test_pipelines_ner.py 7.9 KB
Newer Older
1
2
import unittest

3
from transformers import AutoTokenizer, pipeline
4
from transformers.pipelines import Pipeline
5
from transformers.testing_utils import require_tf, require_torch
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

from .test_pipelines_common import CustomInputPipelineCommonMixin


VALID_INPUTS = ["A simple string", ["list of strings"]]


class NerPipelineTests(CustomInputPipelineCommonMixin, unittest.TestCase):
    pipeline_task = "ner"
    small_models = [
        "sshleifer/tiny-dbmdz-bert-large-cased-finetuned-conll03-english"
    ]  # Default model - Models tested without the @slow decorator
    large_models = []  # Models tested with the @slow decorator

    def _test_pipeline(self, nlp: Pipeline):
        output_keys = {"entity", "word", "score"}
22
23
        if nlp.grouped_entities:
            output_keys = {"entity_group", "word", "score"}
24
25
26

        ungrouped_ner_inputs = [
            [
27
28
29
30
31
32
33
34
35
36
37
38
39
                {"entity": "B-PER", "index": 1, "score": 0.9994944930076599, "is_subword": False, "word": "Cons"},
                {"entity": "B-PER", "index": 2, "score": 0.8025449514389038, "is_subword": True, "word": "##uelo"},
                {"entity": "I-PER", "index": 3, "score": 0.9993102550506592, "is_subword": False, "word": "Ara"},
                {"entity": "I-PER", "index": 4, "score": 0.9993743896484375, "is_subword": True, "word": "##煤j"},
                {"entity": "I-PER", "index": 5, "score": 0.9992871880531311, "is_subword": True, "word": "##o"},
                {"entity": "I-PER", "index": 6, "score": 0.9993029236793518, "is_subword": False, "word": "No"},
                {"entity": "I-PER", "index": 7, "score": 0.9981776475906372, "is_subword": True, "word": "##guera"},
                {"entity": "B-PER", "index": 15, "score": 0.9998136162757874, "is_subword": False, "word": "Andr茅s"},
                {"entity": "I-PER", "index": 16, "score": 0.999740719795227, "is_subword": False, "word": "Pas"},
                {"entity": "I-PER", "index": 17, "score": 0.9997414350509644, "is_subword": True, "word": "##tran"},
                {"entity": "I-PER", "index": 18, "score": 0.9996136426925659, "is_subword": True, "word": "##a"},
                {"entity": "B-ORG", "index": 28, "score": 0.9989739060401917, "is_subword": False, "word": "Far"},
                {"entity": "I-ORG", "index": 29, "score": 0.7188422083854675, "is_subword": True, "word": "##c"},
40
41
            ],
            [
42
43
44
                {"entity": "I-PER", "index": 1, "score": 0.9968166351318359, "is_subword": False, "word": "En"},
                {"entity": "I-PER", "index": 2, "score": 0.9957635998725891, "is_subword": True, "word": "##zo"},
                {"entity": "I-ORG", "index": 7, "score": 0.9986497163772583, "is_subword": False, "word": "UN"},
45
46
            ],
        ]
47

48
49
        expected_grouped_ner_results = [
            [
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
                {"entity_group": "PER", "score": 0.999369223912557, "word": "Consuelo Ara煤jo Noguera"},
                {"entity_group": "PER", "score": 0.9997771680355072, "word": "Andr茅s Pastrana"},
                {"entity_group": "ORG", "score": 0.9989739060401917, "word": "Farc"},
            ],
            [
                {"entity_group": "PER", "score": 0.9968166351318359, "word": "Enzo"},
                {"entity_group": "ORG", "score": 0.9986497163772583, "word": "UN"},
            ],
        ]

