
1232

1233
    def test_special_tokens_mask(self):
1234
1235
1236
1237
1238
1239
1240
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                sequence_0 = "Encode this."
                # Testing single inputs
                encoded_sequence = tokenizer.encode(sequence_0, add_special_tokens=False)
                encoded_sequence_dict = tokenizer.encode_plus(
1241
                    sequence_0, add_special_tokens=True, return_special_tokens_mask=True  # , add_prefix_space=False
1242
1243
1244
1245
1246
1247
1248
                )
                encoded_sequence_w_special = encoded_sequence_dict["input_ids"]
                special_tokens_mask = encoded_sequence_dict["special_tokens_mask"]
                self.assertEqual(len(special_tokens_mask), len(encoded_sequence_w_special))

                filtered_sequence = [x for i, x in enumerate(encoded_sequence_w_special) if not special_tokens_mask[i]]
                self.assertEqual(encoded_sequence, filtered_sequence)
1249

1250
    def test_special_tokens_mask_input_pairs(self):
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                sequence_0 = "Encode this."
                sequence_1 = "This one too please."
                encoded_sequence = tokenizer.encode(sequence_0, add_special_tokens=False)
                encoded_sequence += tokenizer.encode(sequence_1, add_special_tokens=False)
                encoded_sequence_dict = tokenizer.encode_plus(
                    sequence_0,
                    sequence_1,
                    add_special_tokens=True,
                    return_special_tokens_mask=True,
1263
                    # add_prefix_space=False,
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
                )
                encoded_sequence_w_special = encoded_sequence_dict["input_ids"]
                special_tokens_mask = encoded_sequence_dict["special_tokens_mask"]
                self.assertEqual(len(special_tokens_mask), len(encoded_sequence_w_special))

                filtered_sequence = [
                    (x if not special_tokens_mask[i] else None) for i, x in enumerate(encoded_sequence_w_special)
                ]
                filtered_sequence = [x for x in filtered_sequence if x is not None]
                self.assertEqual(encoded_sequence, filtered_sequence)
1274

1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
    def test_right_and_left_padding(self):
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                sequence = "Sequence"
                padding_size = 10

                # check correct behaviour if no pad_token_id exists and add it eventually
                self._check_no_pad_token_padding(tokenizer, sequence)

                padding_idx = tokenizer.pad_token_id

                # RIGHT PADDING - Check that it correctly pads when a maximum length is specified along with the padding flag set to True
                tokenizer.padding_side = "right"
                encoded_sequence = tokenizer.encode(sequence)
                sequence_length = len(encoded_sequence)
                padded_sequence = tokenizer.encode(
                    sequence, max_length=sequence_length + padding_size, padding="max_length"
                )
                padded_sequence_length = len(padded_sequence)
                assert sequence_length + padding_size == padded_sequence_length
                assert encoded_sequence + [padding_idx] * padding_size == padded_sequence

                # LEFT PADDING - Check that it correctly pads when a maximum length is specified along with the padding flag set to True
                tokenizer.padding_side = "left"
                encoded_sequence = tokenizer.encode(sequence)
                sequence_length = len(encoded_sequence)
                padded_sequence = tokenizer.encode(
                    sequence, max_length=sequence_length + padding_size, padding="max_length"
                )
                padded_sequence_length = len(padded_sequence)
                assert sequence_length + padding_size == padded_sequence_length
                assert [padding_idx] * padding_size + encoded_sequence == padded_sequence

                # RIGHT & LEFT PADDING - Check that nothing is done for 'longest' and 'no_padding'
                encoded_sequence = tokenizer.encode(sequence)
                sequence_length = len(encoded_sequence)

                tokenizer.padding_side = "right"
                padded_sequence_right = tokenizer.encode(sequence, padding=True)
                padded_sequence_right_length = len(padded_sequence_right)
                assert sequence_length == padded_sequence_right_length
                assert encoded_sequence == padded_sequence_right

                tokenizer.padding_side = "left"
                padded_sequence_left = tokenizer.encode(sequence, padding="longest")
                padded_sequence_left_length = len(padded_sequence_left)
                assert sequence_length == padded_sequence_left_length
                assert encoded_sequence == padded_sequence_left

                tokenizer.padding_side = "right"
                padded_sequence_right = tokenizer.encode(sequence)
                padded_sequence_right_length = len(padded_sequence_right)
                assert sequence_length == padded_sequence_right_length
                assert encoded_sequence == padded_sequence_right

                tokenizer.padding_side = "left"
                padded_sequence_left = tokenizer.encode(sequence, padding=False)
                padded_sequence_left_length = len(padded_sequence_left)
                assert sequence_length == padded_sequence_left_length
                assert encoded_sequence == padded_sequence_left
1336
1337

    def test_padding_to_max_length(self):
Lysandre's avatar
Lysandre committed
1338
        """We keep this test for backward compatibility but it should be remove when `pad_to_max_length` will e deprecated"""
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                sequence = "Sequence"
                padding_size = 10

                # check correct behaviour if no pad_token_id exists and add it eventually
                self._check_no_pad_token_padding(tokenizer, sequence)

                padding_idx = tokenizer.pad_token_id

                # Check that it correctly pads when a maximum length is specified along with the padding flag set to True
                tokenizer.padding_side = "right"
                encoded_sequence = tokenizer.encode(sequence)
                sequence_length = len(encoded_sequence)
1354
                # FIXME: the next line should be padding(max_length) to avoid warning
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
                padded_sequence = tokenizer.encode(
                    sequence, max_length=sequence_length + padding_size, pad_to_max_length=True
                )
                padded_sequence_length = len(padded_sequence)
                assert sequence_length + padding_size == padded_sequence_length
                assert encoded_sequence + [padding_idx] * padding_size == padded_sequence

                # Check that nothing is done when a maximum length is not specified
                encoded_sequence = tokenizer.encode(sequence)
                sequence_length = len(encoded_sequence)

                tokenizer.padding_side = "right"
                padded_sequence_right = tokenizer.encode(sequence, pad_to_max_length=True)
                padded_sequence_right_length = len(padded_sequence_right)
                assert sequence_length == padded_sequence_right_length
                assert encoded_sequence == padded_sequence_right
1371

1372
1373
1374
    def test_padding_to_multiple_of(self):
        tokenizers = self.get_tokenizers()
        for tokenizer in tokenizers:
1375
1376
1377
1378
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                if tokenizer.pad_token is None:
                    self.skipTest("No padding token.")
                else:
1379
1380
1381
                    empty_tokens = tokenizer("", padding=True, pad_to_multiple_of=8)
                    normal_tokens = tokenizer("This is a sample input", padding=True, pad_to_multiple_of=8)
                    for key, value in empty_tokens.items():
1382
                        self.assertEqual(len(value) % 8, 0, f"BatchEncoding.{key} is not multiple of 8")
1383
                    for key, value in normal_tokens.items():
1384
                        self.assertEqual(len(value) % 8, 0, f"BatchEncoding.{key} is not multiple of 8")
1385
1386
1387

                    normal_tokens = tokenizer("This", pad_to_multiple_of=8)
                    for key, value in normal_tokens.items():
1388
                        self.assertNotEqual(len(value) % 8, 0, f"BatchEncoding.{key} is not multiple of 8")
1389
1390
1391
1392

                    # Should also work with truncation
                    normal_tokens = tokenizer("This", padding=True, truncation=True, pad_to_multiple_of=8)
                    for key, value in normal_tokens.items():
1393
                        self.assertEqual(len(value) % 8, 0, f"BatchEncoding.{key} is not multiple of 8")
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405

                    # truncation to something which is not a multiple of pad_to_multiple_of raises an error
                    self.assertRaises(
                        ValueError,
                        tokenizer.__call__,
                        "This",
                        padding=True,
                        truncation=True,
                        max_length=12,
                        pad_to_multiple_of=8,
                    )

1406
    def test_encode_plus_with_padding(self):
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                sequence = "Sequence"

                # check correct behaviour if no pad_token_id exists and add it eventually
                self._check_no_pad_token_padding(tokenizer, sequence)

                padding_size = 10
                padding_idx = tokenizer.pad_token_id
                token_type_padding_idx = tokenizer.pad_token_type_id

                encoded_sequence = tokenizer.encode_plus(sequence, return_special_tokens_mask=True)
                input_ids = encoded_sequence["input_ids"]
                special_tokens_mask = encoded_sequence["special_tokens_mask"]
                sequence_length = len(input_ids)

                # Test 'longest' and 'no_padding' don't do anything
                tokenizer.padding_side = "right"

Lysandre's avatar
Lysandre committed
1427
1428
1429
1430
1431
                not_padded_sequence = tokenizer.encode_plus(
                    sequence,
                    padding=True,
                    return_special_tokens_mask=True,
                )
1432
1433
1434
1435
1436
1437
1438
1439
1440
                not_padded_input_ids = not_padded_sequence["input_ids"]

                not_padded_special_tokens_mask = not_padded_sequence["special_tokens_mask"]
                not_padded_sequence_length = len(not_padded_input_ids)

                assert sequence_length == not_padded_sequence_length
                assert input_ids == not_padded_input_ids
                assert special_tokens_mask == not_padded_special_tokens_mask

Lysandre's avatar
Lysandre committed
1441
1442
1443
1444
1445
                not_padded_sequence = tokenizer.encode_plus(
                    sequence,
                    padding=False,
                    return_special_tokens_mask=True,
                )
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
                not_padded_input_ids = not_padded_sequence["input_ids"]

                not_padded_special_tokens_mask = not_padded_sequence["special_tokens_mask"]
                not_padded_sequence_length = len(not_padded_input_ids)

                assert sequence_length == not_padded_sequence_length
                assert input_ids == not_padded_input_ids
                assert special_tokens_mask == not_padded_special_tokens_mask

                # Test right padding
                tokenizer.padding_side = "right"

                right_padded_sequence = tokenizer.encode_plus(
                    sequence,
                    max_length=sequence_length + padding_size,
                    padding="max_length",
                    return_special_tokens_mask=True,
                )
                right_padded_input_ids = right_padded_sequence["input_ids"]

                right_padded_special_tokens_mask = right_padded_sequence["special_tokens_mask"]
                right_padded_sequence_length = len(right_padded_input_ids)

                assert sequence_length + padding_size == right_padded_sequence_length
                assert input_ids + [padding_idx] * padding_size == right_padded_input_ids
                assert special_tokens_mask + [1] * padding_size == right_padded_special_tokens_mask

                # Test left padding
                tokenizer.padding_side = "left"
                left_padded_sequence = tokenizer.encode_plus(
                    sequence,
                    max_length=sequence_length + padding_size,
                    padding="max_length",
                    return_special_tokens_mask=True,
                )
                left_padded_input_ids = left_padded_sequence["input_ids"]
                left_padded_special_tokens_mask = left_padded_sequence["special_tokens_mask"]
                left_padded_sequence_length = len(left_padded_input_ids)

                assert sequence_length + padding_size == left_padded_sequence_length
                assert [padding_idx] * padding_size + input_ids == left_padded_input_ids
                assert [1] * padding_size + special_tokens_mask == left_padded_special_tokens_mask

                if "token_type_ids" in tokenizer.model_input_names:
                    token_type_ids = encoded_sequence["token_type_ids"]
                    left_padded_token_type_ids = left_padded_sequence["token_type_ids"]
                    right_padded_token_type_ids = right_padded_sequence["token_type_ids"]

                    assert token_type_ids + [token_type_padding_idx] * padding_size == right_padded_token_type_ids
                    assert [token_type_padding_idx] * padding_size + token_type_ids == left_padded_token_type_ids

                if "attention_mask" in tokenizer.model_input_names:
                    attention_mask = encoded_sequence["attention_mask"]
                    right_padded_attention_mask = right_padded_sequence["attention_mask"]
                    left_padded_attention_mask = left_padded_sequence["attention_mask"]

                    assert attention_mask + [0] * padding_size == right_padded_attention_mask
                    assert [0] * padding_size + attention_mask == left_padded_attention_mask
1504
1505
1506
1507
1508

    def test_separate_tokenizers(self):
        # This tests that tokenizers don't impact others. Unfortunately the case where it fails is when
        # we're loading an S3 configuration from a pre-trained identifier, and we have no way of testing those today.

