test_tokenization_utils.py 11.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2018 HuggingFace Inc..
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Sylvain Gugger's avatar
Sylvain Gugger committed
15

16
import pickle
17
import unittest
18
from typing import Callable, Optional
Aymeric Augustin's avatar
Aymeric Augustin committed
19

20
21
import numpy as np

22
from transformers import BatchEncoding, BertTokenizer, BertTokenizerFast, PreTrainedTokenizer, TensorType, TokenSpan
Sylvain Gugger's avatar
Sylvain Gugger committed
23
from transformers.models.gpt2.tokenization_gpt2 import GPT2Tokenizer
24
from transformers.testing_utils import CaptureStderr, require_flax, require_tf, require_tokenizers, require_torch, slow
25

26

27
class TokenizerUtilsTest(unittest.TestCase):
28
29
30
31
32
    def check_tokenizer_from_pretrained(self, tokenizer_class):
        s3_models = list(tokenizer_class.max_model_input_sizes.keys())
        for model_name in s3_models[:1]:
            tokenizer = tokenizer_class.from_pretrained(model_name)
            self.assertIsNotNone(tokenizer)
33
            self.assertIsInstance(tokenizer, tokenizer_class)
34
35
            self.assertIsInstance(tokenizer, PreTrainedTokenizer)

36
            for special_tok in tokenizer.all_special_tokens:
Aymeric Augustin's avatar
Aymeric Augustin committed
37
                self.assertIsInstance(special_tok, str)
38
39
40
                special_tok_id = tokenizer.convert_tokens_to_ids(special_tok)
                self.assertIsInstance(special_tok_id, int)

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
    def assert_dump_and_restore(self, be_original: BatchEncoding, equal_op: Optional[Callable] = None):
        batch_encoding_str = pickle.dumps(be_original)
        self.assertIsNotNone(batch_encoding_str)

        be_restored = pickle.loads(batch_encoding_str)

        # Ensure is_fast is correctly restored
        self.assertEqual(be_restored.is_fast, be_original.is_fast)

        # Ensure encodings are potentially correctly restored
        if be_original.is_fast:
            self.assertIsNotNone(be_restored.encodings)
        else:
            self.assertIsNone(be_restored.encodings)

        # Ensure the keys are the same
        for original_v, restored_v in zip(be_original.values(), be_restored.values()):
            if equal_op:
                self.assertTrue(equal_op(restored_v, original_v))
            else:
                self.assertEqual(restored_v, original_v)

63
    @slow
64
65
    def test_pretrained_tokenizers(self):
        self.check_tokenizer_from_pretrained(GPT2Tokenizer)
66

67
    def test_tensor_type_from_str(self):
68
69
70
        self.assertEqual(TensorType("tf"), TensorType.TENSORFLOW)
        self.assertEqual(TensorType("pt"), TensorType.PYTORCH)
        self.assertEqual(TensorType("np"), TensorType.NUMPY)
71

72
    @require_tokenizers
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
    def test_batch_encoding_pickle(self):
        import numpy as np

        tokenizer_p = BertTokenizer.from_pretrained("bert-base-cased")
        tokenizer_r = BertTokenizerFast.from_pretrained("bert-base-cased")

        # Python no tensor
        with self.subTest("BatchEncoding (Python, return_tensors=None)"):
            self.assert_dump_and_restore(tokenizer_p("Small example to encode"))

        with self.subTest("BatchEncoding (Python, return_tensors=NUMPY)"):
            self.assert_dump_and_restore(
                tokenizer_p("Small example to encode", return_tensors=TensorType.NUMPY), np.array_equal
            )

        with self.subTest("BatchEncoding (Rust, return_tensors=None)"):
            self.assert_dump_and_restore(tokenizer_r("Small example to encode"))

        with self.subTest("BatchEncoding (Rust, return_tensors=NUMPY)"):
            self.assert_dump_and_restore(
                tokenizer_r("Small example to encode", return_tensors=TensorType.NUMPY), np.array_equal
            )

    @require_tf
97
    @require_tokenizers
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
    def test_batch_encoding_pickle_tf(self):
        import tensorflow as tf

        def tf_array_equals(t1, t2):
            return tf.reduce_all(tf.equal(t1, t2))

        tokenizer_p = BertTokenizer.from_pretrained("bert-base-cased")
        tokenizer_r = BertTokenizerFast.from_pretrained("bert-base-cased")

        with self.subTest("BatchEncoding (Python, return_tensors=TENSORFLOW)"):
            self.assert_dump_and_restore(
                tokenizer_p("Small example to encode", return_tensors=TensorType.TENSORFLOW), tf_array_equals
            )

        with self.subTest("BatchEncoding (Rust, return_tensors=TENSORFLOW)"):
            self.assert_dump_and_restore(
                tokenizer_r("Small example to encode", return_tensors=TensorType.TENSORFLOW), tf_array_equals
            )

