"git@developer.sourcefind.cn:sugon_wxj/megatron-lm.git" did not exist on "8f3f338a436dd2efafff81d512dadfe31e741ddc"
test_modeling_tf_ctrl.py 7.2 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
Sylvain Gugger's avatar
Sylvain Gugger committed
2
# Copyright 2020 The HuggingFace Team. All rights reserved.
thomwolf's avatar
thomwolf committed
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

thomwolf's avatar
thomwolf committed
16

17
18
import unittest

Aymeric Augustin's avatar
Aymeric Augustin committed
19
from transformers import CTRLConfig, is_tf_available
20
from transformers.testing_utils import require_tf, slow
thomwolf's avatar
thomwolf committed
21

22
from .test_configuration_common import ConfigTester
23
from .test_modeling_tf_common import TFModelTesterMixin, ids_tensor
thomwolf's avatar
thomwolf committed
24
25
26


if is_tf_available():
patrickvonplaten's avatar
patrickvonplaten committed
27
    import tensorflow as tf
28

Sylvain Gugger's avatar
Sylvain Gugger committed
29
30
31
32
33
    from transformers.models.ctrl.modeling_tf_ctrl import (
        TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST,
        TFCTRLLMHeadModel,
        TFCTRLModel,
    )
thomwolf's avatar
thomwolf committed
34
35


36
37
class TFCTRLModelTester(object):
    def __init__(
Lysandre's avatar
Lysandre committed
38
39
        self,
        parent,
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
    ):
        self.parent = parent
        self.batch_size = 13
        self.seq_length = 7
        self.is_training = True
        self.use_token_type_ids = True
        self.use_input_mask = True
        self.use_labels = True
        self.use_mc_token_ids = True
        self.vocab_size = 99
        self.hidden_size = 32
        self.num_hidden_layers = 5
        self.num_attention_heads = 4
        self.intermediate_size = 37
        self.hidden_act = "gelu"
        self.hidden_dropout_prob = 0.1
        self.attention_probs_dropout_prob = 0.1
        self.max_position_embeddings = 512
        self.type_vocab_size = 16
        self.type_sequence_label_size = 2
        self.initializer_range = 0.02
        self.num_labels = 3
        self.num_choices = 4
        self.scope = None

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        input_mask = None
        if self.use_input_mask:
            input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)

        token_type_ids = None
        if self.use_token_type_ids:
            token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)

        mc_token_ids = None
        if self.use_mc_token_ids:
            mc_token_ids = ids_tensor([self.batch_size, self.num_choices], self.seq_length)

        sequence_labels = None
        token_labels = None
        choice_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            choice_labels = ids_tensor([self.batch_size], self.num_choices)

        config = CTRLConfig(
            vocab_size=self.vocab_size,
            n_embd=self.hidden_size,
            n_layer=self.num_hidden_layers,
            n_head=self.num_attention_heads,
            # intermediate_size=self.intermediate_size,
            # hidden_act=self.hidden_act,
            # hidden_dropout_prob=self.hidden_dropout_prob,
            # attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            n_positions=self.max_position_embeddings,
Sylvain Gugger's avatar
Sylvain Gugger committed
98
            n_ctx=self.max_position_embeddings,
99
            # type_vocab_size=self.type_vocab_size,
Sylvain Gugger's avatar
Sylvain Gugger committed
100
            # initializer_range=self.initializer_range,
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
        )

        head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2)

        return (
            config,
            input_ids,
            input_mask,
            head_mask,
            token_type_ids,
            mc_token_ids,
            sequence_labels,
            token_labels,
            choice_labels,
        )

    def create_and_check_ctrl_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
        model = TFCTRLModel(config=config)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
Sylvain Gugger's avatar
Sylvain Gugger committed
120
        result = model(inputs)
121
122

        inputs = [input_ids, None, input_mask]  # None is the input for 'past'
Sylvain Gugger's avatar
Sylvain Gugger committed
123
        result = model(inputs)
124

Sylvain Gugger's avatar
Sylvain Gugger committed
125
        result = model(input_ids)
126

127
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
128
129
130
131

    def create_and_check_ctrl_lm_head(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
        model = TFCTRLLMHeadModel(config=config)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
Sylvain Gugger's avatar
Sylvain Gugger committed
132
        result = model(inputs)
133
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()

        (
            config,
            input_ids,
            input_mask,
            head_mask,
            token_type_ids,
            mc_token_ids,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = config_and_inputs

        inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
        return config, inputs_dict


154
@require_tf
155
class TFCTRLModelTest(TFModelTesterMixin, unittest.TestCase):
thomwolf's avatar
thomwolf committed
156
157

    all_model_classes = (TFCTRLModel, TFCTRLLMHeadModel) if is_tf_available() else ()
158
    all_generative_model_classes = (TFCTRLLMHeadModel,) if is_tf_available() else ()
thomwolf's avatar
thomwolf committed
159
160

    def setUp(self):
161
        self.model_tester = TFCTRLModelTester(self)
thomwolf's avatar
thomwolf committed
162
163
164
165
166
167
168
169
170
171
172
173
174
        self.config_tester = ConfigTester(self, config_class=CTRLConfig, n_embd=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_ctrl_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_ctrl_model(*config_and_inputs)

    def test_ctrl_lm_head(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_ctrl_lm_head(*config_and_inputs)

175
    @slow
thomwolf's avatar
thomwolf committed
176
    def test_model_from_pretrained(self):
177
        for model_name in TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
178
            model = TFCTRLModel.from_pretrained(model_name)
thomwolf's avatar
thomwolf committed
179
            self.assertIsNotNone(model)
patrickvonplaten's avatar
patrickvonplaten committed
180
181


182
@require_tf
patrickvonplaten's avatar
patrickvonplaten committed
183
184
185
186
class TFCTRLModelLanguageGenerationTest(unittest.TestCase):
    @slow
    def test_lm_generate_ctrl(self):
        model = TFCTRLLMHeadModel.from_pretrained("ctrl")
Patrick von Platen's avatar
Patrick von Platen committed
187
        input_ids = tf.convert_to_tensor([[11859, 0, 1611, 8]], dtype=tf.int32)  # Legal the president is
patrickvonplaten's avatar
patrickvonplaten committed
188
189
        expected_output_ids = [
            11859,
Patrick von Platen's avatar
Patrick von Platen committed
190
191
            0,
            1611,
patrickvonplaten's avatar
patrickvonplaten committed
192
            8,
Patrick von Platen's avatar
Patrick von Platen committed
193
194
195
            5,
            150,
            26449,
patrickvonplaten's avatar
patrickvonplaten committed
196
            2,
Patrick von Platen's avatar
Patrick von Platen committed
197
198
199
            19,
            348,
            469,
patrickvonplaten's avatar
patrickvonplaten committed
200
            3,
Patrick von Platen's avatar
Patrick von Platen committed
201
202
203
204
205
206
207
208
209
            2595,
            48,
            20740,
            246533,
            246533,
            19,
            30,
            5,
        ]  # Legal the president is a good guy and I don't want to lose my job. \n \n I have a
patrickvonplaten's avatar
patrickvonplaten committed
210
211

        output_ids = model.generate(input_ids, do_sample=False)
Patrick von Platen's avatar
Patrick von Platen committed
212
        self.assertListEqual(output_ids[0].numpy().tolist(), expected_output_ids)