run_pplm.py 27.6 KB
Newer Older
Piero Molino's avatar
Piero Molino committed
1
#! /usr/bin/env python3
Julien Chaumond's avatar
Julien Chaumond committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
# coding=utf-8
# Copyright 2018 The Uber AI Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# TODO: add code for training a custom discriminator

"""
Example command with bag of words:
python examples/run_pplm.py -B space --cond_text "The president" --length 100 --gamma 1.5 --num_iterations 3 --num_samples 10 --stepsize 0.01 --window_length 5 --kl_scale 0.01 --gm_scale 0.95

Example command with discriminator:
python examples/run_pplm.py -D sentiment --label_class 3 --cond_text "The lake" --length 10 --gamma 1.0 --num_iterations 30 --num_samples 10 --stepsize 0.01 --kl_scale 0.01 --gm_scale 0.95
"""

import argparse
from operator import add
from typing import List, Optional, Tuple, Union

import numpy as np
import torch
import torch.nn.functional as F
from torch.autograd import Variable
from tqdm import trange

37
from examples.run_pplm_discrim_train import ClassificationHead
Julien Chaumond's avatar
Julien Chaumond committed
38
39
40
41
42
43
44
45
from transformers import GPT2Tokenizer
from transformers.file_utils import cached_path
from transformers.modeling_gpt2 import GPT2LMHeadModel

PPLM_BOW = 1
PPLM_DISCRIM = 2
PPLM_BOW_DISCRIM = 3
SMALL_CONST = 1e-15
Piero Molino's avatar
Piero Molino committed
46
SmallConst = 1e-15
Julien Chaumond's avatar
Julien Chaumond committed
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
TOKENIZER = GPT2Tokenizer.from_pretrained("gpt2-medium")

BAG_OF_WORDS_ARCHIVE_MAP = {
    'kitchen': "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/bow/kitchen.txt",
    'legal': "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/bow/legal.txt",
    'military': "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/bow/military.txt",
    'monsters': "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/bow/monsters.txt",
    'politics': "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/bow/politics.txt",
    'positive_words': "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/bow/positive_words.txt",
    'religion': "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/bow/religion.txt",
    'science': "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/bow/science.txt",
    'space': "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/bow/space.txt",
    'technology': "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/bow/technology.txt",
}

DISCRIMINATOR_MODELS_PARAMS = {
    "clickbait": {
        "url": "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/discriminators/clickbait_classifierhead.pt",
        "class_size": 2,
        "embed_size": 1024,
        "class_vocab": {"non_clickbait": 0, "clickbait": 1},
        "default_class": 1,
    },
    "sentiment": {
Piero Molino's avatar
Piero Molino committed
71
        "url": "http://s.yosinski.com/SST_classifier_head.pt",
Julien Chaumond's avatar
Julien Chaumond committed
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
        "class_size": 5,
        "embed_size": 1024,
        "class_vocab": {"very_positive": 2, "very_negative": 3},
        "default_class": 3,
    },
    "toxicity": {
        "url": "https://s3.amazonaws.com/models.huggingface.co/bert/pplm/discriminators/toxicity_classifierhead.pt",
        "class_size": 2,
        "embed_size": 1024,
        "class_vocab": {"non_toxic": 0, "toxic": 1},
        "default_class": 0,
    },
}


Piero Molino's avatar
Piero Molino committed
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
def to_var(x, requires_grad=False, volatile=False):
    if torch.cuda.is_available():
        x = x.cuda()
    return Variable(x, requires_grad=requires_grad, volatile=volatile)


def top_k_filter(logits, k, probs=False):
    """
    Masks everything but the k top entries as -infinity (1e10).
    Used to mask logits such that e^-infinity -> 0 won't contribute to the
    sum of the denominator.
    """
    if k == 0:
        return logits
    else:
        values = torch.topk(logits, k)[0]
        batch_mins = values[:, -1].view(-1, 1).expand_as(logits)
        if probs:
            return torch.where(logits < batch_mins,
                               torch.ones_like(logits) * 0.0, logits)
        return torch.where(logits < batch_mins, torch.ones_like(logits) * -1e10,
                           logits)


111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
def perturb_past(
        past,
        model,
        prev,
        unpert_past=None,
        unpert_logits=None,
        accumulated_hidden=None,
        grad_norms=None,
        stepsize=0.01,
        classifier=None,
        label_class=None,
        one_hot_bows_vectors=None,
        loss_type=0,
        num_iterations=3,
        kl_scale=0.01,
        window_length=0,
        horizon_length=1,
        decay=False,
        gamma=1.5,
):
131
    # def perturb_past(past, model, prev, classifier, good_index=None,
132
133
134
135
136
137
138
139
140
141
142
143
    #             stepsize=0.01, vocab_size=50257,
    #             original_probs=None, accumulated_hidden=None, true_past=None,
    #             grad_norms=None):