    @require_torch
118
    @require_tokenizers
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
    def test_batch_encoding_pickle_pt(self):
        import torch

        tokenizer_p = BertTokenizer.from_pretrained("bert-base-cased")
        tokenizer_r = BertTokenizerFast.from_pretrained("bert-base-cased")

        with self.subTest("BatchEncoding (Python, return_tensors=PYTORCH)"):
            self.assert_dump_and_restore(
                tokenizer_p("Small example to encode", return_tensors=TensorType.PYTORCH), torch.equal
            )

        with self.subTest("BatchEncoding (Rust, return_tensors=PYTORCH)"):
            self.assert_dump_and_restore(
                tokenizer_r("Small example to encode", return_tensors=TensorType.PYTORCH), torch.equal
            )

135
    @require_tokenizers
136
137
138
139
140
141
142
143
144
    def test_batch_encoding_is_fast(self):
        tokenizer_p = BertTokenizer.from_pretrained("bert-base-cased")
        tokenizer_r = BertTokenizerFast.from_pretrained("bert-base-cased")

        with self.subTest("Python Tokenizer"):
            self.assertFalse(tokenizer_p("Small example to_encode").is_fast)

        with self.subTest("Rust Tokenizer"):
            self.assertTrue(tokenizer_r("Small example to_encode").is_fast)
145

146
147
148
149
150
151
152
153
154
    @require_tokenizers
    def test_batch_encoding_word_to_tokens(self):
        tokenizer_r = BertTokenizerFast.from_pretrained("bert-base-cased")
        encoded = tokenizer_r(["Test", "\xad", "test"], is_split_into_words=True)

        self.assertEqual(encoded.word_to_tokens(0), TokenSpan(start=1, end=2))
        self.assertEqual(encoded.word_to_tokens(1), None)
        self.assertEqual(encoded.word_to_tokens(2), TokenSpan(start=2, end=3))

155
156
157
158
159
    def test_batch_encoding_with_labels(self):
        batch = BatchEncoding({"inputs": [[1, 2, 3], [4, 5, 6]], "labels": [0, 1]})
        tensor_batch = batch.convert_to_tensors(tensor_type="np")
        self.assertEqual(tensor_batch["inputs"].shape, (2, 3))
        self.assertEqual(tensor_batch["labels"].shape, (2,))
160
161
162
163
        # test converting the converted
        with CaptureStderr() as cs:
            tensor_batch = batch.convert_to_tensors(tensor_type="np")
        self.assertFalse(len(cs.err), msg=f"should have no warning, but got {cs.err}")
164
165
166
167
168
169
170
171
172
173
174
175

        batch = BatchEncoding({"inputs": [1, 2, 3], "labels": 0})
        tensor_batch = batch.convert_to_tensors(tensor_type="np", prepend_batch_axis=True)
        self.assertEqual(tensor_batch["inputs"].shape, (1, 3))
        self.assertEqual(tensor_batch["labels"].shape, (1,))

    @require_torch
    def test_batch_encoding_with_labels_pt(self):
        batch = BatchEncoding({"inputs": [[1, 2, 3], [4, 5, 6]], "labels": [0, 1]})
        tensor_batch = batch.convert_to_tensors(tensor_type="pt")
        self.assertEqual(tensor_batch["inputs"].shape, (2, 3))
        self.assertEqual(tensor_batch["labels"].shape, (2,))
176
177
178
179
        # test converting the converted
        with CaptureStderr() as cs:
            tensor_batch = batch.convert_to_tensors(tensor_type="pt")
        self.assertFalse(len(cs.err), msg=f"should have no warning, but got {cs.err}")
180
181
182
183
184
185
186
187
188
189
190
191

        batch = BatchEncoding({"inputs": [1, 2, 3], "labels": 0})
        tensor_batch = batch.convert_to_tensors(tensor_type="pt", prepend_batch_axis=True)
        self.assertEqual(tensor_batch["inputs"].shape, (1, 3))
        self.assertEqual(tensor_batch["labels"].shape, (1,))

