"...git@developer.sourcefind.cn:OpenDAS/nni.git" did not exist on "89de406104ba6cc6ba23e6df9c9a689f143c761c"
test_modeling_tf_ctrl.py 8.83 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

thomwolf's avatar
thomwolf committed
16

17
18
import unittest

Aymeric Augustin's avatar
Aymeric Augustin committed
19
from transformers import CTRLConfig, is_tf_available
thomwolf's avatar
thomwolf committed
20

21
from .test_configuration_common import ConfigTester
22
from .test_modeling_tf_common import TFModelTesterMixin, ids_tensor
23
from .utils import CACHE_DIR, require_tf, slow
thomwolf's avatar
thomwolf committed
24
25
26


if is_tf_available():
patrickvonplaten's avatar
patrickvonplaten committed
27
    import tensorflow as tf
28
    from transformers.modeling_tf_ctrl import TFCTRLModel, TFCTRLLMHeadModel, TF_CTRL_PRETRAINED_MODEL_ARCHIVE_MAP
thomwolf's avatar
thomwolf committed
29
30


31
@require_tf
32
class TFCTRLModelTest(TFModelTesterMixin, unittest.TestCase):
thomwolf's avatar
thomwolf committed
33
34

    all_model_classes = (TFCTRLModel, TFCTRLLMHeadModel) if is_tf_available() else ()
35
    all_generative_model_classes = (TFCTRLLMHeadModel,) if is_tf_available() else ()
thomwolf's avatar
thomwolf committed
36
37

    class TFCTRLModelTester(object):
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
        def __init__(
            self,
            parent,
            batch_size=13,
            seq_length=7,
            is_training=True,
            use_token_type_ids=True,
            use_input_mask=True,
            use_labels=True,
            use_mc_token_ids=True,
            vocab_size=99,
            hidden_size=32,
            num_hidden_layers=5,
            num_attention_heads=4,
            intermediate_size=37,
            hidden_act="gelu",
            hidden_dropout_prob=0.1,
            attention_probs_dropout_prob=0.1,
            max_position_embeddings=512,
            type_vocab_size=16,
            type_sequence_label_size=2,
            initializer_range=0.02,
            num_labels=3,
            num_choices=4,
            scope=None,
        ):
thomwolf's avatar
thomwolf committed
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
            self.parent = parent
            self.batch_size = batch_size
            self.seq_length = seq_length
            self.is_training = is_training
            self.use_token_type_ids = use_token_type_ids
            self.use_input_mask = use_input_mask
            self.use_labels = use_labels
            self.use_mc_token_ids = use_mc_token_ids
            self.vocab_size = vocab_size
            self.hidden_size = hidden_size
            self.num_hidden_layers = num_hidden_layers
            self.num_attention_heads = num_attention_heads
            self.intermediate_size = intermediate_size
            self.hidden_act = hidden_act
            self.hidden_dropout_prob = hidden_dropout_prob
            self.attention_probs_dropout_prob = attention_probs_dropout_prob
            self.max_position_embeddings = max_position_embeddings
            self.type_vocab_size = type_vocab_size
            self.type_sequence_label_size = type_sequence_label_size
            self.initializer_range = initializer_range
            self.num_labels = num_labels
            self.num_choices = num_choices
            self.scope = scope

        def prepare_config_and_inputs(self):
            input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

            input_mask = None
            if self.use_input_mask:
                input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)

            token_type_ids = None
            if self.use_token_type_ids:
                token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)

            mc_token_ids = None
            if self.use_mc_token_ids:
                mc_token_ids = ids_tensor([self.batch_size, self.num_choices], self.seq_length)

            sequence_labels = None
            token_labels = None
            choice_labels = None
            if self.use_labels:
                sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
                token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
                choice_labels = ids_tensor([self.batch_size], self.num_choices)

            config = CTRLConfig(
thomwolf's avatar
thomwolf committed
112
                vocab_size=self.vocab_size,
thomwolf's avatar
thomwolf committed
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
                n_embd=self.hidden_size,
                n_layer=self.num_hidden_layers,
                n_head=self.num_attention_heads,
                # intermediate_size=self.intermediate_size,
                # hidden_act=self.hidden_act,
                # hidden_dropout_prob=self.hidden_dropout_prob,
                # attention_probs_dropout_prob=self.attention_probs_dropout_prob,
                n_positions=self.max_position_embeddings,
                n_ctx=self.max_position_embeddings
                # type_vocab_size=self.type_vocab_size,
                # initializer_range=self.initializer_range
            )

            head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2)