1509
1510
1511
1512
1513
1514
1515
1516
        tokenizers = self.get_tokenizers(random_argument=True)
        new_tokenizers = self.get_tokenizers(random_argument=False)

        for tokenizer, new_tokenizer in zip(tokenizers, new_tokenizers):
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                assert tokenizer.init_kwargs["random_argument"] is True
                assert tokenizer.init_kwargs["random_argument"] is True
                assert new_tokenizer.init_kwargs["random_argument"] is False
1517
1518

    def test_get_vocab(self):
1519
1520
1521
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
1522
1523
1524
                vocab_dict = tokenizer.get_vocab()
                self.assertIsInstance(vocab_dict, dict)
                self.assertGreaterEqual(len(tokenizer), len(vocab_dict))
1525

1526
                vocab = [tokenizer.convert_ids_to_tokens(i) for i in range(len(tokenizer))]
1527
                self.assertEqual(len(vocab), len(tokenizer))
1528

1529
                tokenizer.add_tokens(["asdfasdfasdfasdf"])
1530
                vocab = [tokenizer.convert_ids_to_tokens(i) for i in range(len(tokenizer))]
1531
                self.assertEqual(len(vocab), len(tokenizer))
1532

1533
    def test_conversion_reversible(self):
1534
1535
1536
1537
1538
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                vocab = tokenizer.get_vocab()
                for word, ind in vocab.items():
1539
1540
                    if word == tokenizer.unk_token:
                        continue
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
                    self.assertEqual(tokenizer.convert_tokens_to_ids(word), ind)
                    self.assertEqual(tokenizer.convert_ids_to_tokens(ind), word)

    def test_call(self):
        # Tests that all call wrap to encode_plus and batch_encode_plus
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                sequences = [
                    "Testing batch encode plus",
                    "Testing batch encode plus with different sequence lengths",
                    "Testing batch encode plus with different sequence lengths correctly pads",
                ]

                # Test not batched
                encoded_sequences_1 = tokenizer.encode_plus(sequences[0])
                encoded_sequences_2 = tokenizer(sequences[0])
                self.assertEqual(encoded_sequences_1, encoded_sequences_2)

                # Test not batched pairs
                encoded_sequences_1 = tokenizer.encode_plus(sequences[0], sequences[1])
                encoded_sequences_2 = tokenizer(sequences[0], sequences[1])
                self.assertEqual(encoded_sequences_1, encoded_sequences_2)

                # Test batched
                encoded_sequences_1 = tokenizer.batch_encode_plus(sequences)
                encoded_sequences_2 = tokenizer(sequences)
                self.assertEqual(encoded_sequences_1, encoded_sequences_2)

                # Test batched pairs
                encoded_sequences_1 = tokenizer.batch_encode_plus(list(zip(sequences, sequences)))
                encoded_sequences_2 = tokenizer(sequences, sequences)
                self.assertEqual(encoded_sequences_1, encoded_sequences_2)
1574
1575
1576

    def test_batch_encode_plus_batch_sequence_length(self):
        # Tests that all encoded values have the correct size
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                sequences = [
                    "Testing batch encode plus",
                    "Testing batch encode plus with different sequence lengths",
                    "Testing batch encode plus with different sequence lengths correctly pads",
                ]

                encoded_sequences = [tokenizer.encode_plus(sequence) for sequence in sequences]
                encoded_sequences_batch = tokenizer.batch_encode_plus(sequences, padding=False)
                self.assertListEqual(
                    encoded_sequences, self.convert_batch_encode_plus_format_to_encode_plus(encoded_sequences_batch)
                )

                maximum_length = len(
                    max([encoded_sequence["input_ids"] for encoded_sequence in encoded_sequences], key=len)
                )

                # check correct behaviour if no pad_token_id exists and add it eventually
                self._check_no_pad_token_padding(tokenizer, sequences)

                encoded_sequences_padded = [
                    tokenizer.encode_plus(sequence, max_length=maximum_length, padding="max_length")
                    for sequence in sequences
                ]

                encoded_sequences_batch_padded = tokenizer.batch_encode_plus(sequences, padding=True)
                self.assertListEqual(
                    encoded_sequences_padded,
                    self.convert_batch_encode_plus_format_to_encode_plus(encoded_sequences_batch_padded),
                )

                # check 'longest' is unsensitive to a max length
                encoded_sequences_batch_padded_1 = tokenizer.batch_encode_plus(sequences, padding=True)
                encoded_sequences_batch_padded_2 = tokenizer.batch_encode_plus(
                    sequences, max_length=maximum_length + 10, padding="longest"
                )
                for key in encoded_sequences_batch_padded_1.keys():
                    self.assertListEqual(
Lysandre's avatar
Lysandre committed
1617
1618
                        encoded_sequences_batch_padded_1[key],
                        encoded_sequences_batch_padded_2[key],
1619
1620
1621
1622
1623
1624
1625
1626
1627
                    )

                # check 'no_padding' is unsensitive to a max length
                encoded_sequences_batch_padded_1 = tokenizer.batch_encode_plus(sequences, padding=False)
                encoded_sequences_batch_padded_2 = tokenizer.batch_encode_plus(
                    sequences, max_length=maximum_length + 10, padding=False
                )
                for key in encoded_sequences_batch_padded_1.keys():
                    self.assertListEqual(
Lysandre's avatar
Lysandre committed
1628
1629
                        encoded_sequences_batch_padded_1[key],
                        encoded_sequences_batch_padded_2[key],
1630
                    )
1631

1632
    @require_tokenizers
1633
1634
1635
    def test_added_token_serializable(self):
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
1636
1637
1638
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                new_token = AddedToken("new_token", lstrip=True)
                tokenizer.add_special_tokens({"additional_special_tokens": [new_token]})
1639

1640
1641
1642
                with tempfile.TemporaryDirectory() as tmp_dir_name:
                    tokenizer.save_pretrained(tmp_dir_name)
                    tokenizer.from_pretrained(tmp_dir_name)
1643

1644
1645
1646
1647
    def test_batch_encode_plus_padding(self):
        # Test that padded sequences are equivalent between batch_encode_plus and encode_plus

        # Right padding tests
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                sequences = [
                    "Testing batch encode plus",
                    "Testing batch encode plus with different sequence lengths",
                    "Testing batch encode plus with different sequence lengths correctly pads",
                ]

                max_length = 100

                # check correct behaviour if no pad_token_id exists and add it eventually
                self._check_no_pad_token_padding(tokenizer, sequences)

                encoded_sequences = [
                    tokenizer.encode_plus(sequence, max_length=max_length, padding="max_length")
                    for sequence in sequences
                ]
                encoded_sequences_batch = tokenizer.batch_encode_plus(
                    sequences, max_length=max_length, padding="max_length"
                )
                self.assertListEqual(
                    encoded_sequences, self.convert_batch_encode_plus_format_to_encode_plus(encoded_sequences_batch)
                )
1672
1673

        # Left padding tests
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                tokenizer.padding_side = "left"
                sequences = [
                    "Testing batch encode plus",
                    "Testing batch encode plus with different sequence lengths",
                    "Testing batch encode plus with different sequence lengths correctly pads",
                ]

                max_length = 100

                # check correct behaviour if no pad_token_id exists and add it eventually
                self._check_no_pad_token_padding(tokenizer, sequences)

                encoded_sequences = [
                    tokenizer.encode_plus(sequence, max_length=max_length, padding="max_length")
                    for sequence in sequences
                ]
                encoded_sequences_batch = tokenizer.batch_encode_plus(
                    sequences, max_length=max_length, padding="max_length"
                )
                self.assertListEqual(
                    encoded_sequences, self.convert_batch_encode_plus_format_to_encode_plus(encoded_sequences_batch)
                )

    def test_pretokenized_inputs(self):
        # Test when inputs are pretokenized

1703
        tokenizers = self.get_tokenizers(do_lower_case=False)  # , add_prefix_space=True)
1704
1705
1706
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):

1707
1708
1709
                if hasattr(tokenizer, "add_prefix_space") and not tokenizer.add_prefix_space:
                    continue

1710
1711
1712
1713
1714
1715
1716
                # Prepare a sequence from our tokenizer vocabulary
                sequence, ids = self.get_clean_sequence(tokenizer, with_prefix_space=True, max_length=20)
                # sequence = " " + sequence  # To be sure the byte-level tokenizers are feeling good
                token_sequence = sequence.split()
                # sequence_no_prefix_space = sequence.strip()

                # Test encode for pretokenized inputs
1717
                output = tokenizer.encode(token_sequence, is_split_into_words=True, add_special_tokens=False)
1718
1719
1720
                output_sequence = tokenizer.encode(sequence, add_special_tokens=False)
                self.assertEqual(output, output_sequence)

1721
                output = tokenizer.encode(token_sequence, is_split_into_words=True, add_special_tokens=True)
1722
1723
1724
1725
                output_sequence = tokenizer.encode(sequence, add_special_tokens=True)
                self.assertEqual(output, output_sequence)

                # Test encode_plus for pretokenized inputs
1726
                output = tokenizer.encode_plus(token_sequence, is_split_into_words=True, add_special_tokens=False)
1727
1728
1729
                output_sequence = tokenizer.encode_plus(sequence, add_special_tokens=False)
                for key in output.keys():
                    self.assertEqual(output[key], output_sequence[key])
1730
                output = tokenizer.encode_plus(token_sequence, is_split_into_words=True, add_special_tokens=True)
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
                output_sequence = tokenizer.encode_plus(sequence, add_special_tokens=True)
                for key in output.keys():
                    self.assertEqual(output[key], output_sequence[key])

                # Test batch_encode_plus for pretokenized inputs
                sequence_batch = [sequence.strip()] * 2 + [sequence.strip() + " " + sequence.strip()]
                token_sequence_batch = [s.split() for s in sequence_batch]
                sequence_batch_cleaned_up_spaces = [" " + " ".join(s) for s in token_sequence_batch]

                output = tokenizer.batch_encode_plus(
1741
                    token_sequence_batch, is_split_into_words=True, add_special_tokens=False
1742
1743
1744
1745
1746
1747
1748
                )
                output_sequence = tokenizer.batch_encode_plus(
                    sequence_batch_cleaned_up_spaces, add_special_tokens=False
                )
                for key in output.keys():
                    self.assertEqual(output[key], output_sequence[key])
                output = tokenizer.batch_encode_plus(
1749
                    token_sequence_batch, is_split_into_words=True, add_special_tokens=True
1750
1751
1752
1753
1754
1755
1756
1757
1758
                )
                output_sequence = tokenizer.batch_encode_plus(
                    sequence_batch_cleaned_up_spaces, add_special_tokens=True
                )
                for key in output.keys():
                    self.assertEqual(output[key], output_sequence[key])

                # Test encode for pretokenized inputs pairs
                output = tokenizer.encode(
1759
                    token_sequence, token_sequence, is_split_into_words=True, add_special_tokens=False
1760
1761
1762
1763
                )
                output_sequence = tokenizer.encode(sequence, sequence, add_special_tokens=False)
                self.assertEqual(output, output_sequence)
                output = tokenizer.encode(
1764
                    token_sequence, token_sequence, is_split_into_words=True, add_special_tokens=True
1765
1766
1767
1768
1769
1770
                )
                output_sequence = tokenizer.encode(sequence, sequence, add_special_tokens=True)
                self.assertEqual(output, output_sequence)

                # Test encode_plus for pretokenized inputs pairs
                output = tokenizer.encode_plus(
1771
                    token_sequence, token_sequence, is_split_into_words=True, add_special_tokens=False
1772
1773
1774
1775
1776
                )
                output_sequence = tokenizer.encode_plus(sequence, sequence, add_special_tokens=False)
                for key in output.keys():
                    self.assertEqual(output[key], output_sequence[key])
                output = tokenizer.encode_plus(
1777
                    token_sequence, token_sequence, is_split_into_words=True, add_special_tokens=True
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
                )
                output_sequence = tokenizer.encode_plus(sequence, sequence, add_special_tokens=True)
                for key in output.keys():
                    self.assertEqual(output[key], output_sequence[key])