        expected_grouped_ner_results_w_subword = [
            [
                {"entity_group": "PER", "score": 0.9994944930076599, "word": "Cons"},
                {"entity_group": "PER", "score": 0.9663328925768534, "word": "##uelo Ara煤jo Noguera"},
                {"entity_group": "PER", "score": 0.9997273534536362, "word": "Andr茅s Pastrana"},
                {"entity_group": "ORG", "score": 0.8589080572128296, "word": "Farc"},
66
67
            ],
            [
68
69
                {"entity_group": "PER", "score": 0.9962901175022125, "word": "Enzo"},
                {"entity_group": "ORG", "score": 0.9986497163772583, "word": "UN"},
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
            ],
        ]

        self.assertIsNotNone(nlp)

        mono_result = nlp(VALID_INPUTS[0])
        self.assertIsInstance(mono_result, list)
        self.assertIsInstance(mono_result[0], (dict, list))

        if isinstance(mono_result[0], list):
            mono_result = mono_result[0]

        for key in output_keys:
            self.assertIn(key, mono_result[0])

        multi_result = [nlp(input) for input in VALID_INPUTS]
        self.assertIsInstance(multi_result, list)
        self.assertIsInstance(multi_result[0], (dict, list))

        if isinstance(multi_result[0], list):
            multi_result = multi_result[0]

        for result in multi_result:
            for key in output_keys:
                self.assertIn(key, result)

96
97
98
99
100
101
102
103
104
        if nlp.grouped_entities:
            if nlp.ignore_subwords:
                for ungrouped_input, grouped_result in zip(ungrouped_ner_inputs, expected_grouped_ner_results):
                    self.assertEqual(nlp.group_entities(ungrouped_input), grouped_result)
            else:
                for ungrouped_input, grouped_result in zip(
                    ungrouped_ner_inputs, expected_grouped_ner_results_w_subword
                ):
                    self.assertEqual(nlp.group_entities(ungrouped_input), grouped_result)
105
106
107
108
109

    @require_tf
    def test_tf_only(self):
        model_name = "Narsil/small"  # This model only has a TensorFlow version
        # We test that if we don't specificy framework='tf', it gets detected automatically
110
111
        tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
        nlp = pipeline(task="ner", model=model_name, tokenizer=tokenizer)
112
        self._test_pipeline(nlp)
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172

    #         offset=tokenizer(VALID_INPUTS[0],return_offsets_mapping=True)['offset_mapping']
    #         pipeline_running_kwargs = {"offset_mapping"}  # Additional kwargs to run the pipeline with

    @require_tf
    def test_tf_defaults(self):
        for model_name in self.small_models:
            tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
            nlp = pipeline(task="ner", model=model_name, tokenizer=tokenizer, framework="tf")
        self._test_pipeline(nlp)

    @require_tf
    def test_tf_small(self):
        for model_name in self.small_models:
            print(model_name)
            tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
            nlp = pipeline(
                task="ner",
                model=model_name,
                tokenizer=tokenizer,
                framework="tf",
                grouped_entities=True,
                ignore_subwords=True,
            )
            self._test_pipeline(nlp)

            for model_name in self.small_models:
                tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
                nlp = pipeline(
                    task="ner",
                    model=model_name,
                    tokenizer=tokenizer,
                    framework="tf",
                    grouped_entities=True,
                    ignore_subwords=False,
                )
                self._test_pipeline(nlp)

    @require_torch
    def test_pt_defaults(self):
        for model_name in self.small_models:
            tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
            nlp = pipeline(task="ner", model=model_name, tokenizer=tokenizer)
            self._test_pipeline(nlp)

    @require_torch
    def test_torch_small(self):
        for model_name in self.small_models:
            tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
            nlp = pipeline(
                task="ner", model=model_name, tokenizer=tokenizer, grouped_entities=True, ignore_subwords=True
            )
            self._test_pipeline(nlp)

        for model_name in self.small_models:
            tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
            nlp = pipeline(
                task="ner", model=model_name, tokenizer=tokenizer, grouped_entities=True, ignore_subwords=False
            )
            self._test_pipeline(nlp)