test_modeling_marian.py 19.6 KB
Newer Older
1
# coding=utf-8
2
# Copyright 2021, The HuggingFace Inc. team. All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
15
""" Testing suite for the PyTorch Marian model. """
16
17


18
import tempfile
19
20
import unittest

21
from transformers import is_torch_available
22
from transformers.file_utils import cached_property
23
from transformers.hf_api import HfApi
24
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
25

26
27
28
from .test_configuration_common import ConfigTester
from .test_generation_utils import GenerationTesterMixin
from .test_modeling_common import ModelTesterMixin, ids_tensor
29

30
31
32

if is_torch_available():
    import torch
33

34
35
36
37
38
39
40
41
42
    from transformers import (
        AutoConfig,
        AutoModelWithLMHead,
        AutoTokenizer,
        MarianConfig,
        MarianModel,
        MarianMTModel,
        TranslationPipeline,
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
43
    from transformers.models.marian.convert_marian_to_pytorch import (
44
        ORG_NAME,
45
46
47
        convert_hf_name_to_opus_name,
        convert_opus_name_to_hf_name,
    )
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
    from transformers.models.marian.modeling_marian import MarianDecoder, MarianEncoder, shift_tokens_right


def prepare_marian_inputs_dict(
    config,
    input_ids,
    decoder_input_ids,
    attention_mask=None,
    decoder_attention_mask=None,
):
    if attention_mask is None:
        attention_mask = input_ids.ne(config.pad_token_id)
    if decoder_attention_mask is None:
        decoder_attention_mask = decoder_input_ids.ne(config.pad_token_id)
    return {
        "input_ids": input_ids,
        "decoder_input_ids": decoder_input_ids,
        "attention_mask": attention_mask,
        "decoder_attention_mask": attention_mask,
    }


@require_torch
class MarianModelTester:
    def __init__(
        self,
        parent,
        batch_size=13,
        seq_length=7,
        is_training=True,
        use_labels=False,
        vocab_size=99,
        hidden_size=16,
        num_hidden_layers=2,
        num_attention_heads=4,
        intermediate_size=4,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        max_position_embeddings=20,
        eos_token_id=2,
        pad_token_id=1,
        bos_token_id=0,
        decoder_start_token_id=3,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.is_training = is_training
        self.use_labels = use_labels
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.max_position_embeddings = max_position_embeddings
        self.eos_token_id = eos_token_id
        self.pad_token_id = pad_token_id
        self.bos_token_id = bos_token_id
        self.decoder_start_token_id = decoder_start_token_id

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size).clamp(
            3,
116
        )
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
        input_ids[:, -1] = self.eos_token_id  # Eos Token

        decoder_input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        config = MarianConfig(
            vocab_size=self.vocab_size,
            d_model=self.hidden_size,
            encoder_layers=self.num_hidden_layers,
            decoder_layers=self.num_hidden_layers,
            encoder_attention_heads=self.num_attention_heads,
            decoder_attention_heads=self.num_attention_heads,
            encoder_ffn_dim=self.intermediate_size,
            decoder_ffn_dim=self.intermediate_size,
            dropout=self.hidden_dropout_prob,
            attention_dropout=self.attention_probs_dropout_prob,
            max_position_embeddings=self.max_position_embeddings,
            eos_token_id=self.eos_token_id,
            bos_token_id=self.bos_token_id,
            pad_token_id=self.pad_token_id,
            decoder_start_token_id=self.decoder_start_token_id,
        )
        inputs_dict = prepare_marian_inputs_dict(config, input_ids, decoder_input_ids)
        return config, inputs_dict
140
141

    def prepare_config_and_inputs_for_common(self):
142
143
        config, inputs_dict = self.prepare_config_and_inputs()
        return config, inputs_dict
144