                # Test batch_encode_plus for pretokenized inputs pairs
                sequence_pair_batch = [(sequence.strip(), sequence.strip())] * 2 + [
                    (sequence.strip() + " " + sequence.strip(), sequence.strip())
                ]
                token_sequence_pair_batch = [tuple(s.split() for s in pair) for pair in sequence_pair_batch]
                sequence_pair_batch_cleaned_up_spaces = [
                    tuple(" " + " ".join(s) for s in pair) for pair in token_sequence_pair_batch
                ]

                output = tokenizer.batch_encode_plus(
1793
                    token_sequence_pair_batch, is_split_into_words=True, add_special_tokens=False
1794
1795
1796
1797
1798
1799
1800
                )
                output_sequence = tokenizer.batch_encode_plus(
                    sequence_pair_batch_cleaned_up_spaces, add_special_tokens=False
                )
                for key in output.keys():
                    self.assertEqual(output[key], output_sequence[key])
                output = tokenizer.batch_encode_plus(
1801
                    token_sequence_pair_batch, is_split_into_words=True, add_special_tokens=True
1802
1803
1804
1805
1806
1807
                )
                output_sequence = tokenizer.batch_encode_plus(
                    sequence_pair_batch_cleaned_up_spaces, add_special_tokens=True
                )
                for key in output.keys():
                    self.assertEqual(output[key], output_sequence[key])
1808

1809
1810
1811
    def test_prepare_for_model(self):
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
1812
1813
1814
1815
1816
1817
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                string_sequence = "Testing the prepare_for_model method."
                ids = tokenizer.encode(string_sequence, add_special_tokens=False)
                prepared_input_dict = tokenizer.prepare_for_model(ids, add_special_tokens=True)

                input_dict = tokenizer.encode_plus(string_sequence, add_special_tokens=True)
1818

1819
                self.assertEqual(input_dict, prepared_input_dict)
1820

1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
    def test_batch_encode_plus_overflowing_tokens(self):
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
            string_sequences = ["Testing the prepare_for_model method.", "Test"]

            if tokenizer.pad_token is None:
                tokenizer.add_special_tokens({"pad_token": "[PAD]"})

            tokenizer.batch_encode_plus(
                string_sequences, return_overflowing_tokens=True, truncation=True, padding=True, max_length=3
            )

1833
    @is_pt_tf_cross_test
1834
    def test_batch_encode_plus_tensors(self):
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                sequences = [
                    "Testing batch encode plus",
                    "Testing batch encode plus with different sequence lengths",
                    "Testing batch encode plus with different sequence lengths correctly pads",
                ]

                # A Tensor cannot be build by sequences which are not the same size
                self.assertRaises(ValueError, tokenizer.batch_encode_plus, sequences, return_tensors="pt")
                self.assertRaises(ValueError, tokenizer.batch_encode_plus, sequences, return_tensors="tf")

                if tokenizer.pad_token_id is None:
                    self.assertRaises(
Lysandre's avatar
Lysandre committed
1850
1851
1852
1853
1854
                        ValueError,
                        tokenizer.batch_encode_plus,
                        sequences,
                        padding=True,
                        return_tensors="pt",
1855
1856
                    )
                    self.assertRaises(
Lysandre's avatar
Lysandre committed
1857
1858
1859
1860
1861
                        ValueError,
                        tokenizer.batch_encode_plus,
                        sequences,
                        padding="longest",
                        return_tensors="tf",
1862
1863
1864
1865
1866
                    )
                else:
                    pytorch_tensor = tokenizer.batch_encode_plus(sequences, padding=True, return_tensors="pt")
                    tensorflow_tensor = tokenizer.batch_encode_plus(sequences, padding="longest", return_tensors="tf")
                    encoded_sequences = tokenizer.batch_encode_plus(sequences, padding=True)
1867

1868
1869
1870
1871
                    for key in encoded_sequences.keys():
                        pytorch_value = pytorch_tensor[key].tolist()
                        tensorflow_value = tensorflow_tensor[key].numpy().tolist()
                        encoded_value = encoded_sequences[key]
1872

1873
                        self.assertEqual(pytorch_value, tensorflow_value, encoded_value)
1874
1875
1876
1877
1878
1879

    def _check_no_pad_token_padding(self, tokenizer, sequences):
        # if tokenizer does not have pad_token_id, an error should be thrown
        if tokenizer.pad_token_id is None:
            with self.assertRaises(ValueError):
                if isinstance(sequences, list):
1880
                    tokenizer.batch_encode_plus(sequences, padding="longest")
1881
                else:
1882
                    tokenizer.encode_plus(sequences, padding=True)
1883
1884
1885

            # add pad_token_id to pass subsequent tests
            tokenizer.add_special_tokens({"pad_token": "<PAD>"})
1886

1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
    def check_subword_sampling(
        self,
        tokenizer: PreTrainedTokenizer,
        text: str = None,
    ) -> None:
        """
        Check if the tokenizer generates different results when subword regularization is enabled.

        Subword regularization augments training data with subword sampling.
        This has a random component.

        Args:
            tokenizer: The tokenizer to check.
            text: The text to use for the checks.
        """
        text = "This is a test for subword regularization." if text is None else text
        if self.test_sentencepiece_ignore_case:
            text = text.lower()

        tokens_list = []
        for _ in range(5):
            tokens_list.append(tokenizer.tokenize(text))

        # the list of different pairs of tokens_list
        combinations = itertools.combinations(tokens_list, 2)

        # check of sampling is done
        subword_sampling_found = False
        for combination in combinations:
            if combination[0] != combination[1]:
                subword_sampling_found = True
        self.assertTrue(subword_sampling_found)

        # check if converting back to original text works
        for tokens in tokens_list:
            if self.test_sentencepiece_ignore_case:
                self.assertEqual(text, tokenizer.convert_tokens_to_string(tokens).lower())
            else:
                self.assertEqual(text, tokenizer.convert_tokens_to_string(tokens))

1927
    @require_torch
Sylvain Gugger's avatar
Sylvain Gugger committed
1928
    @slow
1929
    def test_torch_encode_plus_sent_to_model(self):
1930
        import torch
1931

1932
1933
1934
1935
        from transformers import MODEL_MAPPING, TOKENIZER_MAPPING

        MODEL_TOKENIZER_MAPPING = merge_model_tokenizer_mappings(MODEL_MAPPING, TOKENIZER_MAPPING)

1936
1937
1938
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
1939

1940
1941
                if tokenizer.__class__ not in MODEL_TOKENIZER_MAPPING:
                    return
1942

1943
1944
                config_class, model_class = MODEL_TOKENIZER_MAPPING[tokenizer.__class__]
                config = config_class()
1945

1946
1947
                if config.is_encoder_decoder or config.pad_token_id is None:
                    return
1948

1949
                model = model_class(config)
1950

1951
1952
1953
1954
1955
1956
1957
                # Make sure the model contains at least the full vocabulary size in its embedding matrix
                is_using_common_embeddings = hasattr(model.get_input_embeddings(), "weight")
                assert (
                    (model.get_input_embeddings().weight.shape[0] >= len(tokenizer))
                    if is_using_common_embeddings
                    else True
                )
1958

1959
1960
1961
1962
                # Build sequence
                first_ten_tokens = list(tokenizer.get_vocab().keys())[:10]
                sequence = " ".join(first_ten_tokens)
                encoded_sequence = tokenizer.encode_plus(sequence, return_tensors="pt")
1963
1964
1965
1966

                # Ensure that the BatchEncoding.to() method works.
                encoded_sequence.to(model.device)

1967
1968
                batch_encoded_sequence = tokenizer.batch_encode_plus([sequence, sequence], return_tensors="pt")
                # This should not fail
1969

1970
1971
1972
                with torch.no_grad():  # saves some time
                    model(**encoded_sequence)
                    model(**batch_encoded_sequence)
1973

1974
1975
1976
1977
1978
1979
1980
        # if self.test_rust_tokenizer:
        #     fast_tokenizer = self.get_rust_tokenizer()
        #     encoded_sequence_fast = fast_tokenizer.encode_plus(sequence, return_tensors="pt")
        #     batch_encoded_sequence_fast = fast_tokenizer.batch_encode_plus([sequence, sequence], return_tensors="pt")
        #     # This should not fail
        #     model(**encoded_sequence_fast)
        #     model(**batch_encoded_sequence_fast)
1981
1982

    @require_tf
Sylvain Gugger's avatar
Sylvain Gugger committed
1983
    @slow
1984
1985
1986
1987
1988
    def test_tf_encode_plus_sent_to_model(self):
        from transformers import TF_MODEL_MAPPING, TOKENIZER_MAPPING

        MODEL_TOKENIZER_MAPPING = merge_model_tokenizer_mappings(TF_MODEL_MAPPING, TOKENIZER_MAPPING)

1989
1990
1991
1992
1993
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                if tokenizer.__class__ not in MODEL_TOKENIZER_MAPPING:
                    return
1994

1995
1996
                config_class, model_class = MODEL_TOKENIZER_MAPPING[tokenizer.__class__]
                config = config_class()
1997

1998
1999
                if config.is_encoder_decoder or config.pad_token_id is None:
                    return
2000

2001
                model = model_class(config)
2002

2003
2004
                # Make sure the model contains at least the full vocabulary size in its embedding matrix
                assert model.config.vocab_size >= len(tokenizer)
2005

2006
2007
2008
2009
2010
                # Build sequence
                first_ten_tokens = list(tokenizer.get_vocab().keys())[:10]
                sequence = " ".join(first_ten_tokens)
                encoded_sequence = tokenizer.encode_plus(sequence, return_tensors="tf")
                batch_encoded_sequence = tokenizer.batch_encode_plus([sequence, sequence], return_tensors="tf")
2011

2012
2013
2014
                # This should not fail
                model(encoded_sequence)
                model(batch_encoded_sequence)
2015
2016
2017

    # TODO: Check if require_torch is the best to test for numpy here ... Maybe move to require_flax when available
    @require_torch
Sylvain Gugger's avatar
Sylvain Gugger committed
2018
    @slow
2019
2020
2021
2022
2023
    def test_np_encode_plus_sent_to_model(self):
        from transformers import MODEL_MAPPING, TOKENIZER_MAPPING

        MODEL_TOKENIZER_MAPPING = merge_model_tokenizer_mappings(MODEL_MAPPING, TOKENIZER_MAPPING)

2024
2025
2026
2027
2028
        tokenizers = self.get_tokenizers()
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                if tokenizer.__class__ not in MODEL_TOKENIZER_MAPPING:
                    return
2029

2030
2031
                config_class, model_class = MODEL_TOKENIZER_MAPPING[tokenizer.__class__]
                config = config_class()
2032

2033
2034
                if config.is_encoder_decoder or config.pad_token_id is None:
                    return
2035

2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
                # Build sequence
                first_ten_tokens = list(tokenizer.get_vocab().keys())[:10]
                sequence = " ".join(first_ten_tokens)
                encoded_sequence = tokenizer.encode_plus(sequence, return_tensors="np")
                batch_encoded_sequence = tokenizer.batch_encode_plus([sequence, sequence], return_tensors="np")

                # TODO: add forward through JAX/Flax when PR is merged
                # This is currently here to make flake8 happy !
                if encoded_sequence is None:
                    raise ValueError("Cannot convert list to numpy tensor on  encode_plus()")

                if batch_encoded_sequence is None:
                    raise ValueError("Cannot convert list to numpy tensor on  batch_encode_plus()")

                if self.test_rust_tokenizer:
                    fast_tokenizer = self.get_rust_tokenizer()
                    encoded_sequence_fast = fast_tokenizer.encode_plus(sequence, return_tensors="np")
                    batch_encoded_sequence_fast = fast_tokenizer.batch_encode_plus(
                        [sequence, sequence], return_tensors="np"
                    )
2056

2057
2058
2059
2060
                    # TODO: add forward through JAX/Flax when PR is merged
                    # This is currently here to make flake8 happy !
                    if encoded_sequence_fast is None:
                        raise ValueError("Cannot convert list to numpy tensor on  encode_plus() (fast)")
2061

