test_pipelines_ner.py 15 KB
Newer Older
Sylvain Gugger's avatar
Sylvain Gugger committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
16
import unittest

17
from transformers import AutoTokenizer, pipeline
18
from transformers.pipelines import Pipeline, TokenClassificationArgumentHandler
19
from transformers.testing_utils import require_tf, require_torch, slow
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

from .test_pipelines_common import CustomInputPipelineCommonMixin


VALID_INPUTS = ["A simple string", ["list of strings"]]


class NerPipelineTests(CustomInputPipelineCommonMixin, unittest.TestCase):
    pipeline_task = "ner"
    small_models = [
        "sshleifer/tiny-dbmdz-bert-large-cased-finetuned-conll03-english"
    ]  # Default model - Models tested without the @slow decorator
    large_models = []  # Models tested with the @slow decorator

    def _test_pipeline(self, nlp: Pipeline):
35
        output_keys = {"entity", "word", "score", "start", "end"}
36
        if nlp.grouped_entities:
37
            output_keys = {"entity_group", "word", "score", "start", "end"}
38
39
40

        ungrouped_ner_inputs = [
            [
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
                {
                    "entity": "B-PER",
                    "index": 1,
                    "score": 0.9994944930076599,
                    "is_subword": False,
                    "word": "Cons",
                    "start": 0,
                    "end": 4,
                },
                {
                    "entity": "B-PER",
                    "index": 2,
                    "score": 0.8025449514389038,
                    "is_subword": True,
                    "word": "##uelo",
                    "start": 4,
                    "end": 8,
                },
                {
                    "entity": "I-PER",
                    "index": 3,
                    "score": 0.9993102550506592,
                    "is_subword": False,
                    "word": "Ara",
                    "start": 9,
                    "end": 11,
                },
                {
                    "entity": "I-PER",
                    "index": 4,
                    "score": 0.9993743896484375,
                    "is_subword": True,
                    "word": "##煤j",
                    "start": 11,
                    "end": 13,
                },
                {
                    "entity": "I-PER",
                    "index": 5,
                    "score": 0.9992871880531311,
                    "is_subword": True,
                    "word": "##o",
                    "start": 13,
                    "end": 14,
                },
                {
                    "entity": "I-PER",
                    "index": 6,
                    "score": 0.9993029236793518,
                    "is_subword": False,
                    "word": "No",
                    "start": 15,
                    "end": 17,
                },
                {
                    "entity": "I-PER",
                    "index": 7,
                    "score": 0.9981776475906372,
                    "is_subword": True,
                    "word": "##guera",
                    "start": 17,
                    "end": 22,
                },
                {
                    "entity": "B-PER",
                    "index": 15,
                    "score": 0.9998136162757874,
                    "is_subword": False,
                    "word": "Andr茅s",
                    "start": 23,
                    "end": 28,
                },
                {
                    "entity": "I-PER",
                    "index": 16,
                    "score": 0.999740719795227,
                    "is_subword": False,
                    "word": "Pas",
                    "start": 29,
                    "end": 32,
                },
                {
                    "entity": "I-PER",
                    "index": 17,
                    "score": 0.9997414350509644,
                    "is_subword": True,
                    "word": "##tran",
                    "start": 32,
                    "end": 36,
                },
                {
                    "entity": "I-PER",
                    "index": 18,
                    "score": 0.9996136426925659,
                    "is_subword": True,
                    "word": "##a",
                    "start": 36,
                    "end": 37,
                },
                {
                    "entity": "B-ORG",
                    "index": 28,
                    "score": 0.9989739060401917,
                    "is_subword": False,
                    "word": "Far",
                    "start": 39,
                    "end": 42,
                },
                {
                    "entity": "I-ORG",
                    "index": 29,
                    "score": 0.7188422083854675,
                    "is_subword": True,
                    "word": "##c",
                    "start": 42,
                    "end": 43,
                },
158
159
            ],
            [
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
                {
                    "entity": "I-PER",
                    "index": 1,
                    "score": 0.9968166351318359,
                    "is_subword": False,
                    "word": "En",
                    "start": 0,
                    "end": 2,
                },
                {
                    "entity": "I-PER",
                    "index": 2,
                    "score": 0.9957635998725891,
                    "is_subword": True,
                    "word": "##zo",
                    "start": 2,
                    "end": 4,
                },
                {
                    "entity": "I-ORG",
                    "index": 7,
                    "score": 0.9986497163772583,
                    "is_subword": False,
                    "word": "UN",
                    "start": 11,
                    "end": 13,
                },
187
188
            ],
        ]
189