145
146
147
148
    def create_and_check_decoder_model_past_large_inputs(self, config, inputs_dict):
        model = MarianModel(config=config).get_decoder().to(torch_device).eval()
        input_ids = inputs_dict["input_ids"]
        attention_mask = inputs_dict["attention_mask"]
149

150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
        # first forward pass
        outputs = model(input_ids, attention_mask=attention_mask, use_cache=True)

        output, past_key_values = outputs.to_tuple()

        # create hypothetical multiple next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
        next_attn_mask = ids_tensor((self.batch_size, 3), 2)

        # append to next input_ids and
        next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
        next_attention_mask = torch.cat([attention_mask, next_attn_mask], dim=-1)

        output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)["last_hidden_state"]
        output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values)[
            "last_hidden_state"
        ]

        # select random slice
        random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
        output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
        output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()

        self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])

        # test that outputs are equal for slice
        self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-2))

    def check_encoder_decoder_model_standalone(self, config, inputs_dict):
        model = MarianModel(config=config).to(torch_device).eval()
        outputs = model(**inputs_dict)
181

182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
        encoder_last_hidden_state = outputs.encoder_last_hidden_state
        last_hidden_state = outputs.last_hidden_state

        with tempfile.TemporaryDirectory() as tmpdirname:
            encoder = model.get_encoder()
            encoder.save_pretrained(tmpdirname)
            encoder = MarianEncoder.from_pretrained(tmpdirname).to(torch_device)

        encoder_last_hidden_state_2 = encoder(inputs_dict["input_ids"], attention_mask=inputs_dict["attention_mask"])[
            0
        ]

        self.parent.assertTrue((encoder_last_hidden_state_2 - encoder_last_hidden_state).abs().max().item() < 1e-3)

        with tempfile.TemporaryDirectory() as tmpdirname:
            decoder = model.get_decoder()
            decoder.save_pretrained(tmpdirname)
            decoder = MarianDecoder.from_pretrained(tmpdirname).to(torch_device)

        last_hidden_state_2 = decoder(
            input_ids=inputs_dict["decoder_input_ids"],
            attention_mask=inputs_dict["decoder_attention_mask"],
            encoder_hidden_states=encoder_last_hidden_state,
            encoder_attention_mask=inputs_dict["attention_mask"],
        )[0]

        self.parent.assertTrue((last_hidden_state_2 - last_hidden_state).abs().max().item() < 1e-3)


@require_torch
class MarianModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase):
    all_model_classes = (MarianModel, MarianMTModel) if is_torch_available() else ()
    all_generative_model_classes = (MarianMTModel,) if is_torch_available() else ()
    is_encoder_decoder = True
    test_pruning = False
    test_head_masking = False
    test_missing_keys = False
219
220

    def setUp(self):
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
        self.model_tester = MarianModelTester(self)
        self.config_tester = ConfigTester(self, config_class=MarianConfig)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_save_load_strict(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs()
        for model_class in self.all_model_classes:
            model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                model2, info = model_class.from_pretrained(tmpdirname, output_loading_info=True)
            self.assertEqual(info["missing_keys"], [])

    def test_decoder_model_past_with_large_inputs(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs)

    def test_encoder_decoder_model_standalone(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs_for_common()
        self.model_tester.check_encoder_decoder_model_standalone(*config_and_inputs)

    def test_generate_fp16(self):
        config, input_dict = self.model_tester.prepare_config_and_inputs()
        input_ids = input_dict["input_ids"]
        attention_mask = input_ids.ne(1).to(torch_device)
        model = MarianMTModel(config).eval().to(torch_device)
        if torch_device == "cuda":
            model.half()
        model.generate(input_ids, attention_mask=attention_mask)
        model.generate(num_beams=4, do_sample=True, early_stopping=False, num_return_sequences=3)


def assert_tensors_close(a, b, atol=1e-12, prefix=""):
    """If tensors have different shapes, different values or a and b are not both tensors, raise a nice Assertion error."""
    if a is None and b is None:
        return True
    try:
        if torch.allclose(a, b, atol=atol):
            return True
        raise
    except Exception:
        pct_different = (torch.gt((a - b).abs(), atol)).float().mean().item()
        if a.numel() > 100:
            msg = f"tensor values are {pct_different:.1%} percent different."
        else:
            msg = f"{a} != {b}"
        if prefix:
            msg = prefix + ": " + msg
        raise AssertionError(msg)


def _long_tensor(tok_lst):
    return torch.tensor(tok_lst, dtype=torch.long, device=torch_device)
277
278