2062
2063
                    if batch_encoded_sequence_fast is None:
                        raise ValueError("Cannot convert list to numpy tensor on  batch_encode_plus() (fast)")
2064
2065
2066

    @require_torch
    def test_prepare_seq2seq_batch(self):
2067
2068
2069
        if not self.test_seq2seq:
            return

2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
        tokenizers = self.get_tokenizers()
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                # Longer text that will definitely require truncation.
                src_text = [
                    " UN Chief Says There Is No Military Solution in Syria",
                    " Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that 'there is no military solution' to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.",
                ]
                tgt_text = [
                    "艦eful ONU declar膬 c膬 nu exist膬 o solu牛ie militar膬 卯n Siria",
                    "Secretarul General Ban Ki-moon declar膬 c膬 r膬spunsul s膬u la intensificarea sprijinului militar al Rusiei "
                    'pentru Siria este c膬 "nu exist膬 o solu牛ie militar膬" la conflictul de aproape cinci ani 艧i c膬 noi arme nu '
                    "vor face dec芒t s膬 卯nr膬ut膬牛easc膬 violen牛ele 艧i mizeria pentru milioane de oameni.",
                ]
                try:
                    batch = tokenizer.prepare_seq2seq_batch(
                        src_texts=src_text,
                        tgt_texts=tgt_text,
                        max_length=3,
                        max_target_length=10,
                        return_tensors="pt",
                        src_lang="en_XX",  # this should be ignored (for all but mbart) but not cause an error
                    )
                except NotImplementedError:
                    return
                self.assertEqual(batch.input_ids.shape[1], 3)
                self.assertEqual(batch.labels.shape[1], 10)
                # max_target_length will default to max_length if not specified
                batch = tokenizer.prepare_seq2seq_batch(
                    src_text, tgt_texts=tgt_text, max_length=3, return_tensors="pt"
                )
                self.assertEqual(batch.input_ids.shape[1], 3)
                self.assertEqual(batch.labels.shape[1], 3)
2103

2104
2105
2106
2107
2108
2109
                batch_encoder_only = tokenizer.prepare_seq2seq_batch(
                    src_texts=src_text, max_length=3, max_target_length=10, return_tensors="pt"
                )
                self.assertEqual(batch_encoder_only.input_ids.shape[1], 3)
                self.assertEqual(batch_encoder_only.attention_mask.shape[1], 3)
                self.assertNotIn("decoder_input_ids", batch_encoder_only)
2110
2111
2112

    def test_is_fast(self):
        for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
2113
            with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
2114
2115
2116
2117
                tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
                # Check is_fast is set correctly
                self.assertTrue(tokenizer_r.is_fast)

2118
2119
2120
2121
                if self.test_slow_tokenizer:
                    tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs)
                    self.assertFalse(tokenizer_p.is_fast)

2122
2123
    def test_fast_only_inputs(self):
        for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
2124
            with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
                tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)

                # Ensure None raise an error
                self.assertRaises(TypeError, tokenizer_r.tokenize, None)
                self.assertRaises(TypeError, tokenizer_r.encode, None)
                self.assertRaises(TypeError, tokenizer_r.encode_plus, None)
                self.assertRaises(TypeError, tokenizer_r.batch_encode_plus, None)

    def test_alignement_methods(self):
        for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
2135
            with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
                tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)

                words = ["Wonderful", "no", "inspiration", "example", "with", "subtoken"]
                text = " ".join(words)
                batch_size = 3

                encoding = tokenizer_r.encode_plus(text, add_special_tokens=False)

                batch_encoding = tokenizer_r.batch_encode_plus([text] * batch_size, add_special_tokens=False)
                num_tokens = len(encoding["input_ids"])

                last_word_index = len(words) - 1
                last_token_index = num_tokens - 1
                last_batch_index = batch_size - 1
                last_char_index = len(text) - 1

                # words, tokens
                self.assertEqual(len(encoding.words(0)), num_tokens)
                self.assertEqual(max(encoding.words(0)), last_word_index)
                self.assertEqual(min(encoding.words(0)), 0)
                self.assertEqual(len(batch_encoding.words(last_batch_index)), num_tokens)
                self.assertEqual(max(batch_encoding.words(last_batch_index)), last_word_index)
                self.assertEqual(min(batch_encoding.words(last_batch_index)), 0)
                self.assertEqual(len(encoding.tokens(0)), num_tokens)

                # Assert token_to_word
                self.assertEqual(encoding.token_to_word(0), 0)
                self.assertEqual(encoding.token_to_word(0, 0), 0)
                self.assertEqual(encoding.token_to_word(last_token_index), last_word_index)
                self.assertEqual(encoding.token_to_word(0, last_token_index), last_word_index)
                self.assertEqual(batch_encoding.token_to_word(1, 0), 0)
                self.assertEqual(batch_encoding.token_to_word(0, last_token_index), last_word_index)
                self.assertEqual(batch_encoding.token_to_word(last_batch_index, last_token_index), last_word_index)

                # Assert word_to_tokens
                self.assertEqual(encoding.word_to_tokens(0).start, 0)
                self.assertEqual(encoding.word_to_tokens(0, 0).start, 0)
                self.assertEqual(encoding.word_to_tokens(last_word_index).end, last_token_index + 1)
                self.assertEqual(encoding.word_to_tokens(0, last_word_index).end, last_token_index + 1)
                self.assertEqual(batch_encoding.word_to_tokens(1, 0).start, 0)
                self.assertEqual(batch_encoding.word_to_tokens(0, last_word_index).end, last_token_index + 1)
                self.assertEqual(
                    batch_encoding.word_to_tokens(last_batch_index, last_word_index).end, last_token_index + 1
                )

                # Assert token_to_chars
                self.assertEqual(encoding.token_to_chars(0).start, 0)
                self.assertEqual(encoding.token_to_chars(0, 0).start, 0)
                self.assertEqual(encoding.token_to_chars(last_token_index).end, last_char_index + 1)
                self.assertEqual(encoding.token_to_chars(0, last_token_index).end, last_char_index + 1)
                self.assertEqual(batch_encoding.token_to_chars(1, 0).start, 0)
                self.assertEqual(batch_encoding.token_to_chars(0, last_token_index).end, last_char_index + 1)
                self.assertEqual(
                    batch_encoding.token_to_chars(last_batch_index, last_token_index).end, last_char_index + 1
                )

                # Assert char_to_token
                self.assertEqual(encoding.char_to_token(0), 0)
                self.assertEqual(encoding.char_to_token(0, 0), 0)
                self.assertEqual(encoding.char_to_token(last_char_index), last_token_index)
                self.assertEqual(encoding.char_to_token(0, last_char_index), last_token_index)
                self.assertEqual(batch_encoding.char_to_token(1, 0), 0)
                self.assertEqual(batch_encoding.char_to_token(0, last_char_index), last_token_index)
                self.assertEqual(batch_encoding.char_to_token(last_batch_index, last_char_index), last_token_index)

                # Assert char_to_word
                self.assertEqual(encoding.char_to_word(0), 0)
                self.assertEqual(encoding.char_to_word(0, 0), 0)
                self.assertEqual(encoding.char_to_word(last_char_index), last_word_index)
                self.assertEqual(encoding.char_to_word(0, last_char_index), last_word_index)
                self.assertEqual(batch_encoding.char_to_word(1, 0), 0)
                self.assertEqual(batch_encoding.char_to_word(0, last_char_index), last_word_index)
                self.assertEqual(batch_encoding.char_to_word(last_batch_index, last_char_index), last_word_index)

                # Assert word_to_chars
                self.assertEqual(encoding.word_to_chars(0).start, 0)
                self.assertEqual(encoding.word_to_chars(0, 0).start, 0)
                self.assertEqual(encoding.word_to_chars(last_word_index).end, last_char_index + 1)
                self.assertEqual(encoding.word_to_chars(0, last_word_index).end, last_char_index + 1)
                self.assertEqual(batch_encoding.word_to_chars(1, 0).start, 0)
                self.assertEqual(batch_encoding.word_to_chars(0, last_word_index).end, last_char_index + 1)
                self.assertEqual(
                    batch_encoding.word_to_chars(last_batch_index, last_word_index).end, last_char_index + 1
                )

2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
                # Assert token_to_sequence
                self.assertEqual(encoding.token_to_sequence(num_tokens // 2), 0)
                self.assertEqual(encoding.token_to_sequence(0, num_tokens // 2), 0)
                self.assertEqual(batch_encoding.token_to_sequence(1, num_tokens // 2), 0)
                self.assertEqual(batch_encoding.token_to_sequence(0, num_tokens // 2), 0)
                self.assertEqual(batch_encoding.token_to_sequence(last_batch_index, num_tokens // 2), 0)

                # Pair of input sequences

                words = ["Wonderful", "no", "inspiration", "example", "with", "subtoken"]
                text = " ".join(words)
                pair_words = ["Amazing", "example", "full", "of", "inspiration"]
                pair_text = " ".join(pair_words)
                batch_size = 3
                index_word_in_first_seq = words.index("inspiration")
                index_word_in_pair_seq = pair_words.index("inspiration")
                index_char_in_first_seq = text.find("inspiration")
                index_char_in_pair_seq = pair_text.find("inspiration")

                pair_encoding = tokenizer_r.encode_plus(text, pair_text, add_special_tokens=False)

                pair_batch_encoding = tokenizer_r.batch_encode_plus(
                    [(text, pair_text)] * batch_size, add_special_tokens=False
                )
                num_tokens = len(encoding["input_ids"])

                last_word_index = len(words) - 1
                last_token_index = num_tokens - 1
                last_batch_index = batch_size - 1
                last_char_index = len(text) - 1

                # Assert word_to_tokens
                self.assertNotEqual(
                    pair_encoding.word_to_tokens(index_word_in_first_seq, sequence_index=0).start,
                    pair_encoding.word_to_tokens(index_word_in_pair_seq, sequence_index=1).start,
                )
                self.assertEqual(
                    pair_encoding["input_ids"][
                        pair_encoding.word_to_tokens(index_word_in_first_seq, sequence_index=0).start
                    ],
                    pair_encoding["input_ids"][
                        pair_encoding.word_to_tokens(index_word_in_pair_seq, sequence_index=1).start
                    ],
                )
                self.assertNotEqual(
                    pair_batch_encoding.word_to_tokens(1, index_word_in_first_seq, sequence_index=0).start,
                    pair_batch_encoding.word_to_tokens(1, index_word_in_pair_seq, sequence_index=1).start,
                )
                self.assertEqual(
                    pair_batch_encoding["input_ids"][1][
                        pair_batch_encoding.word_to_tokens(1, index_word_in_first_seq, sequence_index=0).start
                    ],
                    pair_batch_encoding["input_ids"][1][
                        pair_batch_encoding.word_to_tokens(1, index_word_in_pair_seq, sequence_index=1).start
                    ],
                )

                # Assert char_to_token
                self.assertNotEqual(
                    pair_encoding.char_to_token(index_char_in_first_seq, sequence_index=0),
                    pair_encoding.char_to_token(index_char_in_pair_seq, sequence_index=1),
                )
                self.assertEqual(
                    pair_encoding["input_ids"][pair_encoding.char_to_token(index_char_in_first_seq, sequence_index=0)],
                    pair_encoding["input_ids"][pair_encoding.char_to_token(index_char_in_pair_seq, sequence_index=1)],
                )
                self.assertNotEqual(
                    pair_batch_encoding.char_to_token(1, index_char_in_first_seq, sequence_index=0),
                    pair_batch_encoding.char_to_token(1, index_char_in_pair_seq, sequence_index=1),
                )
                self.assertEqual(
                    pair_batch_encoding["input_ids"][1][
                        pair_batch_encoding.char_to_token(1, index_char_in_first_seq, sequence_index=0)
                    ],
                    pair_batch_encoding["input_ids"][1][
                        pair_batch_encoding.char_to_token(1, index_char_in_pair_seq, sequence_index=1)
                    ],
                )

