run_audio_classification.py 32.8 KB
Newer Older
sanchit-gandhi's avatar
sanchit-gandhi committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
#!/usr/bin/env python
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import logging
import os
sanchit-gandhi's avatar
sanchit-gandhi committed
19
import re
sanchit-gandhi's avatar
sanchit-gandhi committed
20
import sys
sanchit-gandhi's avatar
sanchit-gandhi committed
21
from collections import Counter
sanchit-gandhi's avatar
sanchit-gandhi committed
22
23
from dataclasses import dataclass, field
from random import randint
24
from typing import List, Optional, Union
sanchit-gandhi's avatar
sanchit-gandhi committed
25
26
27
28
29

import datasets
import evaluate
import numpy as np
import transformers
30
31
from datasets import Dataset, DatasetDict, IterableDataset, concatenate_datasets, interleave_datasets, load_dataset
from tqdm import tqdm
sanchit-gandhi's avatar
sanchit-gandhi committed
32
33
34
35
36
37
38
from transformers import (
    AutoConfig,
    AutoFeatureExtractor,
    AutoModelForAudioClassification,
    HfArgumentParser,
    Trainer,
    TrainingArguments,
sanchit-gandhi's avatar
sanchit-gandhi committed
39
    set_seed,
sanchit-gandhi's avatar
sanchit-gandhi committed
40
)
sanchit-gandhi's avatar
sanchit-gandhi committed
41
from transformers.models.whisper.tokenization_whisper import LANGUAGES
sanchit-gandhi's avatar
sanchit-gandhi committed
42
from transformers.trainer_utils import get_last_checkpoint
sanchit-gandhi's avatar
sanchit-gandhi committed
43
from transformers.utils import check_min_version
sanchit-gandhi's avatar
sanchit-gandhi committed
44
45
46
47
48
49
50
51


logger = logging.getLogger(__name__)

# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.38.0.dev0")


sanchit-gandhi's avatar
sanchit-gandhi committed
52
def random_subsample(wav: np.ndarray, max_length: float, sample_rate: int = 16000) -> np.ndarray:
sanchit-gandhi's avatar
sanchit-gandhi committed
53
54
55
56
57
58
59
    """Randomly sample chunks of `max_length` seconds from the input audio"""
    sample_length = int(round(sample_rate * max_length))
    if len(wav) <= sample_length:
        return wav
    random_offset = randint(0, len(wav) - sample_length - 1)
    return wav[random_offset : random_offset + sample_length]

sanchit-gandhi's avatar
sanchit-gandhi committed
60
61
62
63
64
65
66
def deterministic_subsample(wav: np.ndarray, max_length: float, sample_rate: int = 16000) -> np.ndarray:
    """Take first `max_length` seconds from the input audio"""
    sample_length = int(round(sample_rate * max_length))
    if len(wav) <= sample_length:
        return wav
    return wav[0 : sample_length]

sanchit-gandhi's avatar
sanchit-gandhi committed
67

sanchit-gandhi's avatar
sanchit-gandhi committed
68
69
70
71
72
73
ACCENT_MAPPING = {
    "British": "English",
    "Canadian": "American",
    "Northern irish": "Irish",
    "New zealand": "Australian",
    "Pakistani": "Indian",
sanchit-gandhi's avatar
sanchit-gandhi committed
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
    "Mainstream us english": "American",
    "Southern british english": "English",
    "Indian english": "Indian",
    "Scottish english": "Scottish",
    "Don't know": "Unknown",
    "Nigerian english": "Nigerian",
    "Kenyan english": "Kenyan",
    "Ghanain english": "Ghanain",
    "Jamaican english": "Jamaican",
    "Indonesian english": "Indonesian",
    "South african english": "South african",
    "Irish english": "Irish",
    "Latin": "Latin American",
    "European": "Unknown",  # Too general
    "Eastern european": "Eastern european", # TODO(SG): keep for now, but maybe remove later
sanchit-gandhi's avatar
sanchit-gandhi committed
89
90
91
}