    # one_hot_bows_vectors = []
    # for good_list in good_index:
    #     good_list = list(filter(lambda x: len(x) <= 1, good_list))
    #     good_list = torch.tensor(good_list).cuda()
    #     num_good = good_list.shape[0]
    #     one_hot_good = torch.zeros(num_good, vocab_size).cuda()
    #     one_hot_good.scatter_(1, good_list, 1)
    #     one_hot_bows_vectors.append(one_hot_good)
Piero Molino's avatar
Piero Molino committed
144
145
146
147
148

    # Generate inital perturbed past
    past_perturb_orig = [
        (np.random.uniform(0.0, 0.0, p.shape).astype('float32'))
        for p in past]
Julien Chaumond's avatar
Julien Chaumond committed
149
150
151
152

    if accumulated_hidden is None:
        accumulated_hidden = 0

153
    if decay:
Piero Molino's avatar
Piero Molino committed
154
155
        decay_mask = torch.arange(0., 1.0 + SmallConst, 1.0 / (window_length))[
                     1:]
Julien Chaumond's avatar
Julien Chaumond committed
156
157
158
    else:
        decay_mask = 1.0

Piero Molino's avatar
Piero Molino committed
159
160
161
162
163
164
165
166
167
168
169
    # Generate a mask is gradient perturbated is based on a past window
    _, _, _, current_length, _ = past[0].shape

    if current_length > window_length and window_length > 0:
        ones_key_val_shape = tuple(past[0].shape[:-2]) + tuple(
            [window_length]) + tuple(
            past[0].shape[-1:])

        zeros_key_val_shape = tuple(past[0].shape[:-2]) + tuple(
            [current_length - window_length]) + tuple(
            past[0].shape[-1:])
Julien Chaumond's avatar
Julien Chaumond committed
170
171
172
173
174

        ones_mask = torch.ones(ones_key_val_shape)
        ones_mask = decay_mask * ones_mask.permute(0, 1, 2, 4, 3)
        ones_mask = ones_mask.permute(0, 1, 2, 4, 3)

Piero Molino's avatar
Piero Molino committed
175
176
        window_mask = torch.cat((ones_mask, torch.zeros(zeros_key_val_shape)),
                                dim=-2).cuda()
Julien Chaumond's avatar
Julien Chaumond committed
177
178
179
180
    else:
        window_mask = torch.ones_like(past[0]).cuda()

    loss_per_iter = []
181
    for i in range(num_iterations):
Julien Chaumond's avatar
Julien Chaumond committed
182
        print("Iteration ", i + 1)
Piero Molino's avatar
Piero Molino committed
183
184
        past_perturb = [torch.from_numpy(p_) for p_ in past_perturb_orig]
        past_perturb = [to_var(p_, requires_grad=True) for p_ in past_perturb]
Julien Chaumond's avatar
Julien Chaumond committed
185

Piero Molino's avatar
Piero Molino committed
186
        perturbed_past = list(map(add, past, past_perturb))
Julien Chaumond's avatar
Julien Chaumond committed
187

Piero Molino's avatar
Piero Molino committed
188
        _, _, _, current_length, _ = past_perturb[0].shape
Julien Chaumond's avatar
Julien Chaumond committed
189

Piero Molino's avatar
Piero Molino committed
190
191
        # _, future_past = model(prev, past=perturbed_past)
        # hidden = model.hidden_states
Julien Chaumond's avatar
Julien Chaumond committed
192

Piero Molino's avatar
Piero Molino committed
193
194
195
196
197
198
199
200
201
202
203
        # Piero modified model call
        logits, _, all_hidden = model(prev, past=perturbed_past)
        hidden = all_hidden[-1]
        new_accumulated_hidden = accumulated_hidden + torch.sum(hidden,
                                                                dim=1).detach()

        # TODO: Check the layer-norm consistency of this with trained discriminator
        logits = logits[:, -1, :]
        probabs = F.softmax(logits, dim=-1)
        loss = 0.0
        loss_list = []
204
205
        if loss_type == 1 or loss_type == 3:
            for one_hot_good in one_hot_bows_vectors:
Piero Molino's avatar
Piero Molino committed
206
207
208
209
210
211
212
213
214
                good_logits = torch.mm(probabs, torch.t(one_hot_good))
                loss_word = good_logits
                loss_word = torch.sum(loss_word)
                loss_word = -torch.log(loss_word)
                # loss_word = torch.sum(loss_word) /torch.sum(one_hot_good)
                loss += loss_word
                loss_list.append(loss_word)
            print(" pplm_bow_loss:", loss.data.cpu().numpy())