    @require_tf
    def test_batch_encoding_with_labels_tf(self):
        batch = BatchEncoding({"inputs": [[1, 2, 3], [4, 5, 6]], "labels": [0, 1]})
        tensor_batch = batch.convert_to_tensors(tensor_type="tf")
        self.assertEqual(tensor_batch["inputs"].shape, (2, 3))
        self.assertEqual(tensor_batch["labels"].shape, (2,))
192
193
194
195
        # test converting the converted
        with CaptureStderr() as cs:
            tensor_batch = batch.convert_to_tensors(tensor_type="tf")
        self.assertFalse(len(cs.err), msg=f"should have no warning, but got {cs.err}")
196
197
198
199
200
201

        batch = BatchEncoding({"inputs": [1, 2, 3], "labels": 0})
        tensor_batch = batch.convert_to_tensors(tensor_type="tf", prepend_batch_axis=True)
        self.assertEqual(tensor_batch["inputs"].shape, (1, 3))
        self.assertEqual(tensor_batch["labels"].shape, (1,))

202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
    @require_flax
    def test_batch_encoding_with_labels_jax(self):
        batch = BatchEncoding({"inputs": [[1, 2, 3], [4, 5, 6]], "labels": [0, 1]})
        tensor_batch = batch.convert_to_tensors(tensor_type="jax")
        self.assertEqual(tensor_batch["inputs"].shape, (2, 3))
        self.assertEqual(tensor_batch["labels"].shape, (2,))
        # test converting the converted
        with CaptureStderr() as cs:
            tensor_batch = batch.convert_to_tensors(tensor_type="jax")
        self.assertFalse(len(cs.err), msg=f"should have no warning, but got {cs.err}")

        batch = BatchEncoding({"inputs": [1, 2, 3], "labels": 0})
        tensor_batch = batch.convert_to_tensors(tensor_type="jax", prepend_batch_axis=True)
        self.assertEqual(tensor_batch["inputs"].shape, (1, 3))
        self.assertEqual(tensor_batch["labels"].shape, (1,))

218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
    def test_padding_accepts_tensors(self):
        features = [{"input_ids": np.array([0, 1, 2])}, {"input_ids": np.array([0, 1, 2, 3])}]
        tokenizer = BertTokenizer.from_pretrained("bert-base-cased")

        batch = tokenizer.pad(features, padding=True)
        self.assertTrue(isinstance(batch["input_ids"], np.ndarray))
        self.assertEqual(batch["input_ids"].tolist(), [[0, 1, 2, tokenizer.pad_token_id], [0, 1, 2, 3]])
        batch = tokenizer.pad(features, padding=True, return_tensors="np")
        self.assertTrue(isinstance(batch["input_ids"], np.ndarray))
        self.assertEqual(batch["input_ids"].tolist(), [[0, 1, 2, tokenizer.pad_token_id], [0, 1, 2, 3]])

    @require_torch
    def test_padding_accepts_tensors_pt(self):
        import torch

        features = [{"input_ids": torch.tensor([0, 1, 2])}, {"input_ids": torch.tensor([0, 1, 2, 3])}]
        tokenizer = BertTokenizer.from_pretrained("bert-base-cased")

        batch = tokenizer.pad(features, padding=True)
        self.assertTrue(isinstance(batch["input_ids"], torch.Tensor))
        self.assertEqual(batch["input_ids"].tolist(), [[0, 1, 2, tokenizer.pad_token_id], [0, 1, 2, 3]])
        batch = tokenizer.pad(features, padding=True, return_tensors="pt")
        self.assertTrue(isinstance(batch["input_ids"], torch.Tensor))
        self.assertEqual(batch["input_ids"].tolist(), [[0, 1, 2, tokenizer.pad_token_id], [0, 1, 2, 3]])

    @require_tf
    def test_padding_accepts_tensors_tf(self):
        import tensorflow as tf

        features = [{"input_ids": tf.constant([0, 1, 2])}, {"input_ids": tf.constant([0, 1, 2, 3])}]
        tokenizer = BertTokenizer.from_pretrained("bert-base-cased")

        batch = tokenizer.pad(features, padding=True)
        self.assertTrue(isinstance(batch["input_ids"], tf.Tensor))
        self.assertEqual(batch["input_ids"].numpy().tolist(), [[0, 1, 2, tokenizer.pad_token_id], [0, 1, 2, 3]])
        batch = tokenizer.pad(features, padding=True, return_tensors="tf")
        self.assertTrue(isinstance(batch["input_ids"], tf.Tensor))
        self.assertEqual(batch["input_ids"].numpy().tolist(), [[0, 1, 2, tokenizer.pad_token_id], [0, 1, 2, 3]])