                # Assert char_to_word
                self.assertNotEqual(
                    pair_encoding.char_to_word(index_char_in_first_seq, sequence_index=0),
                    pair_encoding.char_to_word(index_char_in_pair_seq, sequence_index=1),
                )
                self.assertEqual(
                    words[pair_encoding.char_to_word(index_char_in_first_seq, sequence_index=0)],
                    pair_words[pair_encoding.char_to_word(index_char_in_pair_seq, sequence_index=1)],
                )
                self.assertNotEqual(
                    pair_batch_encoding.char_to_word(1, index_char_in_first_seq, sequence_index=0),
                    pair_batch_encoding.char_to_word(1, index_char_in_pair_seq, sequence_index=1),
                )
                self.assertEqual(
                    words[pair_batch_encoding.char_to_word(1, index_char_in_first_seq, sequence_index=0)],
                    pair_words[pair_batch_encoding.char_to_word(1, index_char_in_pair_seq, sequence_index=1)],
                )

                # Assert word_to_chars
                self.assertNotEqual(
                    pair_encoding.word_to_chars(index_word_in_first_seq, sequence_index=0).start,
                    pair_encoding.word_to_chars(index_word_in_pair_seq, sequence_index=1).start,
                )
                self.assertEqual(
                    text[pair_encoding.word_to_chars(index_word_in_first_seq, sequence_index=0).start],
                    pair_text[pair_encoding.word_to_chars(index_word_in_pair_seq, sequence_index=1).start],
                )
                self.assertNotEqual(
                    pair_batch_encoding.word_to_chars(1, index_word_in_first_seq, sequence_index=0).start,
                    pair_batch_encoding.word_to_chars(1, index_word_in_pair_seq, sequence_index=1).start,
                )
                self.assertEqual(
                    text[pair_batch_encoding.word_to_chars(1, index_word_in_first_seq, sequence_index=0).start],
                    pair_text[pair_batch_encoding.word_to_chars(1, index_word_in_pair_seq, sequence_index=1).start],
                )

                # Assert token_to_sequence
                pair_encoding = tokenizer_r.encode_plus(text, pair_text, add_special_tokens=True)

                pair_sequence_ids = [
                    pair_encoding.token_to_sequence(i) for i in range(len(pair_encoding["input_ids"]))
                ]
                self.assertIn(0, pair_sequence_ids)
                self.assertIn(1, pair_sequence_ids)
                if tokenizer_r.num_special_tokens_to_add(pair=True):
                    self.assertIn(None, pair_sequence_ids)

                pair_batch_encoding = tokenizer_r.batch_encode_plus(
                    [(text, pair_text)] * batch_size, add_special_tokens=True
                )
                pair_batch_sequence_ids = [
                    pair_batch_encoding.token_to_sequence(1, i)
                    for i in range(len(pair_batch_encoding["input_ids"][0]))
                ]
                self.assertIn(0, pair_batch_sequence_ids)
                self.assertIn(1, pair_batch_sequence_ids)
                if tokenizer_r.num_special_tokens_to_add(pair=True):
                    self.assertIn(None, pair_batch_sequence_ids)

2359
    def test_tokenization_python_rust_equals(self):
2360
2361
2362
2363
        if not self.test_slow_tokenizer:
            # as we don't have a slow version, we can't compare the outputs between slow and fast versions
            return

2364
        for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
2365
            with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
                tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
                tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs)

                # Ensure basic input match
                input_p = tokenizer_p.encode_plus(self._data)
                input_r = tokenizer_r.encode_plus(self._data)

                for key in filter(lambda x: x in ["input_ids", "token_type_ids", "attention_mask"], input_p.keys()):
                    self.assertSequenceEqual(input_p[key], input_r[key])

                input_pairs_p = tokenizer_p.encode_plus(self._data, self._data)
                input_pairs_r = tokenizer_r.encode_plus(self._data, self._data)

                for key in filter(lambda x: x in ["input_ids", "token_type_ids", "attention_mask"], input_p.keys()):
                    self.assertSequenceEqual(input_pairs_p[key], input_pairs_r[key])

                # Ensure truncation match
                input_p = tokenizer_p.encode_plus(self._data, max_length=512, truncation=True)
                input_r = tokenizer_r.encode_plus(self._data, max_length=512, truncation=True)

                for key in filter(lambda x: x in ["input_ids", "token_type_ids", "attention_mask"], input_p.keys()):
                    self.assertSequenceEqual(input_p[key], input_r[key])

                # Ensure truncation with stride match
                input_p = tokenizer_p.encode_plus(
                    self._data, max_length=512, truncation=True, stride=3, return_overflowing_tokens=True
                )
                input_r = tokenizer_r.encode_plus(
                    self._data, max_length=512, truncation=True, stride=3, return_overflowing_tokens=True
                )

                for key in filter(lambda x: x in ["input_ids", "token_type_ids", "attention_mask"], input_p.keys()):
                    self.assertSequenceEqual(input_p[key], input_r[key][0])

    def test_num_special_tokens_to_add_equal(self):
2401
2402
2403
2404
        if not self.test_slow_tokenizer:
            # as we don't have a slow version, we can't compare the outputs between slow and fast versions
            return

2405
        for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
2406
            with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
                tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
                tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs)

                # Check we have the same number of added_tokens for both pair and non-pair inputs.
                self.assertEqual(
                    tokenizer_r.num_special_tokens_to_add(False), tokenizer_p.num_special_tokens_to_add(False)
                )
                self.assertEqual(
                    tokenizer_r.num_special_tokens_to_add(True), tokenizer_p.num_special_tokens_to_add(True)
                )

    def test_max_length_equal(self):
2419
2420
2421
2422
        if not self.test_slow_tokenizer:
            # as we don't have a slow version, we can't compare the outputs between slow and fast versions
            return

2423
        for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
2424
            with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
2425
2426
2427
2428
2429
2430
2431
2432
                tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
                tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs)

                # Check we have the correct max_length for both pair and non-pair inputs.
                self.assertEqual(tokenizer_r.max_len_single_sentence, tokenizer_p.max_len_single_sentence)
                self.assertEqual(tokenizer_r.max_len_sentences_pair, tokenizer_p.max_len_sentences_pair)

    def test_special_tokens_map_equal(self):
2433
2434
2435
2436
        if not self.test_slow_tokenizer:
            # as we don't have a slow version, we can't compare the outputs between slow and fast versions
            return

2437
        for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
2438
            with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
                tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
                tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs)

                # Assert the set of special tokens match.
                self.assertSequenceEqual(
                    tokenizer_p.special_tokens_map.items(),
                    tokenizer_r.special_tokens_map.items(),
                )

    def test_add_tokens(self):
        for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
2450
            with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
                tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)

                vocab_size = len(tokenizer_r)
                self.assertEqual(tokenizer_r.add_tokens(""), 0)
                self.assertEqual(tokenizer_r.add_tokens("testoken"), 1)
                self.assertEqual(tokenizer_r.add_tokens(["testoken1", "testtoken2"]), 2)
                self.assertEqual(len(tokenizer_r), vocab_size + 3)

                self.assertEqual(tokenizer_r.add_special_tokens({}), 0)
                self.assertEqual(tokenizer_r.add_special_tokens({"bos_token": "[BOS]", "eos_token": "[EOS]"}), 2)
                self.assertRaises(
                    AssertionError, tokenizer_r.add_special_tokens, {"additional_special_tokens": "<testtoken1>"}
                )
                self.assertEqual(tokenizer_r.add_special_tokens({"additional_special_tokens": ["<testtoken2>"]}), 1)
                self.assertEqual(
                    tokenizer_r.add_special_tokens({"additional_special_tokens": ["<testtoken3>", "<testtoken4>"]}), 2
                )
2468
2469
2470
2471
                self.assertIn("<testtoken3>", tokenizer_r.special_tokens_map["additional_special_tokens"])
                self.assertIsInstance(tokenizer_r.special_tokens_map["additional_special_tokens"], list)
                self.assertGreaterEqual(len(tokenizer_r.special_tokens_map["additional_special_tokens"]), 2)

2472
2473
2474
2475
                self.assertEqual(len(tokenizer_r), vocab_size + 8)

    def test_offsets_mapping(self):
        for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
2476
            with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
                tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)

                text = "Wonderful no inspiration example with subtoken"
                pair = "Along with an awesome pair"

                # No pair
                tokens_with_offsets = tokenizer_r.encode_plus(
                    text, return_special_tokens_mask=True, return_offsets_mapping=True, add_special_tokens=True
                )
                added_tokens = tokenizer_r.num_special_tokens_to_add(False)
                offsets = tokens_with_offsets["offset_mapping"]

                # Assert there is the same number of tokens and offsets
                self.assertEqual(len(offsets), len(tokens_with_offsets["input_ids"]))

                # Assert there is online added_tokens special_tokens
                self.assertEqual(sum(tokens_with_offsets["special_tokens_mask"]), added_tokens)

                # Pairs
                tokens_with_offsets = tokenizer_r.encode_plus(
                    text, pair, return_special_tokens_mask=True, return_offsets_mapping=True, add_special_tokens=True
                )
                added_tokens = tokenizer_r.num_special_tokens_to_add(True)
                offsets = tokens_with_offsets["offset_mapping"]

                # Assert there is the same number of tokens and offsets
                self.assertEqual(len(offsets), len(tokens_with_offsets["input_ids"]))

                # Assert there is online added_tokens special_tokens
                self.assertEqual(sum(tokens_with_offsets["special_tokens_mask"]), added_tokens)

    def test_batch_encode_dynamic_overflowing(self):
        """
        When calling batch_encode with multiple sequence it can returns different number of
        overflowing encoding for each sequence:
        [
          Sequence 1: [Encoding 1, Encoding 2],
          Sequence 2: [Encoding 1],
          Sequence 3: [Encoding 1, Encoding 2, ... Encoding N]
        ]
        This needs to be padded so that it can represented as a tensor
        """
        for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
            tokenizer = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)

2522
            with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name}, {tokenizer.__class__.__name__})"):
2523

2524
2525
2526
2527
2528
2529
                if is_torch_available():
                    returned_tensor = "pt"
                elif is_tf_available():
                    returned_tensor = "tf"
                else:
                    returned_tensor = "jax"
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574

                if not tokenizer.pad_token or tokenizer.pad_token_id < 0:
                    return

                tokens = tokenizer.encode_plus(
                    "HuggingFace is solving NLP one commit at a time",
                    max_length=6,
                    padding=True,
                    truncation=True,
                    return_tensors=returned_tensor,
                    return_overflowing_tokens=True,
                )

                for key in filter(lambda x: "overflow_to_sample_mapping" not in x, tokens.keys()):
                    self.assertEqual(len(tokens[key].shape), 2)

                # Mono sample
                tokens = tokenizer.batch_encode_plus(
                    ["HuggingFace is solving NLP one commit at a time"],
                    max_length=6,
                    padding=True,
                    truncation="only_first",
                    return_tensors=returned_tensor,
                    return_overflowing_tokens=True,
                )

                for key in filter(lambda x: "overflow_to_sample_mapping" not in x, tokens.keys()):
                    self.assertEqual(len(tokens[key].shape), 2)
                    self.assertEqual(tokens[key].shape[-1], 6)

                # Multi sample
                tokens = tokenizer.batch_encode_plus(
                    ["HuggingFace is solving NLP one commit at a time", "Very tiny input"],
                    max_length=6,
                    padding=True,
                    truncation="only_first",
                    return_tensors=returned_tensor,
                    return_overflowing_tokens=True,
                )

                for key in filter(lambda x: "overflow_to_sample_mapping" not in x, tokens.keys()):
                    self.assertEqual(len(tokens[key].shape), 2)
                    self.assertEqual(tokens[key].shape[-1], 6)

    def test_compare_pretokenized_inputs(self):
2575
2576
2577
2578
        if not self.test_slow_tokenizer:
            # as we don't have a slow version, we can't compare the outputs between slow and fast versions
            return

2579
        for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
2580
            with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
                tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
                tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs)

                if hasattr(tokenizer_p, "add_prefix_space") and not tokenizer_p.add_prefix_space:
                    continue  # Too hard to test for now

                # Input string
                pretokenized_input_simple = "This is a sample input".split()
                pretokenized_input_pair = "This is a sample pair".split()