215
        if loss_type == 2 or loss_type == 3:
Julien Chaumond's avatar
Julien Chaumond committed
216
            ce_loss = torch.nn.CrossEntropyLoss()
217
218
            new_true_past = unpert_past
            for i in range(horizon_length):
Piero Molino's avatar
Piero Molino committed
219
220
221
222
223
224
225
226
227
228
229
                future_probabs = F.softmax(logits, dim=-1)  # Get softmax
                future_probabs = torch.unsqueeze(future_probabs, dim=1)

                # _, new_true_past = model(future_probabs, past=new_true_past)
                # future_hidden = model.hidden_states  # Get expected hidden states

                # Piero modified model call
                wte = model.resize_token_embeddings()
                inputs_embeds = torch.matmul(future_probabs, wte.weight.data)
                _, new_true_past, future_hidden = model(
                    past=new_true_past,
Julien Chaumond's avatar
Julien Chaumond committed
230
231
                    inputs_embeds=inputs_embeds
                )
Piero Molino's avatar
Piero Molino committed
232
233
234
235
                future_hidden = future_hidden[-1]

                new_accumulated_hidden = new_accumulated_hidden + torch.sum(
                    future_hidden, dim=1)
Julien Chaumond's avatar
Julien Chaumond committed
236

Piero Molino's avatar
Piero Molino committed
237
            predicted_sentiment = classifier(new_accumulated_hidden / (
238
                    current_length + 1 + horizon_length))
Julien Chaumond's avatar
Julien Chaumond committed
239

240
            label = torch.tensor([label_class], device='cuda',
Piero Molino's avatar
Piero Molino committed
241
242
                                 dtype=torch.long)
            discrim_loss = ce_loss(predicted_sentiment, label)
Julien Chaumond's avatar
Julien Chaumond committed
243
            print(" pplm_discrim_loss:", discrim_loss.data.cpu().numpy())
Piero Molino's avatar
Piero Molino committed
244
245
            loss += discrim_loss
            loss_list.append(discrim_loss)
Julien Chaumond's avatar
Julien Chaumond committed
246

Piero Molino's avatar
Piero Molino committed
247
248
        kl_loss = 0.0
        if kl_scale > 0.0:
249
            p = (F.softmax(unpert_logits[:, -1, :], dim=-1))
Piero Molino's avatar
Piero Molino committed
250
251
252
253
254
            p = p + SmallConst * (p <= SmallConst).type(
                torch.FloatTensor).cuda().detach()
            correction = SmallConst * (probabs <= SmallConst).type(
                torch.FloatTensor).cuda().detach()
            corrected_probabs = probabs + correction.detach()
Rosanne Liu's avatar
Rosanne Liu committed
255
            kl_loss = kl_scale * (
Piero Molino's avatar
Piero Molino committed
256
                (corrected_probabs * (corrected_probabs / p).log()).sum())
Julien Chaumond's avatar
Julien Chaumond committed
257
            print(' kl_loss', (kl_loss).data.cpu().numpy())
Piero Molino's avatar
Piero Molino committed
258
            loss += kl_loss  # + discrim_loss
Julien Chaumond's avatar
Julien Chaumond committed
259
260

        loss_per_iter.append(loss.data.cpu().numpy())
Piero Molino's avatar
Piero Molino committed
261

Julien Chaumond's avatar
Julien Chaumond committed
262
263
        print(' pplm_loss', (loss - kl_loss).data.cpu().numpy())

Rosanne Liu's avatar
Rosanne Liu committed
264
        loss.backward()
265
        if grad_norms is not None and loss_type == 1:
Julien Chaumond's avatar
Julien Chaumond committed
266
267
            grad_norms = [
                torch.max(grad_norms[index], torch.norm(p_.grad * window_mask))
Piero Molino's avatar
Piero Molino committed
268
269
                for index, p_ in
                enumerate(past_perturb)]
Julien Chaumond's avatar
Julien Chaumond committed
270
        else:
Piero Molino's avatar
Piero Molino committed
271
272
            grad_norms = [(torch.norm(p_.grad * window_mask) + SmallConst) for
                          index, p_ in enumerate(past_perturb)]
Julien Chaumond's avatar
Julien Chaumond committed
273
274

        grad = [
Piero Molino's avatar
Piero Molino committed
275
            -stepsize * (p_.grad * window_mask / grad_norms[
276
                index] ** gamma).data.cpu().numpy()
Piero Molino's avatar
Piero Molino committed
277
278
            for index, p_ in enumerate(past_perturb)]
        past_perturb_orig = list(map(add, grad, past_perturb_orig))
Julien Chaumond's avatar
Julien Chaumond committed
279