128
129
130
131
132
133
134
135
136
137
138
            return (
                config,
                input_ids,
                input_mask,
                head_mask,
                token_type_ids,
                mc_token_ids,
                sequence_labels,
                token_labels,
                choice_labels,
            )
thomwolf's avatar
thomwolf committed
139
140
141

        def create_and_check_ctrl_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
            model = TFCTRLModel(config=config)
142
            inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
thomwolf's avatar
thomwolf committed
143
144
145
146
147
148
149
150
151
152
153
            sequence_output = model(inputs)[0]

            inputs = [input_ids, None, input_mask]  # None is the input for 'past'
            sequence_output = model(inputs)[0]

            sequence_output = model(input_ids)[0]

            result = {
                "sequence_output": sequence_output.numpy(),
            }
            self.parent.assertListEqual(
154
155
                list(result["sequence_output"].shape), [self.batch_size, self.seq_length, self.hidden_size]
            )
thomwolf's avatar
thomwolf committed
156
157
158

        def create_and_check_ctrl_lm_head(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
            model = TFCTRLLMHeadModel(config=config)
159
            inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
thomwolf's avatar
thomwolf committed
160
161
162
163
164
            prediction_scores = model(inputs)[0]
            result = {
                "prediction_scores": prediction_scores.numpy(),
            }
            self.parent.assertListEqual(
165
166
                list(result["prediction_scores"].shape), [self.batch_size, self.seq_length, self.vocab_size]
            )
thomwolf's avatar
thomwolf committed
167
168
169
170

        def prepare_config_and_inputs_for_common(self):
            config_and_inputs = self.prepare_config_and_inputs()

171
172
173
174
175
176
177
178
179
180
181
182
183
            (
                config,
                input_ids,
                input_mask,
                head_mask,
                token_type_ids,
                mc_token_ids,
                sequence_labels,
                token_labels,
                choice_labels,
            ) = config_and_inputs

            inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
thomwolf's avatar
thomwolf committed
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
            return config, inputs_dict

    def setUp(self):
        self.model_tester = TFCTRLModelTest.TFCTRLModelTester(self)
        self.config_tester = ConfigTester(self, config_class=CTRLConfig, n_embd=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_ctrl_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_ctrl_model(*config_and_inputs)

    def test_ctrl_lm_head(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_ctrl_lm_head(*config_and_inputs)

201
    @slow
thomwolf's avatar
thomwolf committed
202
203
    def test_model_from_pretrained(self):
        for model_name in list(TF_CTRL_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
204
            model = TFCTRLModel.from_pretrained(model_name, cache_dir=CACHE_DIR)
thomwolf's avatar
thomwolf committed
205
            self.assertIsNotNone(model)
patrickvonplaten's avatar
patrickvonplaten committed
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237


class TFCTRLModelLanguageGenerationTest(unittest.TestCase):
    @slow
    def test_lm_generate_ctrl(self):
        model = TFCTRLLMHeadModel.from_pretrained("ctrl")
        input_ids = tf.convert_to_tensor([[11858, 586, 20984, 8]], dtype=tf.int32)
        expected_output_ids = [
            11859,
            586,
            20984,
            8,
            13391,
            3,
            980,
            8258,
            72,
            327,
            148,
            2,
            53,
            29,
            226,
            3,
            780,
            49,
            3,
            980,
        ]  # Legal My neighbor is refusing to pay rent after 2 years and we are having to force him to pay

        output_ids = model.generate(input_ids, do_sample=False)
        self.assertListEqual(output_ids[0].tolist(), expected_output_ids)