                # Test encode for pretokenized inputs
                output_r = tokenizer_r.encode(
                    pretokenized_input_simple, is_split_into_words=True, add_special_tokens=False
                )
                output_p = tokenizer_p.encode(
                    pretokenized_input_simple, is_split_into_words=True, add_special_tokens=False
                )
                self.assertEqual(output_p, output_r)

                kwargs = {
                    "is_split_into_words": True,
                    # "return_token_type_ids": True,  # Use the defaults for each tokenizers
                    # "return_attention_mask": True,  # Use the defaults for each tokenizers
                    "return_overflowing_tokens": False,
                    "return_special_tokens_mask": True,
                    "return_offsets_mapping": False,  # Not implemented in python tokenizers
                    # "add_special_tokens": False,
                }
                batch_kwargs = {
                    "is_split_into_words": True,
                    # "return_token_type_ids": True,  # Use the defaults for each tokenizers
                    # "return_attention_mask": True,  # Use the defaults for each tokenizers
                    "return_overflowing_tokens": False,
                    "return_special_tokens_mask": True,
                    "return_offsets_mapping": False,  # Not implemented in python tokenizers
                    # "add_special_tokens": False,
                }
                # Test encode_plus for pretokenized inputs
                output_r = tokenizer_r.encode_plus(pretokenized_input_simple, **kwargs)
                output_p = tokenizer_p.encode_plus(pretokenized_input_simple, **kwargs)
                for key in output_p.keys():
                    self.assertEqual(output_p[key], output_r[key])

                # Test batch_encode_plus for pretokenized inputs
                input_batch = ([pretokenized_input_simple] * 2) + [pretokenized_input_simple + pretokenized_input_pair]
                output_r = tokenizer_r.batch_encode_plus(input_batch, **batch_kwargs)
                output_p = tokenizer_p.batch_encode_plus(input_batch, **batch_kwargs)
                for key in output_p.keys():
                    self.assertEqual(output_p[key], output_r[key])

                # Test encode for pretokenized inputs pairs
                output_r = tokenizer_r.encode(
                    pretokenized_input_simple, pretokenized_input_pair, is_split_into_words=True
                )
                output_p = tokenizer_p.encode(
                    pretokenized_input_simple, pretokenized_input_pair, is_split_into_words=True
                )
                self.assertEqual(output_p, output_r)

                # Test encode_plus for pretokenized inputs
                output_r = tokenizer_r.encode_plus(pretokenized_input_simple, pretokenized_input_pair, **kwargs)
                output_p = tokenizer_p.encode_plus(pretokenized_input_simple, pretokenized_input_pair, **kwargs)
                for key in output_p.keys():
                    self.assertEqual(output_p[key], output_r[key])

                # Test batch_encode_plus for pretokenized inputs
                input_batch_pair = ([pretokenized_input_simple, pretokenized_input_pair] * 2) + [
                    pretokenized_input_simple + pretokenized_input_pair,
                    pretokenized_input_pair,
                ]
                output_r = tokenizer_r.batch_encode_plus(input_batch_pair, **batch_kwargs)
                output_p = tokenizer_p.batch_encode_plus(input_batch_pair, **batch_kwargs)
                for key in output_p.keys():
                    self.assertEqual(output_p[key], output_r[key])

    def test_create_token_type_ids(self):
2657
2658
2659
2660
        if not self.test_slow_tokenizer:
            # as we don't have a slow version, we can't compare the outputs between slow and fast versions
            return

2661
        for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
2662
            with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
                tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
                tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs)
                input_simple = [1, 2, 3]
                input_pair = [1, 2, 3]

                # Generate output
                output_r = tokenizer_r.create_token_type_ids_from_sequences(input_simple)
                output_p = tokenizer_p.create_token_type_ids_from_sequences(input_simple)
                self.assertEqual(output_p, output_r)

                # Generate pair output
                output_r = tokenizer_r.create_token_type_ids_from_sequences(input_simple, input_pair)
                output_p = tokenizer_p.create_token_type_ids_from_sequences(input_simple, input_pair)
                self.assertEqual(output_p, output_r)

    def test_build_inputs_with_special_tokens(self):
2679
2680
2681
2682
        if not self.test_slow_tokenizer:
            # as we don't have a slow version, we can't compare the outputs between slow and fast versions
            return

2683
        for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
2684
            with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
                tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
                tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs)
                # # Input string
                # input_simple = tokenizer_p.tokenize("This is a sample input", add_special_tokens=False)
                # input_pair = tokenizer_p.tokenize("This is a sample pair", add_special_tokens=False)

                # # Generate output
                # output_r = tokenizer_r.build_inputs_with_special_tokens(input_simple)
                # output_p = tokenizer_p.build_inputs_with_special_tokens(input_simple)
                # self.assertEqual(output_p, output_r)

                # # Generate pair output
                # output_r = tokenizer_r.build_inputs_with_special_tokens(input_simple, input_pair)
                # output_p = tokenizer_p.build_inputs_with_special_tokens(input_simple, input_pair)
                # self.assertEqual(output_p, output_r)

                # Input tokens id
                input_simple = tokenizer_p.encode("This is a sample input", add_special_tokens=False)
                input_pair = tokenizer_p.encode("This is a sample pair", add_special_tokens=False)

                # Generate output
                output_r = tokenizer_r.build_inputs_with_special_tokens(input_simple)
                output_p = tokenizer_p.build_inputs_with_special_tokens(input_simple)
                self.assertEqual(output_p, output_r)

                # Generate pair output
                output_r = tokenizer_r.build_inputs_with_special_tokens(input_simple, input_pair)
                output_p = tokenizer_p.build_inputs_with_special_tokens(input_simple, input_pair)
                self.assertEqual(output_p, output_r)

    def test_padding(self, max_length=50):
2716
2717
2718
2719
        if not self.test_slow_tokenizer:
            # as we don't have a slow version, we can't compare the outputs between slow and fast versions
            return

2720
        for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
2721
            with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
2722
2723
2724
                tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
                tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs)

2725
2726
                self.assertEqual(tokenizer_p.pad_token_id, tokenizer_r.pad_token_id)
                pad_token_id = tokenizer_p.pad_token_id
2727
2728
2729
2730

                # Encode - Simple input
                input_r = tokenizer_r.encode("This is a simple input", max_length=max_length, pad_to_max_length=True)
                input_p = tokenizer_p.encode("This is a simple input", max_length=max_length, pad_to_max_length=True)
2731
                self.assert_padded_input_match(input_r, input_p, max_length, pad_token_id)
2732
2733
                input_r = tokenizer_r.encode("This is a simple input", max_length=max_length, padding="max_length")
                input_p = tokenizer_p.encode("This is a simple input", max_length=max_length, padding="max_length")
2734
                self.assert_padded_input_match(input_r, input_p, max_length, pad_token_id)
2735
2736
2737

                input_r = tokenizer_r.encode("This is a simple input", padding="longest")
                input_p = tokenizer_p.encode("This is a simple input", padding=True)
2738
                self.assert_padded_input_match(input_r, input_p, len(input_r), pad_token_id)
2739
2740
2741
2742
2743
2744
2745
2746

                # Encode - Pair input
                input_r = tokenizer_r.encode(
                    "This is a simple input", "This is a pair", max_length=max_length, pad_to_max_length=True
                )
                input_p = tokenizer_p.encode(
                    "This is a simple input", "This is a pair", max_length=max_length, pad_to_max_length=True
                )
2747
                self.assert_padded_input_match(input_r, input_p, max_length, pad_token_id)
2748
2749
2750
2751
2752
2753
                input_r = tokenizer_r.encode(
                    "This is a simple input", "This is a pair", max_length=max_length, padding="max_length"
                )
                input_p = tokenizer_p.encode(
                    "This is a simple input", "This is a pair", max_length=max_length, padding="max_length"
                )
2754
                self.assert_padded_input_match(input_r, input_p, max_length, pad_token_id)
2755
2756
                input_r = tokenizer_r.encode("This is a simple input", "This is a pair", padding=True)
                input_p = tokenizer_p.encode("This is a simple input", "This is a pair", padding="longest")
2757
                self.assert_padded_input_match(input_r, input_p, len(input_r), pad_token_id)
2758
2759
2760
2761
2762
2763
2764
2765

                # Encode_plus - Simple input
                input_r = tokenizer_r.encode_plus(
                    "This is a simple input", max_length=max_length, pad_to_max_length=True
                )
                input_p = tokenizer_p.encode_plus(
                    "This is a simple input", max_length=max_length, pad_to_max_length=True
                )
2766
                self.assert_padded_input_match(input_r["input_ids"], input_p["input_ids"], max_length, pad_token_id)
2767
2768
2769
2770
2771
2772
2773
                self.assertSequenceEqual(input_r["attention_mask"], input_p["attention_mask"])
                input_r = tokenizer_r.encode_plus(
                    "This is a simple input", max_length=max_length, padding="max_length"
                )
                input_p = tokenizer_p.encode_plus(
                    "This is a simple input", max_length=max_length, padding="max_length"
                )
2774
                self.assert_padded_input_match(input_r["input_ids"], input_p["input_ids"], max_length, pad_token_id)
2775
2776
2777
2778
                self.assertSequenceEqual(input_r["attention_mask"], input_p["attention_mask"])

                input_r = tokenizer_r.encode_plus("This is a simple input", padding="longest")
                input_p = tokenizer_p.encode_plus("This is a simple input", padding=True)
2779
2780
2781
                self.assert_padded_input_match(
                    input_r["input_ids"], input_p["input_ids"], len(input_r["input_ids"]), pad_token_id
                )
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791

                self.assertSequenceEqual(input_r["attention_mask"], input_p["attention_mask"])

                # Encode_plus - Pair input
                input_r = tokenizer_r.encode_plus(
                    "This is a simple input", "This is a pair", max_length=max_length, pad_to_max_length=True
                )
                input_p = tokenizer_p.encode_plus(
                    "This is a simple input", "This is a pair", max_length=max_length, pad_to_max_length=True
                )
2792
                self.assert_padded_input_match(input_r["input_ids"], input_p["input_ids"], max_length, pad_token_id)
2793
2794
2795
2796
2797
2798
2799
                self.assertSequenceEqual(input_r["attention_mask"], input_p["attention_mask"])
                input_r = tokenizer_r.encode_plus(
                    "This is a simple input", "This is a pair", max_length=max_length, padding="max_length"
                )
                input_p = tokenizer_p.encode_plus(
                    "This is a simple input", "This is a pair", max_length=max_length, padding="max_length"
                )
2800
                self.assert_padded_input_match(input_r["input_ids"], input_p["input_ids"], max_length, pad_token_id)
2801
2802
2803
                self.assertSequenceEqual(input_r["attention_mask"], input_p["attention_mask"])
                input_r = tokenizer_r.encode_plus("This is a simple input", "This is a pair", padding="longest")
                input_p = tokenizer_p.encode_plus("This is a simple input", "This is a pair", padding=True)
2804
2805
2806
                self.assert_padded_input_match(
                    input_r["input_ids"], input_p["input_ids"], len(input_r["input_ids"]), pad_token_id
                )
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
                self.assertSequenceEqual(input_r["attention_mask"], input_p["attention_mask"])

                # Batch_encode_plus - Simple input
                input_r = tokenizer_r.batch_encode_plus(
                    ["This is a simple input 1", "This is a simple input 2"],
                    max_length=max_length,
                    pad_to_max_length=True,
                )
                input_p = tokenizer_p.batch_encode_plus(
                    ["This is a simple input 1", "This is a simple input 2"],
                    max_length=max_length,
                    pad_to_max_length=True,
                )
2820
                self.assert_batch_padded_input_match(input_r, input_p, max_length, pad_token_id)
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831

                input_r = tokenizer_r.batch_encode_plus(
                    ["This is a simple input 1", "This is a simple input 2"],
                    max_length=max_length,
                    padding="max_length",
                )
                input_p = tokenizer_p.batch_encode_plus(
                    ["This is a simple input 1", "This is a simple input 2"],
                    max_length=max_length,
                    padding="max_length",
                )
2832
                self.assert_batch_padded_input_match(input_r, input_p, max_length, pad_token_id)
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843

                input_r = tokenizer_r.batch_encode_plus(
                    ["This is a simple input 1", "This is a simple input 2"],
                    max_length=max_length,
                    padding="longest",
                )
                input_p = tokenizer_p.batch_encode_plus(
                    ["This is a simple input 1", "This is a simple input 2"],
                    max_length=max_length,
                    padding=True,
                )
2844
                self.assert_batch_padded_input_match(input_r, input_p, len(input_r["input_ids"][0]), pad_token_id)
2845
2846
2847
2848
2849
2850
2851

                input_r = tokenizer_r.batch_encode_plus(
                    ["This is a simple input 1", "This is a simple input 2"], padding="longest"
                )
                input_p = tokenizer_p.batch_encode_plus(
                    ["This is a simple input 1", "This is a simple input 2"], padding=True
                )
2852
                self.assert_batch_padded_input_match(input_r, input_p, len(input_r["input_ids"][0]), pad_token_id)
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872