Piero Molino's avatar
Piero Molino committed
280
        for p_ in past_perturb:
Julien Chaumond's avatar
Julien Chaumond committed
281
282
283
            p_.grad.data.zero_()

        new_past = []
Piero Molino's avatar
Piero Molino committed
284
285
286
        for p in past:
            new_past.append(p.detach())

Julien Chaumond's avatar
Julien Chaumond committed
287
288
        past = new_past

Piero Molino's avatar
Piero Molino committed
289
290
291
    past_perturb = [torch.from_numpy(p_) for p_ in past_perturb_orig]
    past_perturb = [to_var(p_, requires_grad=True) for p_ in past_perturb]
    perturbed_past = list(map(add, past, past_perturb))
Julien Chaumond's avatar
Julien Chaumond committed
292

Piero Molino's avatar
Piero Molino committed
293
    return perturbed_past, new_accumulated_hidden, grad_norms, loss_per_iter
Julien Chaumond's avatar
Julien Chaumond committed
294
295
296


def get_classifier(
Piero Molino's avatar
Piero Molino committed
297
298
        name: Optional[str], label_class: Union[str, int],
        device: Union[str, torch.device]
Julien Chaumond's avatar
Julien Chaumond committed
299
300
301
302
303
304
305
306
307
308
) -> Tuple[Optional[ClassificationHead], Optional[int]]:
    if name is None:
        return None, None

    params = DISCRIMINATOR_MODELS_PARAMS[name]
    classifier = ClassificationHead(
        class_size=params['class_size'],
        embed_size=params['embed_size']
    ).to(device)
    resolved_archive_file = cached_path(params["url"])
Piero Molino's avatar
Piero Molino committed
309
310
    classifier.load_state_dict(
        torch.load(resolved_archive_file, map_location=device))
Julien Chaumond's avatar
Julien Chaumond committed
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
    classifier.eval()

    if isinstance(label_class, str):
        if label_class in params["class_vocab"]:
            label_id = params["class_vocab"][label_class]
        else:
            label_id = params["default_class"]
            print("label_class {} not in class_vocab".format(label_class))
            print("available values are: {}".format(params["class_vocab"]))
            print("using default class {}".format(label_id))

    elif isinstance(label_class, int):
        if label_class in set(params["class_vocab"].values()):
            label_id = label_class
        else:
            label_id = params["default_class"]
            print("label_class {} not in class_vocab".format(label_class))
            print("available values are: {}".format(params["class_vocab"]))
            print("using default class {}".format(label_id))

    else:
        label_id = params["default_class"]

    return classifier, label_id


Piero Molino's avatar
Piero Molino committed
337
338
def get_bag_of_words_indices(bag_of_words_ids_or_paths: List[str]) -> List[
    List[List[int]]]:
Julien Chaumond's avatar
Julien Chaumond committed
339
340
341
342
343
344
345
    bow_indices = []
    for id_or_path in bag_of_words_ids_or_paths:
        if id_or_path in BAG_OF_WORDS_ARCHIVE_MAP:
            filepath = cached_path(BAG_OF_WORDS_ARCHIVE_MAP[id_or_path])
        else:
            filepath = id_or_path
        with open(filepath, "r") as f:
Piero Molino's avatar
Piero Molino committed
346
347
348
349
            words = f.read().strip().split("\n")
        bow_indices.append(
            [TOKENIZER.encode(word.strip(), add_prefix_space=True) for word in
             words])
350
351
352
353
354
355
356

    #bow_words = set()
    #for bow_list in bow_indices:
    #    bow_list = list(filter(lambda x: len(x) <= 1, bow_list))
    #    bow_words.update(
    #        (TOKENIZER.decode(word).strip(), word) for word in bow_list)

Julien Chaumond's avatar
Julien Chaumond committed
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
    return bow_indices


def build_bows_one_hot_vectors(bow_indices):
    if bow_indices is None:
        return None

    one_hot_bows_vectors = []
    for single_bow in bow_indices:
        single_bow = list(filter(lambda x: len(x) <= 1, single_bow))
        single_bow = torch.tensor(single_bow).cuda()
        num_words = single_bow.shape[0]
        one_hot_bow = torch.zeros(num_words, TOKENIZER.vocab_size).cuda()
        one_hot_bow.scatter_(1, single_bow, 1)
        one_hot_bows_vectors.append(one_hot_bow)
    return one_hot_bows_vectors


375
def full_text_generation(
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
        model,
        context=None,
        num_samples=1,
        device="cuda",
        sample=True,
        discrim=None,
        label_class=None,
        bag_of_words=None,
        length=100,
        grad_length=10000,
        stepsize=0.02,
        num_iterations=3,
        temperature=1.0,
        gm_scale=0.9,
        kl_scale=0.01,
        top_k=10,
        window_length=0,
        horizon_length=1,
        decay=False,
        gamma=1.5,
        **kwargs
):
Julien Chaumond's avatar
Julien Chaumond committed
398
    classifier, class_id = get_classifier(
399
400
        discrim,
        label_class,
Julien Chaumond's avatar
Julien Chaumond committed
401
402
403
        device
    )