279
280
class ModelManagementTests(unittest.TestCase):
    @slow
Lysandre Debut's avatar
Lysandre Debut committed
281
    @require_torch
282
    def test_model_names(self):
283
        model_list = HfApi().model_list()
284
285
286
287
        model_ids = [x.modelId for x in model_list if x.modelId.startswith(ORG_NAME)]
        bad_model_ids = [mid for mid in model_ids if "+" in model_ids]
        self.assertListEqual([], bad_model_ids)
        self.assertGreater(len(model_ids), 500)
288
289
290


@require_torch
291
292
@require_sentencepiece
@require_tokenizers
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
class MarianIntegrationTest(unittest.TestCase):
    src = "en"
    tgt = "de"
    src_text = [
        "I am a small frog.",
        "Now I can forget the 100 words of german that I know.",
        "Tom asked his teacher for advice.",
        "That's how I would do it.",
        "Tom really admired Mary's courage.",
        "Turn around and close your eyes.",
    ]
    expected_text = [
        "Ich bin ein kleiner Frosch.",
        "Jetzt kann ich die 100 Wörter des Deutschen vergessen, die ich kenne.",
        "Tom bat seinen Lehrer um Rat.",
        "So würde ich das machen.",
        "Tom bewunderte Marias Mut wirklich.",
        "Drehen Sie sich um und schließen Sie die Augen.",
    ]
    # ^^ actual C++ output differs slightly: (1) des Deutschen removed, (2) ""-> "O", (3) tun -> machen

314
315
    @classmethod
    def setUpClass(cls) -> None:
316
        cls.model_name = f"Helsinki-NLP/opus-mt-{cls.src}-{cls.tgt}"
317
318
        return cls

319
    @cached_property
320
    def tokenizer(self):
321
322
323
324
325
326
        return AutoTokenizer.from_pretrained(self.model_name)

    @property
    def eos_token_id(self) -> int:
        return self.tokenizer.eos_token_id

327
328
    @cached_property
    def model(self):
329
330
331
332
333
334
        model: MarianMTModel = AutoModelWithLMHead.from_pretrained(self.model_name).to(torch_device)
        c = model.config
        self.assertListEqual(c.bad_words_ids, [[c.pad_token_id]])
        self.assertEqual(c.max_length, 512)
        self.assertEqual(c.decoder_start_token_id, c.pad_token_id)

335
336
337
338
339
        if torch_device == "cuda":
            return model.half()
        else:
            return model

340
341
342
343
344
    def _assert_generated_batch_equal_expected(self, **tokenizer_kwargs):
        generated_words = self.translate_src_text(**tokenizer_kwargs)
        self.assertListEqual(self.expected_text, generated_words)

    def translate_src_text(self, **tokenizer_kwargs):
345
346
347
        model_inputs = self.tokenizer.prepare_seq2seq_batch(
            src_texts=self.src_text, return_tensors="pt", **tokenizer_kwargs
        ).to(torch_device)
348
        self.assertEqual(self.model.device, model_inputs.input_ids.device)
349
        generated_ids = self.model.generate(
350
            model_inputs.input_ids, attention_mask=model_inputs.attention_mask, num_beams=2, max_length=128
351
352
353
354
355
        )
        generated_words = self.tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
        return generated_words