190
191
        expected_grouped_ner_results = [
            [
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
                {
                    "entity_group": "PER",
                    "score": 0.999369223912557,
                    "word": "Consuelo Ara煤jo Noguera",
                    "start": 0,
                    "end": 22,
                },
                {
                    "entity_group": "PER",
                    "score": 0.9997771680355072,
                    "word": "Andr茅s Pastrana",
                    "start": 23,
                    "end": 37,
                },
                {"entity_group": "ORG", "score": 0.9989739060401917, "word": "Farc", "start": 39, "end": 43},
207
208
            ],
            [
209
210
                {"entity_group": "PER", "score": 0.9968166351318359, "word": "Enzo", "start": 0, "end": 4},
                {"entity_group": "ORG", "score": 0.9986497163772583, "word": "UN", "start": 11, "end": 13},
211
212
213
214
215
            ],
        ]

        expected_grouped_ner_results_w_subword = [
            [
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
                {"entity_group": "PER", "score": 0.9994944930076599, "word": "Cons", "start": 0, "end": 4},
                {
                    "entity_group": "PER",
                    "score": 0.9663328925768534,
                    "word": "##uelo Ara煤jo Noguera",
                    "start": 4,
                    "end": 22,
                },
                {
                    "entity_group": "PER",
                    "score": 0.9997273534536362,
                    "word": "Andr茅s Pastrana",
                    "start": 23,
                    "end": 37,
                },
                {"entity_group": "ORG", "score": 0.8589080572128296, "word": "Farc", "start": 39, "end": 43},
232
233
            ],
            [
234
235
                {"entity_group": "PER", "score": 0.9962901175022125, "word": "Enzo", "start": 0, "end": 4},
                {"entity_group": "ORG", "score": 0.9986497163772583, "word": "UN", "start": 11, "end": 13},
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
            ],
        ]

        self.assertIsNotNone(nlp)

        mono_result = nlp(VALID_INPUTS[0])
        self.assertIsInstance(mono_result, list)
        self.assertIsInstance(mono_result[0], (dict, list))

        if isinstance(mono_result[0], list):
            mono_result = mono_result[0]

        for key in output_keys:
            self.assertIn(key, mono_result[0])

        multi_result = [nlp(input) for input in VALID_INPUTS]
        self.assertIsInstance(multi_result, list)
        self.assertIsInstance(multi_result[0], (dict, list))

        if isinstance(multi_result[0], list):
            multi_result = multi_result[0]

        for result in multi_result:
            for key in output_keys:
                self.assertIn(key, result)

262
263
264
265
266
267
268
269
270
        if nlp.grouped_entities:
            if nlp.ignore_subwords:
                for ungrouped_input, grouped_result in zip(ungrouped_ner_inputs, expected_grouped_ner_results):
                    self.assertEqual(nlp.group_entities(ungrouped_input), grouped_result)
            else:
                for ungrouped_input, grouped_result in zip(
                    ungrouped_ner_inputs, expected_grouped_ner_results_w_subword
                ):
                    self.assertEqual(nlp.group_entities(ungrouped_input), grouped_result)
271
272
273
274
275

    @require_tf
    def test_tf_only(self):
        model_name = "Narsil/small"  # This model only has a TensorFlow version
        # We test that if we don't specificy framework='tf', it gets detected automatically
276
        nlp = pipeline(task="ner", model=model_name)
277
        self._test_pipeline(nlp)
278
279
280
281
282
283
284
285
286

    @require_tf
    def test_tf_defaults(self):
        for model_name in self.small_models:
            tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
            nlp = pipeline(task="ner", model=model_name, tokenizer=tokenizer, framework="tf")
        self._test_pipeline(nlp)

    @require_tf
287
    def test_tf_small_ignore_subwords_available_for_fast_tokenizers(self):
288
289
290
291
292
293
294
295
296
297
298
299
        for model_name in self.small_models:
            tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
            nlp = pipeline(
                task="ner",
                model=model_name,
                tokenizer=tokenizer,
                framework="tf",
                grouped_entities=True,
                ignore_subwords=True,
            )
            self._test_pipeline(nlp)

