test_pipelines_ner.py 14.4 KB
Newer Older
1
2
import unittest

3
from transformers import AutoTokenizer, pipeline
4
from transformers.pipelines import Pipeline, TokenClassificationArgumentHandler
5
from transformers.testing_utils import require_tf, require_torch, slow
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

from .test_pipelines_common import CustomInputPipelineCommonMixin


VALID_INPUTS = ["A simple string", ["list of strings"]]


class NerPipelineTests(CustomInputPipelineCommonMixin, unittest.TestCase):
    pipeline_task = "ner"
    small_models = [
        "sshleifer/tiny-dbmdz-bert-large-cased-finetuned-conll03-english"
    ]  # Default model - Models tested without the @slow decorator
    large_models = []  # Models tested with the @slow decorator

    def _test_pipeline(self, nlp: Pipeline):
21
        output_keys = {"entity", "word", "score", "start", "end"}
22
        if nlp.grouped_entities:
23
            output_keys = {"entity_group", "word", "score", "start", "end"}
24
25
26

        ungrouped_ner_inputs = [
            [
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
                {
                    "entity": "B-PER",
                    "index": 1,
                    "score": 0.9994944930076599,
                    "is_subword": False,
                    "word": "Cons",
                    "start": 0,
                    "end": 4,
                },
                {
                    "entity": "B-PER",
                    "index": 2,
                    "score": 0.8025449514389038,
                    "is_subword": True,
                    "word": "##uelo",
                    "start": 4,
                    "end": 8,
                },
                {
                    "entity": "I-PER",
                    "index": 3,
                    "score": 0.9993102550506592,
                    "is_subword": False,
                    "word": "Ara",
                    "start": 9,
                    "end": 11,
                },
                {
                    "entity": "I-PER",
                    "index": 4,
                    "score": 0.9993743896484375,
                    "is_subword": True,
                    "word": "##煤j",
                    "start": 11,
                    "end": 13,
                },
                {
                    "entity": "I-PER",
                    "index": 5,
                    "score": 0.9992871880531311,
                    "is_subword": True,
                    "word": "##o",
                    "start": 13,
                    "end": 14,
                },
                {
                    "entity": "I-PER",
                    "index": 6,
                    "score": 0.9993029236793518,
                    "is_subword": False,
                    "word": "No",
                    "start": 15,
                    "end": 17,
                },
                {
                    "entity": "I-PER",
                    "index": 7,
                    "score": 0.9981776475906372,
                    "is_subword": True,
                    "word": "##guera",
                    "start": 17,
                    "end": 22,
                },
                {
                    "entity": "B-PER",
                    "index": 15,
                    "score": 0.9998136162757874,
                    "is_subword": False,
                    "word": "Andr茅s",
                    "start": 23,
                    "end": 28,
                },
                {
                    "entity": "I-PER",
                    "index": 16,
                    "score": 0.999740719795227,
                    "is_subword": False,
                    "word": "Pas",
                    "start": 29,
                    "end": 32,
                },
                {
                    "entity": "I-PER",
                    "index": 17,
                    "score": 0.9997414350509644,
                    "is_subword": True,
                    "word": "##tran",
                    "start": 32,
                    "end": 36,
                },
                {
                    "entity": "I-PER",
                    "index": 18,
                    "score": 0.9996136426925659,
                    "is_subword": True,
                    "word": "##a",
                    "start": 36,
                    "end": 37,
                },
                {
                    "entity": "B-ORG",
                    "index": 28,
                    "score": 0.9989739060401917,
                    "is_subword": False,
                    "word": "Far",
                    "start": 39,
                    "end": 42,
                },
                {
                    "entity": "I-ORG",
                    "index": 29,
                    "score": 0.7188422083854675,
                    "is_subword": True,
                    "word": "##c",
                    "start": 42,
                    "end": 43,
                },
144
145
            ],
            [
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
                {
                    "entity": "I-PER",
                    "index": 1,
                    "score": 0.9968166351318359,
                    "is_subword": False,
                    "word": "En",
                    "start": 0,
                    "end": 2,
                },
                {
                    "entity": "I-PER",
                    "index": 2,
                    "score": 0.9957635998725891,
                    "is_subword": True,
                    "word": "##zo",
                    "start": 2,
                    "end": 4,
                },
                {
                    "entity": "I-ORG",
                    "index": 7,
                    "score": 0.9986497163772583,
                    "is_subword": False,
                    "word": "UN",
                    "start": 11,
                    "end": 13,
                },
173
174
            ],
        ]
175