404
405
406
    bow_indices = []
    if bag_of_words:
        bow_indices = get_bag_of_words_indices(bag_of_words.split(";"))
Piero Molino's avatar
Piero Molino committed
407

408
    if bag_of_words and classifier:
Julien Chaumond's avatar
Julien Chaumond committed
409
        print("Both PPLM-BoW and PPLM-Discrim are on. This is not optimized.")
410
        loss_type = PPLM_BOW_DISCRIM
Julien Chaumond's avatar
Julien Chaumond committed
411

412
413
    elif bag_of_words:
        loss_type = PPLM_BOW
Julien Chaumond's avatar
Julien Chaumond committed
414
415
416
        print("Using PPLM-BoW")

    elif classifier is not None:
417
        loss_type = PPLM_DISCRIM
Julien Chaumond's avatar
Julien Chaumond committed
418
419
420
        print("Using PPLM-Discrim")

    else:
421
        raise Exception("Specify either a bag of words or a discriminator")
Julien Chaumond's avatar
Julien Chaumond committed
422

423
    unpert_gen_tok_text, _, _ = generate_text_pplm(
424
425
426
427
428
429
        model=model,
        context=context,
        device=device,
        length=length,
        perturb=False
    )
Julien Chaumond's avatar
Julien Chaumond committed
430
431
    torch.cuda.empty_cache()

432
433
434
    pert_gen_tok_texts = []
    discrim_losses = []
    losses_in_time = []
Piero Molino's avatar
Piero Molino committed
435

436
    for i in range(num_samples):
437
        pert_gen_tok_text, discrim_loss, loss_in_time = generate_text_pplm(
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
            model=model,
            context=context,
            device=device,
            sample=sample,
            perturb=True,
            bow_indices=bow_indices,
            classifier=classifier,
            label_class=class_id,
            loss_type=loss_type,
            length=length,
            grad_length=grad_length,
            stepsize=stepsize,
            num_iterations=num_iterations,
            temperature=temperature,
            gm_scale=gm_scale,
            kl_scale=kl_scale,
            top_k=top_k,
            window_length=window_length,
            horizon_length=horizon_length,
            decay=decay,
            gamma=gamma,
        )
460
        pert_gen_tok_texts.append(pert_gen_tok_text)
Julien Chaumond's avatar
Julien Chaumond committed
461
        if classifier is not None:
462
463
            discrim_losses.append(discrim_loss.data.cpu().numpy())
        losses_in_time.append(loss_in_time)
Julien Chaumond's avatar
Julien Chaumond committed
464
465
466

    torch.cuda.empty_cache()

467
    return unpert_gen_tok_text, pert_gen_tok_texts, discrim_losses, losses_in_time
Julien Chaumond's avatar
Julien Chaumond committed
468

469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493

def generate_text_pplm(
        model,
        context=None,
        past=None,
        device="cuda",
        sample=True,
        perturb=True,
        classifier=None,
        label_class=None,
        bow_indices=None,
        loss_type=0,
        length=100,
        grad_length=10000,
        stepsize=0.02,
        num_iterations=3,
        temperature=1.0,
        gm_scale=0.9,
        kl_scale=0.01,
        top_k=10,
        window_length=0,
        horizon_length=1,
        decay=False,
        gamma=1.5,
):
Piero Molino's avatar
Piero Molino committed
494
495
    output = torch.tensor(context, device=device, dtype=torch.long).unsqueeze(
        0) if context else None
Julien Chaumond's avatar
Julien Chaumond committed
496

497
498
499
    # collect one hot vectors for bags of words
    one_hot_bows_vectors = build_bows_one_hot_vectors(bow_indices)

Julien Chaumond's avatar
Julien Chaumond committed
500
501
    grad_norms = None
    loss_in_time = []
502
    for i in trange(length, ascii=True):
Julien Chaumond's avatar
Julien Chaumond committed
503
504

        # Get past/probs for current output, except for last word
Piero Molino's avatar
Piero Molino committed
505
506
        # Note that GPT takes 2 inputs: past + current-token
        # Therefore, use everything from before current i/p token to generate relevant past
Julien Chaumond's avatar
Julien Chaumond committed
507

Piero Molino's avatar
Piero Molino committed
508
509
510
511
512
        if past is None and output is not None:
            prev = output[:, -1:]
            # _, past = model(output[:, :-1])
            # original_probs, true_past = model(output)
            # true_hidden = model.hidden_states
Julien Chaumond's avatar
Julien Chaumond committed
513