300
301
302
303
304
305
306
307
308
309
310
        for model_name in self.small_models:
            tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
            nlp = pipeline(
                task="ner",
                model=model_name,
                tokenizer=tokenizer,
                framework="tf",
                grouped_entities=True,
                ignore_subwords=False,
            )
            self._test_pipeline(nlp)
311
312

    @require_torch
313
    def test_pt_ignore_subwords_slow_tokenizer_raises(self):
314
        for model_name in self.small_models:
315
            tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False)
316
317

            with self.assertRaises(ValueError):
318
                pipeline(task="ner", model=model_name, tokenizer=tokenizer, ignore_subwords=True, use_fast=False)
319
320
321
322
323

    @require_torch
    def test_pt_defaults_slow_tokenizer(self):
        for model_name in self.small_models:
            tokenizer = AutoTokenizer.from_pretrained(model_name)
324
325
326
327
            nlp = pipeline(task="ner", model=model_name, tokenizer=tokenizer)
            self._test_pipeline(nlp)

    @require_torch
328
329
330
331
332
    def test_pt_defaults(self):
        for model_name in self.small_models:
            nlp = pipeline(task="ner", model=model_name)
            self._test_pipeline(nlp)

333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
    @slow
    @require_torch
    def test_simple(self):
        nlp = pipeline(task="ner", model="dslim/bert-base-NER", grouped_entities=True)
        output = nlp("Hello Sarah Jessica Parker who Jessica lives in New York")

        def simplify(output):
            for i in range(len(output)):
                output[i]["score"] = round(output[i]["score"], 3)
            return output

        output = simplify(output)

        self.assertEqual(
            output,
            [
                {
                    "entity_group": "PER",
                    "score": 0.996,
                    "word": "Sarah Jessica Parker",
                    "start": 6,
                    "end": 26,
                },
                {"entity_group": "PER", "score": 0.977, "word": "Jessica", "start": 31, "end": 38},
                {"entity_group": "LOC", "score": 0.999, "word": "New York", "start": 48, "end": 56},
            ],
        )

361
362
    @require_torch
    def test_pt_small_ignore_subwords_available_for_fast_tokenizers(self):
363
364
365
366
367
368
369
370
371
372
373
374
375
        for model_name in self.small_models:
            tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
            nlp = pipeline(
                task="ner", model=model_name, tokenizer=tokenizer, grouped_entities=True, ignore_subwords=True
            )
            self._test_pipeline(nlp)

        for model_name in self.small_models:
            tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
            nlp = pipeline(
                task="ner", model=model_name, tokenizer=tokenizer, grouped_entities=True, ignore_subwords=False
            )
            self._test_pipeline(nlp)
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418


class TokenClassificationArgumentHandlerTestCase(unittest.TestCase):
    def setUp(self):
        self.args_parser = TokenClassificationArgumentHandler()

    def test_simple(self):
        string = "This is a simple input"

        inputs, offset_mapping = self.args_parser(string)
        self.assertEqual(inputs, [string])
        self.assertEqual(offset_mapping, None)

        inputs, offset_mapping = self.args_parser(string, string)
        self.assertEqual(inputs, [string, string])
        self.assertEqual(offset_mapping, None)

        inputs, offset_mapping = self.args_parser(string, offset_mapping=[(0, 1), (1, 2)])
        self.assertEqual(inputs, [string])
        self.assertEqual(offset_mapping, [[(0, 1), (1, 2)]])

        inputs, offset_mapping = self.args_parser(string, string, offset_mapping=[[(0, 1), (1, 2)], [(0, 2), (2, 3)]])
        self.assertEqual(inputs, [string, string])
        self.assertEqual(offset_mapping, [[(0, 1), (1, 2)], [(0, 2), (2, 3)]])

    def test_errors(self):
        string = "This is a simple input"

        # 2 sentences, 1 offset_mapping
        with self.assertRaises(ValueError):
            self.args_parser(string, string, offset_mapping=[[(0, 1), (1, 2)]])

        # 2 sentences, 1 offset_mapping
        with self.assertRaises(ValueError):
            self.args_parser(string, string, offset_mapping=[(0, 1), (1, 2)])

        # 1 sentences, 2 offset_mapping
        with self.assertRaises(ValueError):
            self.args_parser(string, offset_mapping=[[(0, 1), (1, 2)], [(0, 2), (2, 3)]])

        # 0 sentences, 1 offset_mapping
        with self.assertRaises(ValueError):
            self.args_parser(offset_mapping=[[(0, 1), (1, 2)]])