356
357
@require_sentencepiece
@require_tokenizers
358
class TestMarian_EN_DE_More(MarianIntegrationTest):
359
360
    @slow
    def test_forward(self):
361
        src, tgt = ["I am a small frog"], ["Ich bin ein kleiner Frosch."]
362
        expected_ids = [38, 121, 14, 697, 38848, 0]
363

364
365
366
        model_inputs: dict = self.tokenizer.prepare_seq2seq_batch(src, tgt_texts=tgt, return_tensors="pt").to(
            torch_device
        )
Sam Shleifer's avatar
Sam Shleifer committed
367

368
        self.assertListEqual(expected_ids, model_inputs.input_ids[0].tolist())
369
370
371
372

        desired_keys = {
            "input_ids",
            "attention_mask",
Sam Shleifer's avatar
Sam Shleifer committed
373
            "labels",
374
375
        }
        self.assertSetEqual(desired_keys, set(model_inputs.keys()))
376
377
378
        model_inputs["decoder_input_ids"] = shift_tokens_right(
            model_inputs.labels, self.tokenizer.pad_token_id, self.model.config.decoder_start_token_id
        )
Sam Shleifer's avatar
Sam Shleifer committed
379
380
        model_inputs["return_dict"] = True
        model_inputs["use_cache"] = False
381
        with torch.no_grad():
Sam Shleifer's avatar
Sam Shleifer committed
382
383
            outputs = self.model(**model_inputs)
        max_indices = outputs.logits.argmax(-1)
384
        self.tokenizer.batch_decode(max_indices)
385

386
387
    def test_unk_support(self):
        t = self.tokenizer
388
        ids = t.prepare_seq2seq_batch(["||"], return_tensors="pt").to(torch_device).input_ids[0].tolist()
389
390
391
        expected = [t.unk_token_id, t.unk_token_id, t.eos_token_id]
        self.assertEqual(expected, ids)

392
    def test_pad_not_split(self):
393
394
395
396
397
        input_ids_w_pad = (
            self.tokenizer.prepare_seq2seq_batch(["I am a small frog <pad>"], return_tensors="pt")
            .input_ids[0]
            .tolist()
        )
398
        expected_w_pad = [38, 121, 14, 697, 38848, self.tokenizer.pad_token_id, 0]  # pad
399
        self.assertListEqual(expected_w_pad, input_ids_w_pad)
400
401
402
403
404
405
406
407
408
409

    @slow
    def test_batch_generation_en_de(self):
        self._assert_generated_batch_equal_expected()

    def test_auto_config(self):
        config = AutoConfig.from_pretrained(self.model_name)
        self.assertIsInstance(config, MarianConfig)


410
411
@require_sentencepiece
@require_tokenizers
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
class TestMarian_EN_FR(MarianIntegrationTest):
    src = "en"
    tgt = "fr"
    src_text = [
        "I am a small frog.",
        "Now I can forget the 100 words of german that I know.",
    ]
    expected_text = [
        "Je suis une petite grenouille.",
        "Maintenant, je peux oublier les 100 mots d'allemand que je connais.",
    ]

    @slow
    def test_batch_generation_en_fr(self):
        self._assert_generated_batch_equal_expected()


429
430
@require_sentencepiece
@require_tokenizers
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
class TestMarian_FR_EN(MarianIntegrationTest):
    src = "fr"
    tgt = "en"
    src_text = [
        "Donnez moi le micro.",
        "Tom et Mary étaient assis à une table.",  # Accents
    ]
    expected_text = [
        "Give me the microphone.",
        "Tom and Mary were sitting at a table.",
    ]

    @slow
    def test_batch_generation_fr_en(self):
        self._assert_generated_batch_equal_expected()


448
449
@require_sentencepiece
@require_tokenizers
450
451
452
453
class TestMarian_RU_FR(MarianIntegrationTest):
    src = "ru"
    tgt = "fr"
    src_text = ["Он показал мне рукопись своей новой пьесы."]
454
    expected_text = ["Il m'a montré le manuscrit de sa nouvelle pièce."]
455