                # Batch_encode_plus - Pair input
                input_r = tokenizer_r.batch_encode_plus(
                    [
                        ("This is a simple input 1", "This is a simple input 2"),
                        ("This is a simple pair 1", "This is a simple pair 2"),
                    ],
                    max_length=max_length,
                    truncation=True,
                    padding="max_length",
                )
                input_p = tokenizer_p.batch_encode_plus(
                    [
                        ("This is a simple input 1", "This is a simple input 2"),
                        ("This is a simple pair 1", "This is a simple pair 2"),
                    ],
                    max_length=max_length,
                    truncation=True,
                    padding="max_length",
                )
2873
                self.assert_batch_padded_input_match(input_r, input_p, max_length, pad_token_id)
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888

                input_r = tokenizer_r.batch_encode_plus(
                    [
                        ("This is a simple input 1", "This is a simple input 2"),
                        ("This is a simple pair 1", "This is a simple pair 2"),
                    ],
                    padding=True,
                )
                input_p = tokenizer_p.batch_encode_plus(
                    [
                        ("This is a simple input 1", "This is a simple input 2"),
                        ("This is a simple pair 1", "This is a simple pair 2"),
                    ],
                    padding="longest",
                )
2889
                self.assert_batch_padded_input_match(input_r, input_p, len(input_r["input_ids"][0]), pad_token_id)
2890
2891
2892
2893
2894
2895
2896
2897

                # Using pad on single examples after tokenization
                input_r = tokenizer_r.encode_plus("This is a input 1")
                input_r = tokenizer_r.pad(input_r)

                input_p = tokenizer_r.encode_plus("This is a input 1")
                input_p = tokenizer_r.pad(input_p)

2898
2899
2900
                self.assert_padded_input_match(
                    input_r["input_ids"], input_p["input_ids"], len(input_r["input_ids"]), pad_token_id
                )
2901
2902
2903
2904
2905
2906
2907
2908

                # Using pad on single examples after tokenization
                input_r = tokenizer_r.encode_plus("This is a input 1")
                input_r = tokenizer_r.pad(input_r, max_length=max_length, padding="max_length")

                input_p = tokenizer_r.encode_plus("This is a input 1")
                input_p = tokenizer_r.pad(input_p, max_length=max_length, padding="max_length")

2909
                self.assert_padded_input_match(input_r["input_ids"], input_p["input_ids"], max_length, pad_token_id)
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921

                # Using pad after tokenization
                input_r = tokenizer_r.batch_encode_plus(
                    ["This is a input 1", "This is a much longer input whilch should be padded"]
                )
                input_r = tokenizer_r.pad(input_r)

                input_p = tokenizer_r.batch_encode_plus(
                    ["This is a input 1", "This is a much longer input whilch should be padded"]
                )
                input_p = tokenizer_r.pad(input_p)

2922
                self.assert_batch_padded_input_match(input_r, input_p, len(input_r["input_ids"][0]), pad_token_id)
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934

                # Using pad after tokenization
                input_r = tokenizer_r.batch_encode_plus(
                    ["This is a input 1", "This is a much longer input whilch should be padded"]
                )
                input_r = tokenizer_r.pad(input_r, max_length=max_length, padding="max_length")

                input_p = tokenizer_r.batch_encode_plus(
                    ["This is a input 1", "This is a much longer input whilch should be padded"]
                )
                input_p = tokenizer_r.pad(input_p, max_length=max_length, padding="max_length")

2935
2936
2937
                self.assert_batch_padded_input_match(input_r, input_p, max_length, pad_token_id)

    def test_padding_different_model_input_name(self):
2938
2939
2940
2941
        if not self.test_slow_tokenizer:
            # as we don't have a slow version, we can't compare the outputs between slow and fast versions
            return

2942
        for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
2943
            with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
                tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
                tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs)
                self.assertEqual(tokenizer_p.pad_token_id, tokenizer_r.pad_token_id)
                pad_token_id = tokenizer_p.pad_token_id

                input_r = tokenizer_r.batch_encode_plus(
                    ["This is a input 1", "This is a much longer input whilch should be padded"]
                )
                input_p = tokenizer_r.batch_encode_plus(
                    ["This is a input 1", "This is a much longer input whilch should be padded"]
                )

                # rename encoded batch to "inputs"
                input_r["inputs"] = input_r[tokenizer_r.model_input_names[0]]
                del input_r[tokenizer_r.model_input_names[0]]

                input_p["inputs"] = input_p[tokenizer_p.model_input_names[0]]
                del input_p[tokenizer_p.model_input_names[0]]

                # Renaming `input_ids` to `inputs`
                tokenizer_r.model_input_names = ["inputs"] + tokenizer_r.model_input_names[1:]
                tokenizer_p.model_input_names = ["inputs"] + tokenizer_p.model_input_names[1:]

                input_r = tokenizer_r.pad(input_r, padding="longest")
                input_p = tokenizer_r.pad(input_p, padding="longest")

                max_length = len(input_p["inputs"][0])
                self.assert_batch_padded_input_match(
                    input_r, input_p, max_length, pad_token_id, model_main_input_name="inputs"
                )
2974
2975

    def test_save_pretrained(self):
2976
2977
2978
2979
        if not self.test_slow_tokenizer:
            # as we don't have a slow version, we can't compare the outputs between slow and fast versions
            return

2980
        for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
2981
            with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
2982
2983
2984
2985
2986
2987
2988
                tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
                tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs)

                tmpdirname2 = tempfile.mkdtemp()

                tokenizer_r_files = tokenizer_r.save_pretrained(tmpdirname2)
                tokenizer_p_files = tokenizer_p.save_pretrained(tmpdirname2)
Sylvain Gugger's avatar
Sylvain Gugger committed
2989
2990
2991
2992

                # Checks it save with the same files + the tokenizer.json file for the fast one
                self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files))
                tokenizer_r_files = tuple(f for f in tokenizer_r_files if "tokenizer.json" not in f)
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
                self.assertSequenceEqual(tokenizer_r_files, tokenizer_p_files)

                # Checks everything loads correctly in the same way
                tokenizer_rp = tokenizer_r.from_pretrained(tmpdirname2)
                tokenizer_pp = tokenizer_p.from_pretrained(tmpdirname2)

                # Check special tokens are set accordingly on Rust and Python
                for key in tokenizer_pp.special_tokens_map:
                    self.assertTrue(hasattr(tokenizer_rp, key))
                    # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key))
                    # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id"))

                shutil.rmtree(tmpdirname2)

Sylvain Gugger's avatar
Sylvain Gugger committed
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
                # Save tokenizer rust, legacy_format=True
                tmpdirname2 = tempfile.mkdtemp()

                tokenizer_r_files = tokenizer_r.save_pretrained(tmpdirname2, legacy_format=True)
                tokenizer_p_files = tokenizer_p.save_pretrained(tmpdirname2)

                # Checks it save with the same files
                self.assertSequenceEqual(tokenizer_r_files, tokenizer_p_files)

                # Checks everything loads correctly in the same way
                tokenizer_rp = tokenizer_r.from_pretrained(tmpdirname2)
                tokenizer_pp = tokenizer_p.from_pretrained(tmpdirname2)

                # Check special tokens are set accordingly on Rust and Python
                for key in tokenizer_pp.special_tokens_map:
                    self.assertTrue(hasattr(tokenizer_rp, key))

                shutil.rmtree(tmpdirname2)

                # Save tokenizer rust, legacy_format=False
                tmpdirname2 = tempfile.mkdtemp()

                tokenizer_r_files = tokenizer_r.save_pretrained(tmpdirname2, legacy_format=False)
                tokenizer_p_files = tokenizer_p.save_pretrained(tmpdirname2)

                # Checks it saved the tokenizer.json file
                self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files))

                # Checks everything loads correctly in the same way
                tokenizer_rp = tokenizer_r.from_pretrained(tmpdirname2)
                tokenizer_pp = tokenizer_p.from_pretrained(tmpdirname2)

                # Check special tokens are set accordingly on Rust and Python
                for key in tokenizer_pp.special_tokens_map:
                    self.assertTrue(hasattr(tokenizer_rp, key))

                shutil.rmtree(tmpdirname2)

3045
    def test_embeded_special_tokens(self):
3046
3047
3048
3049
        if not self.test_slow_tokenizer:
            # as we don't have a slow version, we can't compare the outputs between slow and fast versions
            return

3050
        for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
3051
            with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
                tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
                tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs)
                sentence = "A, <mask> AllenNLP sentence."
                tokens_r = tokenizer_r.encode_plus(
                    sentence,
                    add_special_tokens=True,
                )
                tokens_p = tokenizer_p.encode_plus(
                    sentence,
                    add_special_tokens=True,
                )

                for key in tokens_p.keys():
                    self.assertEqual(tokens_r[key], tokens_p[key])

                if "token_type_ids" in tokens_r:
                    self.assertEqual(sum(tokens_r["token_type_ids"]), sum(tokens_p["token_type_ids"]))

                tokens_r = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"])
                tokens_p = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"])
                self.assertSequenceEqual(tokens_r, tokens_p)

    def test_compare_add_special_tokens(self):
        for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
3076
            with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
                tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)

                simple_num_special_tokens_to_add = tokenizer_r.num_special_tokens_to_add(pair=False)
                # pair_num_special_tokens_to_add = tokenizer_r.num_special_tokens_to_add(pair=True)

                for text in ["", " "]:
                    # tokenize()
                    no_special_tokens = tokenizer_r.tokenize(text, add_special_tokens=False)
                    with_special_tokens = tokenizer_r.tokenize(text, add_special_tokens=True)
                    self.assertEqual(
                        len(no_special_tokens), len(with_special_tokens) - simple_num_special_tokens_to_add
                    )

                    # encode()
                    no_special_tokens = tokenizer_r.encode(text, add_special_tokens=False)
                    with_special_tokens = tokenizer_r.encode(text, add_special_tokens=True)
                    self.assertEqual(
                        len(no_special_tokens), len(with_special_tokens) - simple_num_special_tokens_to_add
                    )

                    # encode_plus()
                    no_special_tokens = tokenizer_r.encode_plus(text, add_special_tokens=False)
                    with_special_tokens = tokenizer_r.encode_plus(text, add_special_tokens=True)
                    for key in no_special_tokens.keys():
                        self.assertEqual(
                            len(no_special_tokens[key]),
                            len(with_special_tokens[key]) - simple_num_special_tokens_to_add,
                        )

                    # # batch_encode_plus
                    no_special_tokens = tokenizer_r.batch_encode_plus([text, text], add_special_tokens=False)
                    with_special_tokens = tokenizer_r.batch_encode_plus([text, text], add_special_tokens=True)
                    for key in no_special_tokens.keys():
                        for i_no, i_with in zip(no_special_tokens[key], with_special_tokens[key]):
                            self.assertEqual(len(i_no), len(i_with) - simple_num_special_tokens_to_add)

    def test_compare_prepare_for_model(self):
3114
3115
3116
3117
        if not self.test_slow_tokenizer:
            # as we don't have a slow version, we can't compare the outputs between slow and fast versions
            return