176
177
        expected_grouped_ner_results = [
            [
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
                {
                    "entity_group": "PER",
                    "score": 0.999369223912557,
                    "word": "Consuelo Ara煤jo Noguera",
                    "start": 0,
                    "end": 22,
                },
                {
                    "entity_group": "PER",
                    "score": 0.9997771680355072,
                    "word": "Andr茅s Pastrana",
                    "start": 23,
                    "end": 37,
                },
                {"entity_group": "ORG", "score": 0.9989739060401917, "word": "Farc", "start": 39, "end": 43},
193
194
            ],
            [
195
196
                {"entity_group": "PER", "score": 0.9968166351318359, "word": "Enzo", "start": 0, "end": 4},
                {"entity_group": "ORG", "score": 0.9986497163772583, "word": "UN", "start": 11, "end": 13},
197
198
199
200
201
            ],
        ]

        expected_grouped_ner_results_w_subword = [
            [
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
                {"entity_group": "PER", "score": 0.9994944930076599, "word": "Cons", "start": 0, "end": 4},
                {
                    "entity_group": "PER",
                    "score": 0.9663328925768534,
                    "word": "##uelo Ara煤jo Noguera",
                    "start": 4,
                    "end": 22,
                },
                {
                    "entity_group": "PER",
                    "score": 0.9997273534536362,
                    "word": "Andr茅s Pastrana",
                    "start": 23,
                    "end": 37,
                },
                {"entity_group": "ORG", "score": 0.8589080572128296, "word": "Farc", "start": 39, "end": 43},
218
219
            ],
            [
220
221
                {"entity_group": "PER", "score": 0.9962901175022125, "word": "Enzo", "start": 0, "end": 4},
                {"entity_group": "ORG", "score": 0.9986497163772583, "word": "UN", "start": 11, "end": 13},
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
            ],
        ]

        self.assertIsNotNone(nlp)

        mono_result = nlp(VALID_INPUTS[0])
        self.assertIsInstance(mono_result, list)
        self.assertIsInstance(mono_result[0], (dict, list))

        if isinstance(mono_result[0], list):
            mono_result = mono_result[0]

        for key in output_keys:
            self.assertIn(key, mono_result[0])

        multi_result = [nlp(input) for input in VALID_INPUTS]
        self.assertIsInstance(multi_result, list)
        self.assertIsInstance(multi_result[0], (dict, list))

        if isinstance(multi_result[0], list):
            multi_result = multi_result[0]

        for result in multi_result:
            for key in output_keys:
                self.assertIn(key, result)

248
249
250
251
252
253
254
255
256
        if nlp.grouped_entities:
            if nlp.ignore_subwords:
                for ungrouped_input, grouped_result in zip(ungrouped_ner_inputs, expected_grouped_ner_results):
                    self.assertEqual(nlp.group_entities(ungrouped_input), grouped_result)
            else:
                for ungrouped_input, grouped_result in zip(
                    ungrouped_ner_inputs, expected_grouped_ner_results_w_subword
                ):
                    self.assertEqual(nlp.group_entities(ungrouped_input), grouped_result)
257
258
259
260
261

    @require_tf
    def test_tf_only(self):
        model_name = "Narsil/small"  # This model only has a TensorFlow version
        # We test that if we don't specificy framework='tf', it gets detected automatically
262
        nlp = pipeline(task="ner", model=model_name)
263
        self._test_pipeline(nlp)
264
265
266
267
268
269
270
271
272

    @require_tf
    def test_tf_defaults(self):
        for model_name in self.small_models:
            tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
            nlp = pipeline(task="ner", model=model_name, tokenizer=tokenizer, framework="tf")
        self._test_pipeline(nlp)

    @require_tf
273
    def test_tf_small_ignore_subwords_available_for_fast_tokenizers(self):
274
275
276
277
278
279
280
281
282
283
284
285
        for model_name in self.small_models:
            tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
            nlp = pipeline(
                task="ner",
                model=model_name,
                tokenizer=tokenizer,
                framework="tf",
                grouped_entities=True,
                ignore_subwords=True,
            )
            self._test_pipeline(nlp)

