test_modeling_tf_ctrl.py 7.43 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

thomwolf's avatar
thomwolf committed
16

17
18
import unittest

Aymeric Augustin's avatar
Aymeric Augustin committed
19
from transformers import CTRLConfig, is_tf_available
20
from transformers.testing_utils import require_tf, slow
thomwolf's avatar
thomwolf committed
21

22
from .test_configuration_common import ConfigTester
23
from .test_modeling_tf_common import TFModelTesterMixin, ids_tensor
thomwolf's avatar
thomwolf committed
24
25
26


if is_tf_available():
patrickvonplaten's avatar
patrickvonplaten committed
27
    import tensorflow as tf
28
    from transformers.modeling_tf_ctrl import TFCTRLModel, TFCTRLLMHeadModel, TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST
thomwolf's avatar
thomwolf committed
29
30


31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
class TFCTRLModelTester(object):
    def __init__(
        self, parent,
    ):
        self.parent = parent
        self.batch_size = 13
        self.seq_length = 7
        self.is_training = True
        self.use_token_type_ids = True
        self.use_input_mask = True
        self.use_labels = True
        self.use_mc_token_ids = True
        self.vocab_size = 99
        self.hidden_size = 32
        self.num_hidden_layers = 5
        self.num_attention_heads = 4
        self.intermediate_size = 37
        self.hidden_act = "gelu"
        self.hidden_dropout_prob = 0.1
        self.attention_probs_dropout_prob = 0.1
        self.max_position_embeddings = 512
        self.type_vocab_size = 16
        self.type_sequence_label_size = 2
        self.initializer_range = 0.02
        self.num_labels = 3
        self.num_choices = 4
        self.scope = None

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        input_mask = None
        if self.use_input_mask:
            input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)

        token_type_ids = None
        if self.use_token_type_ids:
            token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)

        mc_token_ids = None
        if self.use_mc_token_ids:
            mc_token_ids = ids_tensor([self.batch_size, self.num_choices], self.seq_length)

        sequence_labels = None
        token_labels = None
        choice_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            choice_labels = ids_tensor([self.batch_size], self.num_choices)

        config = CTRLConfig(
            vocab_size=self.vocab_size,
            n_embd=self.hidden_size,
            n_layer=self.num_hidden_layers,
            n_head=self.num_attention_heads,
            # intermediate_size=self.intermediate_size,
            # hidden_act=self.hidden_act,
            # hidden_dropout_prob=self.hidden_dropout_prob,
            # attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            n_positions=self.max_position_embeddings,
            n_ctx=self.max_position_embeddings
            # type_vocab_size=self.type_vocab_size,
            # initializer_range=self.initializer_range
        )

        head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2)

        return (
            config,
            input_ids,
            input_mask,
            head_mask,
            token_type_ids,
            mc_token_ids,
            sequence_labels,
            token_labels,
            choice_labels,
        )

    def create_and_check_ctrl_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
        model = TFCTRLModel(config=config)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
        sequence_output = model(inputs)[0]

        inputs = [input_ids, None, input_mask]  # None is the input for 'past'
        sequence_output = model(inputs)[0]

        sequence_output = model(input_ids)[0]

        result = {
            "sequence_output": sequence_output.numpy(),
        }
        self.parent.assertListEqual(
            list(result["sequence_output"].shape), [self.batch_size, self.seq_length, self.hidden_size]
        )

    def create_and_check_ctrl_lm_head(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
        model = TFCTRLLMHeadModel(config=config)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
        prediction_scores = model(inputs)[0]
        result = {
            "prediction_scores": prediction_scores.numpy(),
        }
        self.parent.assertListEqual(
            list(result["prediction_scores"].shape), [self.batch_size, self.seq_length, self.vocab_size]
        )

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()

        (
            config,
            input_ids,
            input_mask,
            head_mask,
            token_type_ids,
            mc_token_ids,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = config_and_inputs

        inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
        return config, inputs_dict


158
@require_tf
159
class TFCTRLModelTest(TFModelTesterMixin, unittest.TestCase):
thomwolf's avatar
thomwolf committed
160
161

    all_model_classes = (TFCTRLModel, TFCTRLLMHeadModel) if is_tf_available() else ()
162
    all_generative_model_classes = (TFCTRLLMHeadModel,) if is_tf_available() else ()
thomwolf's avatar
thomwolf committed
163
164

    def setUp(self):
165
        self.model_tester = TFCTRLModelTester(self)
thomwolf's avatar
thomwolf committed
166
167
168
169
170
171
172
173
174
175
176
177
178
        self.config_tester = ConfigTester(self, config_class=CTRLConfig, n_embd=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_ctrl_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_ctrl_model(*config_and_inputs)

    def test_ctrl_lm_head(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_ctrl_lm_head(*config_and_inputs)

179
    @slow
thomwolf's avatar
thomwolf committed
180
    def test_model_from_pretrained(self):
181
        for model_name in TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
182
            model = TFCTRLModel.from_pretrained(model_name)
thomwolf's avatar
thomwolf committed
183
            self.assertIsNotNone(model)
patrickvonplaten's avatar
patrickvonplaten committed
184
185


186
@require_tf
patrickvonplaten's avatar
patrickvonplaten committed
187
188
189
190
class TFCTRLModelLanguageGenerationTest(unittest.TestCase):
    @slow
    def test_lm_generate_ctrl(self):
        model = TFCTRLLMHeadModel.from_pretrained("ctrl")
Patrick von Platen's avatar
Patrick von Platen committed
191
        input_ids = tf.convert_to_tensor([[11859, 0, 1611, 8]], dtype=tf.int32)  # Legal the president is
patrickvonplaten's avatar
patrickvonplaten committed
192
193
        expected_output_ids = [
            11859,
Patrick von Platen's avatar
Patrick von Platen committed
194
195
            0,
            1611,
patrickvonplaten's avatar
patrickvonplaten committed
196
            8,
Patrick von Platen's avatar
Patrick von Platen committed
197
198
199
            5,
            150,
            26449,
patrickvonplaten's avatar
patrickvonplaten committed
200
            2,
Patrick von Platen's avatar
Patrick von Platen committed
201
202
203
            19,
            348,
            469,
patrickvonplaten's avatar
patrickvonplaten committed
204
            3,
Patrick von Platen's avatar
Patrick von Platen committed
205
206
207
208
209
210
211
212
213
            2595,
            48,
            20740,
            246533,
            246533,
            19,
            30,
            5,
        ]  # Legal the president is a good guy and I don't want to lose my job. \n \n I have a
patrickvonplaten's avatar
patrickvonplaten committed
214
215

        output_ids = model.generate(input_ids, do_sample=False)
Patrick von Platen's avatar
Patrick von Platen committed
216
        self.assertListEqual(output_ids[0].numpy().tolist(), expected_output_ids)