Piero Molino's avatar
Piero Molino committed
514
515
            # Piero modified model call
            _, past, _ = model(output[:, :-1])
516
            unpert_logits, unpert_past, unpert_all_hidden = model(output)
Piero Molino's avatar
Piero Molino committed
517
            true_hidden = unpert_all_hidden[-1]
Julien Chaumond's avatar
Julien Chaumond committed
518
519

        else:
Piero Molino's avatar
Piero Molino committed
520
521
            # original_probs, true_past = model(output)
            # true_hidden = model.hidden_states
Julien Chaumond's avatar
Julien Chaumond committed
522

Piero Molino's avatar
Piero Molino committed
523
            # Piero modified model call
524
            unpert_logits, unpert_past, unpert_all_hidden = model(output)
Piero Molino's avatar
Piero Molino committed
525
526
527
528
            true_hidden = unpert_all_hidden[-1]

        # Modify the past if necessary

529
530
        if i >= grad_length:
            current_stepsize = stepsize * 0
Julien Chaumond's avatar
Julien Chaumond committed
531
        else:
532
            current_stepsize = stepsize
Julien Chaumond's avatar
Julien Chaumond committed
533

534
        if not perturb or num_iterations == 0:
Piero Molino's avatar
Piero Molino committed
535
            perturbed_past = past
Julien Chaumond's avatar
Julien Chaumond committed
536
537

        else:
Piero Molino's avatar
Piero Molino committed
538
539
540
            # Piero modified model call
            # accumulated_hidden = model.hidden_states[:, :-1, :]
            accumulated_hidden = true_hidden[:, :-1, :]
Julien Chaumond's avatar
Julien Chaumond committed
541
542
            accumulated_hidden = torch.sum(accumulated_hidden, dim=1)

543
            perturbed_past, _, grad_norms, loss_per_iter = perturb_past(
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
                past,
                model,
                prev,
                unpert_past=unpert_past,
                unpert_logits=unpert_logits,
                accumulated_hidden=accumulated_hidden,
                grad_norms=grad_norms,
                stepsize=current_stepsize,
                classifier=classifier,
                label_class=label_class,
                one_hot_bows_vectors=one_hot_bows_vectors,
                loss_type=loss_type,
                num_iterations=num_iterations,
                kl_scale=kl_scale,
                window_length=window_length,
                horizon_length=horizon_length,
                decay=decay,
                gamma=gamma,
            )
Piero Molino's avatar
Piero Molino committed
563
564
565
566
567
568
569
            loss_in_time.append(loss_per_iter)

        # Piero modified model call
        logits, past, pert_all_hidden = model(prev, past=perturbed_past)
        # test_logits = F.softmax(test_logits[:, -1, :], dim=-1)
        # likelywords = torch.topk(test_logits, k=10, dim=-1)
        # print(TOKENIZER.decode(likelywords[1].tolist()[0]))
Julien Chaumond's avatar
Julien Chaumond committed
570
571

        if classifier is not None:
Piero Molino's avatar
Piero Molino committed
572
573
            ce_loss = torch.nn.CrossEntropyLoss()
            predicted_sentiment = classifier(torch.mean(true_hidden, dim=1))
574
            label = torch.tensor([label_class], device='cuda',
Piero Molino's avatar
Piero Molino committed
575
576
577
                                 dtype=torch.long)
            true_discrim_loss = ce_loss(predicted_sentiment, label)
            print("true discrim loss", true_discrim_loss.data.cpu().numpy())
Julien Chaumond's avatar
Julien Chaumond committed
578
        else:
Piero Molino's avatar
Piero Molino committed
579
580
581
582
583
            true_discrim_loss = 0

        # Piero modified model call
        # hidden = model.hidden_states  # update hidden
        # logits = model.forward_hidden(hidden)
584
        logits = logits[:, -1, :] / temperature  # + SmallConst
Piero Molino's avatar
Piero Molino committed
585
586

        # logits = top_k_filter(logits, k=args.top_k)  # + SmallConst
Julien Chaumond's avatar
Julien Chaumond committed
587

Piero Molino's avatar
Piero Molino committed
588
589
590
        log_probs = F.softmax(logits, dim=-1)

        # Fuse the modified model and original model
Julien Chaumond's avatar
Julien Chaumond committed
591
592
        if perturb:

Piero Molino's avatar
Piero Molino committed
593
            # original_probs = top_k_filter(original_probs[:, -1, :]) #+ SmallConst
594
            unpert_logits = F.softmax(unpert_logits[:, -1, :], dim=-1)
Piero Molino's avatar
Piero Molino committed
595
596
597
598
            # likelywords = torch.topk(original_probs, k=10, dim=-1)
            # print(TOKENIZER.decode(likelywords[1].tolist()[0]))

            log_probs = ((log_probs ** gm_scale) * (
599
                    unpert_logits ** (1 - gm_scale)))  # + SmallConst
Julien Chaumond's avatar
Julien Chaumond committed
600

601
            log_probs = top_k_filter(log_probs, k=top_k,
Piero Molino's avatar
Piero Molino committed
602
                                     probs=True)  # + SmallConst
Julien Chaumond's avatar
Julien Chaumond committed
603

Piero Molino's avatar
Piero Molino committed
604
605
            if torch.sum(log_probs) <= 1:
                log_probs = log_probs / torch.sum(log_probs)
Julien Chaumond's avatar
Julien Chaumond committed
606
607

        else:
608
            logits = top_k_filter(logits, k=top_k)  # + SmallConst
Piero Molino's avatar
Piero Molino committed
609
            log_probs = F.softmax(logits, dim=-1)
Julien Chaumond's avatar
Julien Chaumond committed
610
611

        if sample:
Piero Molino's avatar
Piero Molino committed
612
613
614
615
            # likelywords = torch.topk(log_probs, k=args.top_k, dim=-1)
            # print(TOKENIZER.decode(likelywords[1].tolist()[0]))
            # print(likelywords[0].tolist())
            prev = torch.multinomial(log_probs, num_samples=1)
Julien Chaumond's avatar
Julien Chaumond committed
616
        else:
Piero Molino's avatar
Piero Molino committed
617
618
619
620
621
622
            _, prev = torch.topk(log_probs, k=1, dim=-1)
        # if perturb:
        #     prev = future
        output = prev if output is None else torch.cat((output, prev),
                                                       dim=1)  # update output
        print(TOKENIZER.decode(output.tolist()[0]))
Julien Chaumond's avatar
Julien Chaumond committed
623

Piero Molino's avatar
Piero Molino committed
624
    return output, true_discrim_loss, loss_in_time
Julien Chaumond's avatar
Julien Chaumond committed
625
626
627
628


def run_model():
    parser = argparse.ArgumentParser()
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
    parser.add_argument(
        "--model_path",
        "-M",
        type=str,
        default="gpt2-medium",
        help="pretrained model name or path to local checkpoint",
    )
    parser.add_argument(
        "--bag_of_words",
        "-B",
        type=str,
        default=None,
        help="Bags of words used for PPLM-BoW. "
             "Either a BOW id (see list in code) or a filepath. "
             "Multiple BoWs separated by ;",
    )
    parser.add_argument(
        "--discrim",
        "-D",
        type=str,
        default=None,
        choices=("clickbait", "sentiment", "toxicity"),
        help="Discriminator to use for loss-type 2",
    )
    parser.add_argument(
        "--label_class",
        type=int,
        default=-1,
        help="Class label used for the discriminator",
    )
    parser.add_argument("--stepsize", type=float, default=0.02)
Julien Chaumond's avatar
Julien Chaumond committed
660
661
662
663
664
665
    parser.add_argument("--length", type=int, default=100)
    parser.add_argument("--seed", type=int, default=0)
    parser.add_argument("--temperature", type=float, default=1.0)
    parser.add_argument("--top_k", type=int, default=10)
    parser.add_argument("--gm_scale", type=float, default=0.9)
    parser.add_argument("--kl_scale", type=float, default=0.01)
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
    parser.add_argument("--no_cuda", action="store_true", help="no cuda")
    parser.add_argument(
        "--uncond", action="store_true",
        help="Generate from end-of-text as prefix"
    )
    parser.add_argument(
        "--cond_text", type=str, default="The lake",
        help="Prefix texts to condition on"
    )
    parser.add_argument("--num_iterations", type=int, default=3)
    parser.add_argument("--grad_length", type=int, default=10000)
    parser.add_argument(
        "--num_samples",
        type=int,
        default=1,
        help="Number of samples to generate from the modified latents",
    )
    parser.add_argument(
        "--horizon_length",
        type=int,
        default=1,
        help="Length of future to optimize over",
    )
    parser.add_argument(
        "--window_length",
        type=int,
        default=0,
        help="Length of past which is being optimized; "
             "0 corresponds to infinite window length",
    )
    parser.add_argument("--decay", action="store_true",
                        help="whether to decay or not")
    parser.add_argument("--gamma", type=float, default=1.5)
    parser.add_argument("--colorama", action="store_true", help="colors keywords")
Julien Chaumond's avatar
Julien Chaumond committed
700
701
702

    args = parser.parse_args()

703
    # set Random seed
Julien Chaumond's avatar
Julien Chaumond committed
704
705
706
    torch.manual_seed(args.seed)
    np.random.seed(args.seed)