286
287
288
289
290
291
292
293
294
295
296
        for model_name in self.small_models:
            tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
            nlp = pipeline(
                task="ner",
                model=model_name,
                tokenizer=tokenizer,
                framework="tf",
                grouped_entities=True,
                ignore_subwords=False,
            )
            self._test_pipeline(nlp)
297
298

    @require_torch
299
    def test_pt_ignore_subwords_slow_tokenizer_raises(self):
300
        for model_name in self.small_models:
301
            tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False)
302
303

            with self.assertRaises(ValueError):
304
                pipeline(task="ner", model=model_name, tokenizer=tokenizer, ignore_subwords=True, use_fast=False)
305
306
307
308
309

    @require_torch
    def test_pt_defaults_slow_tokenizer(self):
        for model_name in self.small_models:
            tokenizer = AutoTokenizer.from_pretrained(model_name)
310
311
312
313
            nlp = pipeline(task="ner", model=model_name, tokenizer=tokenizer)
            self._test_pipeline(nlp)

    @require_torch
314
315
316
317
318
    def test_pt_defaults(self):
        for model_name in self.small_models:
            nlp = pipeline(task="ner", model=model_name)
            self._test_pipeline(nlp)

319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
    @slow
    @require_torch
    def test_simple(self):
        nlp = pipeline(task="ner", model="dslim/bert-base-NER", grouped_entities=True)
        output = nlp("Hello Sarah Jessica Parker who Jessica lives in New York")

        def simplify(output):
            for i in range(len(output)):
                output[i]["score"] = round(output[i]["score"], 3)
            return output

        output = simplify(output)

        self.assertEqual(
            output,
            [
                {
                    "entity_group": "PER",
                    "score": 0.996,
                    "word": "Sarah Jessica Parker",
                    "start": 6,
                    "end": 26,
                },
                {"entity_group": "PER", "score": 0.977, "word": "Jessica", "start": 31, "end": 38},
                {"entity_group": "LOC", "score": 0.999, "word": "New York", "start": 48, "end": 56},
            ],
        )

347
348
    @require_torch
    def test_pt_small_ignore_subwords_available_for_fast_tokenizers(self):
349
350
351
352
353
354
355
356
357
358
359
360
361
        for model_name in self.small_models:
            tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
            nlp = pipeline(
                task="ner", model=model_name, tokenizer=tokenizer, grouped_entities=True, ignore_subwords=True
            )
            self._test_pipeline(nlp)

        for model_name in self.small_models:
            tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
            nlp = pipeline(
                task="ner", model=model_name, tokenizer=tokenizer, grouped_entities=True, ignore_subwords=False
            )
            self._test_pipeline(nlp)
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404


class TokenClassificationArgumentHandlerTestCase(unittest.TestCase):
    def setUp(self):
        self.args_parser = TokenClassificationArgumentHandler()

    def test_simple(self):
        string = "This is a simple input"

        inputs, offset_mapping = self.args_parser(string)
        self.assertEqual(inputs, [string])
        self.assertEqual(offset_mapping, None)

        inputs, offset_mapping = self.args_parser(string, string)
        self.assertEqual(inputs, [string, string])
        self.assertEqual(offset_mapping, None)

        inputs, offset_mapping = self.args_parser(string, offset_mapping=[(0, 1), (1, 2)])
        self.assertEqual(inputs, [string])
        self.assertEqual(offset_mapping, [[(0, 1), (1, 2)]])

        inputs, offset_mapping = self.args_parser(string, string, offset_mapping=[[(0, 1), (1, 2)], [(0, 2), (2, 3)]])
        self.assertEqual(inputs, [string, string])
        self.assertEqual(offset_mapping, [[(0, 1), (1, 2)], [(0, 2), (2, 3)]])

    def test_errors(self):
        string = "This is a simple input"

        # 2 sentences, 1 offset_mapping
        with self.assertRaises(ValueError):
            self.args_parser(string, string, offset_mapping=[[(0, 1), (1, 2)]])

        # 2 sentences, 1 offset_mapping
        with self.assertRaises(ValueError):
            self.args_parser(string, string, offset_mapping=[(0, 1), (1, 2)])

        # 1 sentences, 2 offset_mapping
        with self.assertRaises(ValueError):
            self.args_parser(string, offset_mapping=[[(0, 1), (1, 2)], [(0, 2), (2, 3)]])

        # 0 sentences, 1 offset_mapping
        with self.assertRaises(ValueError):
            self.args_parser(offset_mapping=[[(0, 1), (1, 2)]])