456
    @slow
457
458
459
460
    def test_batch_generation_ru_fr(self):
        self._assert_generated_batch_equal_expected()


461
462
@require_sentencepiece
@require_tokenizers
463
class TestMarian_MT_EN(MarianIntegrationTest):
464
465
    """Cover low resource/high perplexity setting. This breaks without adjust_logits_generation overwritten"""

466
467
    src = "mt"
    tgt = "en"
468
469
    src_text = ["Billi messu b'mod ġentili, Ġesù fejjaq raġel li kien milqut bil - marda kerha tal - ġdiem."]
    expected_text = ["Touching gently, Jesus healed a man who was affected by the sad disease of leprosy."]
470

471
    @slow
472
473
474
475
    def test_batch_generation_mt_en(self):
        self._assert_generated_batch_equal_expected()


476
477
@require_sentencepiece
@require_tokenizers
Sam Shleifer's avatar
Sam Shleifer committed
478
479
480
class TestMarian_en_zh(MarianIntegrationTest):
    src = "en"
    tgt = "zh"
481
482
483
484
485
486
487
488
    src_text = ["My name is Wolfgang and I live in Berlin"]
    expected_text = ["我叫沃尔夫冈 我住在柏林"]

    @slow
    def test_batch_generation_eng_zho(self):
        self._assert_generated_batch_equal_expected()


489
490
@require_sentencepiece
@require_tokenizers
491
492
class TestMarian_en_ROMANCE(MarianIntegrationTest):
    """Multilingual on target side."""
493

494
495
496
497
498
499
500
501
502
503
504
505
    src = "en"
    tgt = "ROMANCE"
    src_text = [
        ">>fr<< Don't spend so much time watching TV.",
        ">>pt<< Your message has been sent.",
        ">>es<< He's two years older than me.",
    ]
    expected_text = [
        "Ne passez pas autant de temps à regarder la télé.",
        "A sua mensagem foi enviada.",
        "Es dos años más viejo que yo.",
    ]
506

507
508
    @slow
    def test_batch_generation_en_ROMANCE_multi(self):
509
510
        self._assert_generated_batch_equal_expected()

511
    @slow
512
    def test_pipeline(self):
513
514
        device = 0 if torch_device == "cuda" else -1
        pipeline = TranslationPipeline(self.model, self.tokenizer, framework="pt", device=device)
515
516
517
        output = pipeline(self.src_text)
        self.assertEqual(self.expected_text, [x["translation_text"] for x in output])

518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540

@require_torch
class TestConversionUtils(unittest.TestCase):
    def test_renaming_multilingual(self):
        old_names = [
            "opus-mt-cmn+cn+yue+ze_zh+zh_cn+zh_CN+zh_HK+zh_tw+zh_TW+zh_yue+zhs+zht+zh-fi",
            "opus-mt-cmn+cn-fi",  # no group
            "opus-mt-en-de",  # standard name
            "opus-mt-en-de",  # standard name
        ]
        expected = ["opus-mt-ZH-fi", "opus-mt-cmn_cn-fi", "opus-mt-en-de", "opus-mt-en-de"]
        self.assertListEqual(expected, [convert_opus_name_to_hf_name(x) for x in old_names])

    def test_undoing_renaming(self):
        hf_names = ["opus-mt-ZH-fi", "opus-mt-cmn_cn-fi", "opus-mt-en-de", "opus-mt-en-de"]
        converted_opus_names = [convert_hf_name_to_opus_name(x) for x in hf_names]
        expected_opus_names = [
            "cmn+cn+yue+ze_zh+zh_cn+zh_CN+zh_HK+zh_tw+zh_TW+zh_yue+zhs+zht+zh-fi",
            "cmn+cn-fi",
            "en-de",  # standard name
            "en-de",
        ]
        self.assertListEqual(expected_opus_names, converted_opus_names)