707
708
    # set the device
    device = "cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu"
Julien Chaumond's avatar
Julien Chaumond committed
709

710
    # load pretrained model
Julien Chaumond's avatar
Julien Chaumond committed
711
712
713
714
715
716
717
    model = GPT2LMHeadModel.from_pretrained(
        args.model_path,
        output_hidden_states=True
    )
    model.to(device)
    model.eval()

Piero Molino's avatar
Piero Molino committed
718
    # Freeze GPT-2 weights
Julien Chaumond's avatar
Julien Chaumond committed
719
720
721
    for param in model.parameters():
        param.requires_grad = False

722
    # figure out conditioning text
Julien Chaumond's avatar
Julien Chaumond committed
723
    if args.uncond:
724
725
726
        tokenized_cond_text = TOKENIZER.encode(
            [TOKENIZER.bos_token]
        )
Julien Chaumond's avatar
Julien Chaumond committed
727
728
729
    else:
        raw_text = args.cond_text
        while not raw_text:
730
            print("Did you forget to add `--cond_text`? ")
Julien Chaumond's avatar
Julien Chaumond committed
731
            raw_text = input("Model prompt >>> ")
732
        tokenized_cond_text = TOKENIZER.encode(TOKENIZER.bos_token + raw_text)
Piero Molino's avatar
Piero Molino committed
733

734
735
736
    print("= Prefix of sentence =")
    print(TOKENIZER.decode(tokenized_cond_text))
    print()
Piero Molino's avatar
Piero Molino committed
737

738
    # generate unperturbed and perturbed texts
Piero Molino's avatar
Piero Molino committed
739

740
741
742
743
744
745
746
747
    # full_text_generation returns:
    # unpert_gen_tok_text, pert_gen_tok_texts, discrim_losses, losses_in_time
    unpert_gen_tok_text, pert_gen_tok_texts, _, _ = full_text_generation(
        model=model, context=tokenized_cond_text, device=device, **vars(args)
    )

    # untokenize unperturbed text
    unpert_gen_text = TOKENIZER.decode(unpert_gen_tok_text.tolist()[0])
Piero Molino's avatar
Piero Molino committed
748

749
750
751
752
    print("=" * 80)
    print("= Unperturbed generated text =")
    print(unpert_gen_text)
    print()
Piero Molino's avatar
Piero Molino committed
753

754
755
    generated_texts = []

756
757
758
759
760
761
762
763
    bow_word_ids = set()
    if args.bag_of_words and args.colorama:
        bow_indices = get_bag_of_words_indices(args.bag_of_words.split(";"))
        for single_bow_list in bow_indices:
            # filtering all words in the list composed of more than 1 token
            filtered = list(filter(lambda x: len(x) <= 1, single_bow_list))
            # w[0] because we are sure w has only 1 item because previous fitler
            bow_word_ids.update(w[0] for w in filtered)
764
765
766
767
768

    # iterate through the perturbed texts
    for i, pert_gen_tok_text in enumerate(pert_gen_tok_texts):
        try:
            # untokenize unperturbed text
Piero Molino's avatar
Piero Molino committed
769
770
771
            if args.colorama:
                import colorama

772
773
                pert_gen_text = ''
                for word_id in pert_gen_tok_text.tolist()[0]:
774
                    if word_id in bow_word_ids:
775
776
777
778
779
                        pert_gen_text += '{}{}{}'.format(
                            colorama.Fore.RED,
                            TOKENIZER.decode([word_id]),
                            colorama.Style.RESET_ALL
                        )
Piero Molino's avatar
Piero Molino committed
780
                    else:
781
                        pert_gen_text += TOKENIZER.decode([word_id])
Piero Molino's avatar
Piero Molino committed
782
            else:
783
                pert_gen_text = TOKENIZER.decode(pert_gen_tok_text.tolist()[0])
Julien Chaumond's avatar
Julien Chaumond committed
784

785
786
787
788
789
            print("= Perturbed generated text {} =".format(i + 1))
            print(pert_gen_text)
            print()
        except:
            pass
Julien Chaumond's avatar
Julien Chaumond committed
790

791
792
793
794
        # keep the prefix, perturbed seq, original seq for each index
        generated_texts.append(
            (tokenized_cond_text, pert_gen_tok_text, unpert_gen_tok_text)
        )
Julien Chaumond's avatar
Julien Chaumond committed
795

Piero Molino's avatar
Piero Molino committed
796
    return
Julien Chaumond's avatar
Julien Chaumond committed
797
798


Piero Molino's avatar
Piero Molino committed
799
if __name__ == '__main__':
Julien Chaumond's avatar
Julien Chaumond committed
800
    run_model()