3118
        for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
3119
            with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
                tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
                tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs)
                string_sequence = "Asserting that both tokenizers are equal"
                python_output = tokenizer_p.prepare_for_model(
                    tokenizer_p.encode(string_sequence, add_special_tokens=False)
                )
                rust_output = tokenizer_r.prepare_for_model(
                    tokenizer_r.encode(string_sequence, add_special_tokens=False)
                )
                for key in python_output:
                    self.assertEqual(python_output[key], rust_output[key])
Sylvain Gugger's avatar
Sylvain Gugger committed
3131

Lysandre Debut's avatar
Lysandre Debut committed
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
    def test_special_tokens_initialization(self):
        for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
            with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):

                added_tokens = [AddedToken("<special>", lstrip=True)]

                tokenizer_r = self.rust_tokenizer_class.from_pretrained(
                    pretrained_name, additional_special_tokens=added_tokens, **kwargs
                )
                r_output = tokenizer_r.encode("Hey this is a <special> token")

                special_token_id = tokenizer_r.encode("<special>", add_special_tokens=False)[0]

                self.assertTrue(special_token_id in r_output)
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162

                if self.test_slow_tokenizer:
                    tokenizer_cr = self.rust_tokenizer_class.from_pretrained(
                        pretrained_name, additional_special_tokens=added_tokens, **kwargs, from_slow=True
                    )
                    tokenizer_p = self.tokenizer_class.from_pretrained(
                        pretrained_name, additional_special_tokens=added_tokens, **kwargs
                    )

                    p_output = tokenizer_p.encode("Hey this is a <special> token")

                    cr_output = tokenizer_cr.encode("Hey this is a <special> token")

                    self.assertEqual(p_output, r_output)
                    self.assertEqual(cr_output, r_output)
                    self.assertTrue(special_token_id in p_output)
                    self.assertTrue(special_token_id in cr_output)
Lysandre Debut's avatar
Lysandre Debut committed
3163

3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
    def test_training_new_tokenizer(self):
        # This feature only exists for fast tokenizers
        if not self.test_rust_tokenizer:
            return

        tokenizer = self.get_rust_tokenizer()
        new_tokenizer = tokenizer.train_new_from_iterator(SMALL_TRAINING_CORPUS, 100)

        # Test we can use the new tokenizer with something not seen during training
        inputs = new_tokenizer(["This is the first sentence", "This sentence is different 馃."])
        self.assertEqual(len(inputs["input_ids"]), 2)
        decoded_input = new_tokenizer.decode(inputs["input_ids"][0], skip_special_tokens=True)
        expected_result = "This is the first sentence"

3178
3179
        if tokenizer.backend_tokenizer.normalizer is not None:
            expected_result = tokenizer.backend_tokenizer.normalizer.normalize_str(expected_result)
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
        self.assertEqual(expected_result, decoded_input)

        # We check that the parameters of the tokenizer remained the same
        # Check we have the same number of added_tokens for both pair and non-pair inputs.
        self.assertEqual(tokenizer.num_special_tokens_to_add(False), new_tokenizer.num_special_tokens_to_add(False))
        self.assertEqual(tokenizer.num_special_tokens_to_add(True), new_tokenizer.num_special_tokens_to_add(True))

        # Check we have the correct max_length for both pair and non-pair inputs.
        self.assertEqual(tokenizer.max_len_single_sentence, new_tokenizer.max_len_single_sentence)
        self.assertEqual(tokenizer.max_len_sentences_pair, new_tokenizer.max_len_sentences_pair)

        # Assert the set of special tokens match as we didn't ask to change them
        self.assertSequenceEqual(
            tokenizer.all_special_tokens_extended,
            new_tokenizer.all_special_tokens_extended,
        )

        self.assertDictEqual(tokenizer.special_tokens_map, new_tokenizer.special_tokens_map)

    def test_training_new_tokenizer_with_special_tokens_change(self):
        # This feature only exists for fast tokenizers
        if not self.test_rust_tokenizer:
            return

        tokenizer = self.get_rust_tokenizer()
        # Test with a special tokens map
        class_signature = inspect.signature(tokenizer.__class__)
        if "cls_token" in class_signature.parameters:
            new_tokenizer = tokenizer.train_new_from_iterator(
                SMALL_TRAINING_CORPUS, 100, special_tokens_map={tokenizer.cls_token: "<cls>"}
            )
            cls_id = new_tokenizer.get_vocab()["<cls>"]
            self.assertEqual(new_tokenizer.cls_token, "<cls>")
            self.assertEqual(new_tokenizer.cls_token_id, cls_id)

        # Create a new mapping from the special tokens defined in the original tokenizer
        special_tokens_list = SpecialTokensMixin.SPECIAL_TOKENS_ATTRIBUTES.copy()
        special_tokens_list.remove("additional_special_tokens")
        special_tokens_map = {}
        for token in special_tokens_list:
            # Get the private one to avoid unnecessary warnings.
            if getattr(tokenizer, f"_{token}") is not None:
                special_token = getattr(tokenizer, token)
                special_tokens_map[special_token] = f"{special_token}a"

        # Train new tokenizer
        new_tokenizer = tokenizer.train_new_from_iterator(
            SMALL_TRAINING_CORPUS, 100, special_tokens_map=special_tokens_map
        )

        # Check the changes
        for token in special_tokens_list:
            # Get the private one to avoid unnecessary warnings.
            if getattr(tokenizer, f"_{token}") is None:
                continue
            special_token = getattr(tokenizer, token)
            if special_token in special_tokens_map:
                new_special_token = getattr(new_tokenizer, token)
                self.assertEqual(special_tokens_map[special_token], new_special_token)

                new_id = new_tokenizer.get_vocab()[new_special_token]
                self.assertEqual(getattr(new_tokenizer, f"{token}_id"), new_id)

        # Check if the AddedToken / string format has been kept
        for special_token in tokenizer.all_special_tokens_extended:
            if isinstance(special_token, AddedToken) and special_token.content not in special_tokens_map:
                # The special token must appear identically in the list of the new tokenizer.
                self.assertTrue(
                    special_token in new_tokenizer.all_special_tokens_extended,
                    f"'{special_token}' should be in {new_tokenizer.all_special_tokens_extended}",
                )
            elif isinstance(special_token, AddedToken):
                # The special token must appear in the list of the new tokenizer as an object of type AddedToken with
                # the same parameters as the old AddedToken except the content that the user has requested to change.
                special_token_str = special_token.content
                new_special_token_str = special_tokens_map[special_token_str]

                find = False
                for candidate in new_tokenizer.all_special_tokens_extended:
                    if (
                        isinstance(candidate, AddedToken)
                        and candidate.content == new_special_token_str
                        and candidate.lstrip == special_token.lstrip
                        and candidate.rstrip == special_token.rstrip
                        and candidate.normalized == special_token.normalized
                        and candidate.single_word == special_token.single_word
                    ):
                        find = True
                        break
                self.assertTrue(
                    find,
                    (
                        f"'{new_special_token_str}' doesn't appear in the list "
                        f"'{new_tokenizer.all_special_tokens_extended}' as an AddedToken with the same parameters as "
                        f"'{special_token}' in the list {tokenizer.all_special_tokens_extended}"
                    ),
                )
            elif special_token not in special_tokens_map:
                # The special token must appear identically in the list of the new tokenizer.
                self.assertTrue(
                    special_token in new_tokenizer.all_special_tokens_extended,
                    f"'{special_token}' should be in {new_tokenizer.all_special_tokens_extended}",
                )

            else:
                # The special token must appear in the list of the new tokenizer as an object of type string.
                self.assertTrue(special_tokens_map[special_token] in new_tokenizer.all_special_tokens_extended)

        # Test we can use the new tokenizer with something not seen during training
        inputs = new_tokenizer(["This is the first sentence", "This sentence is different 馃."])
        self.assertEqual(len(inputs["input_ids"]), 2)
        decoded_input = new_tokenizer.decode(inputs["input_ids"][0], skip_special_tokens=True)
        expected_result = "This is the first sentence"

3294
3295
        if tokenizer.backend_tokenizer.normalizer is not None:
            expected_result = tokenizer.backend_tokenizer.normalizer.normalize_str(expected_result)
3296
3297
        self.assertEqual(expected_result, decoded_input)

3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
    def test_tokenizer_mismatch_warning(self):
        for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
            with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
                with self.assertLogs("transformers", level="WARNING") as cm:
                    try:
                        if self.tokenizer_class == BertTokenizer:
                            AlbertTokenizer.from_pretrained(pretrained_name)
                        else:
                            BertTokenizer.from_pretrained(pretrained_name)
                    except (TypeError, AttributeError):
                        # Some tokenizers cannot be loaded into the target tokenizer at all and errors are returned,
                        # here we just check that the warning has been logged before the error is raised
                        pass
                    finally:
                        self.assertTrue(
                            cm.records[0].message.startswith(
                                "The tokenizer class you load from this checkpoint is not the same type as the class this function is called from."
                            )
                        )
                    try:
                        if self.rust_tokenizer_class == BertTokenizerFast:
                            AlbertTokenizerFast.from_pretrained(pretrained_name)
                        else:
                            BertTokenizerFast.from_pretrained(pretrained_name)
                    except (TypeError, AttributeError):
                        # Some tokenizers cannot be loaded into the target tokenizer at all and errors are returned,
                        # here we just check that the warning has been logged before the error is raised
                        pass
                    finally:
                        self.assertTrue(
                            cm.records[0].message.startswith(
                                "The tokenizer class you load from this checkpoint is not the same type as the class this function is called from."
                            )
                        )

Sylvain Gugger's avatar
Sylvain Gugger committed
3333
3334

@is_staging_test
3335
class TokenizerPushToHubTester(unittest.TestCase):
Sylvain Gugger's avatar
Sylvain Gugger committed
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
    vocab_tokens = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"]

    @classmethod
    def setUpClass(cls):
        cls._api = HfApi(endpoint=ENDPOINT_STAGING)
        cls._token = cls._api.login(username=USER, password=PASS)

    @classmethod
    def tearDownClass(cls):
        try:
3346
            cls._api.delete_repo(token=cls._token, name="test-tokenizer")
Sylvain Gugger's avatar
Sylvain Gugger committed
3347
3348
3349
3350
        except HTTPError:
            pass

        try:
3351
            cls._api.delete_repo(token=cls._token, name="test-tokenizer-org", organization="valid_org")
Sylvain Gugger's avatar
Sylvain Gugger committed
3352
3353
3354
3355
3356
3357
3358
3359
3360
        except HTTPError:
            pass

    def test_push_to_hub(self):
        with tempfile.TemporaryDirectory() as tmp_dir:
            vocab_file = os.path.join(tmp_dir, "vocab.txt")
            with open(vocab_file, "w", encoding="utf-8") as vocab_writer:
                vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens]))
            tokenizer = BertTokenizer(vocab_file)
3361
            tokenizer.save_pretrained(
3362
                os.path.join(tmp_dir, "test-tokenizer"), push_to_hub=True, use_auth_token=self._token
3363
            )
Sylvain Gugger's avatar
Sylvain Gugger committed
3364

3365
            new_tokenizer = BertTokenizer.from_pretrained(f"{USER}/test-tokenizer")
Sylvain Gugger's avatar
Sylvain Gugger committed
3366
3367
3368
3369
3370
3371
3372
3373
3374
            self.assertDictEqual(new_tokenizer.vocab, tokenizer.vocab)

    def test_push_to_hub_in_organization(self):
        with tempfile.TemporaryDirectory() as tmp_dir:
            vocab_file = os.path.join(tmp_dir, "vocab.txt")
            with open(vocab_file, "w", encoding="utf-8") as vocab_writer:
                vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens]))
            tokenizer = BertTokenizer(vocab_file)
            tokenizer.save_pretrained(
3375
                os.path.join(tmp_dir, "test-tokenizer-org"),
Sylvain Gugger's avatar
Sylvain Gugger committed
3376
3377
3378
3379
3380
                push_to_hub=True,
                use_auth_token=self._token,
                organization="valid_org",
            )

3381
            new_tokenizer = BertTokenizer.from_pretrained("valid_org/test-tokenizer-org")
Sylvain Gugger's avatar
Sylvain Gugger committed
3382
            self.assertDictEqual(new_tokenizer.vocab, tokenizer.vocab)