sanchit-gandhi's avatar
sanchit-gandhi committed
92
def preprocess_labels(label: str) -> str:
sanchit-gandhi's avatar
sanchit-gandhi committed
93
    """Apply pre-processing formatting to the accent labels"""
sanchit-gandhi's avatar
sanchit-gandhi committed
94
95
96
97
98
99
100
101
    if "_" in label:
        # voxpopuli stylises the accent as a language code (e.g. en_pl for "polish") - convert to full accent
        language_code = label.split("_")[-1]
        label = LANGUAGES[language_code]
    # VCTK labels for two words are concatenated into one (NewZeleand-> New Zealand)
    label = re.sub(r"(\w)([A-Z])", r"\1 \2", label)
    # convert Whisper language code (polish) to capitalised (Polish)
    label = label.capitalize()
sanchit-gandhi's avatar
sanchit-gandhi committed
102
103
    if label in ACCENT_MAPPING:
        label = ACCENT_MAPPING[label]
sanchit-gandhi's avatar
sanchit-gandhi committed
104
    return label
sanchit-gandhi's avatar
sanchit-gandhi committed
105
106


sanchit-gandhi's avatar
sanchit-gandhi committed
107
108
109
110
111
112
113
114
115
@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    Using `HfArgumentParser` we can turn this class
    into argparse arguments to be able to specify them on
    the command line.
    """

116
117
118
119
120
121
122
    train_dataset_name: str = field(
        default=None,
        metadata={
            "help": "The name of the training dataset to use (via the datasets library). Load and combine "
            "multiple datasets by separating dataset ids by a '+' symbol. For example, to load and combine "
            " librispeech and common voice, set `train_dataset_name='librispeech_asr+common_voice'`."
        },
sanchit-gandhi's avatar
sanchit-gandhi committed
123
    )
124
125
126
127
128
129
    train_dataset_config_name: Optional[str] = field(
        default=None,
        metadata={
            "help": "The configuration name of the training dataset to use (via the datasets library). Load and combine "
            "multiple datasets by separating dataset configs by a '+' symbol."
        },
sanchit-gandhi's avatar
sanchit-gandhi committed
130
    )
sanchit-gandhi's avatar
sanchit-gandhi committed
131
132
133
134
135
136
    train_split_name: str = field(
        default="train",
        metadata={
            "help": ("The name of the training data set split to use (via the datasets library). Defaults to 'train'")
        },
    )
137
138
139
140
141
142
    train_dataset_samples: str = field(
        default=None,
        metadata={
            "help": "Number of samples in the training data. Load and combine "
            "multiple datasets by separating dataset samples by a '+' symbol."
        },
sanchit-gandhi's avatar
sanchit-gandhi committed
143
    )
144
145
    eval_dataset_name: str = field(
        default=None,
sanchit-gandhi's avatar
sanchit-gandhi committed
146
        metadata={
147
            "help": "The name of the evaluation dataset to use (via the datasets library). Defaults to the training dataset name if unspecified."
sanchit-gandhi's avatar
sanchit-gandhi committed
148
149
        },
    )
150
151
    eval_dataset_config_name: Optional[str] = field(
        default=None,
sanchit-gandhi's avatar
sanchit-gandhi committed
152
        metadata={
153
            "help": "The configuration name of the evaluation dataset to use (via the datasets library). Defaults to the training dataset config name if unspecified"
sanchit-gandhi's avatar
sanchit-gandhi committed
154
155
        },
    )
sanchit-gandhi's avatar
sanchit-gandhi committed
156
157
158
159
160
161
162
163
164
    eval_split_name: str = field(
        default="validation",
        metadata={
            "help": (
                "The name of the evaluation data set split to use (via the datasets"
                " library). Defaults to 'validation'"
            )
        },
    )
sanchit-gandhi's avatar
sanchit-gandhi committed
165
166
167
168
    audio_column_name: str = field(
        default="audio",
        metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"},
    )
169
    train_label_column_name: str = field(
sanchit-gandhi's avatar
sanchit-gandhi committed
170
        default="labels",
171
172
173
174
175
        metadata={
            "help": "The name of the dataset column containing the labels in the train set. Defaults to 'label'"
        },
    )
    eval_label_column_name: str = field(
sanchit-gandhi's avatar
sanchit-gandhi committed
176
        default="labels",
177
        metadata={"help": "The name of the dataset column containing the labels in the eval set. Defaults to 'label'"},
sanchit-gandhi's avatar
sanchit-gandhi committed
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
    )
    max_train_samples: Optional[int] = field(
        default=None,
        metadata={
            "help": (
                "For debugging purposes or quicker training, truncate the number of training examples to this "
                "value if set."
            )
        },
    )
    max_eval_samples: Optional[int] = field(
        default=None,
        metadata={
            "help": (
                "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
                "value if set."
            )
        },
    )
sanchit-gandhi's avatar
sanchit-gandhi committed
197
    max_length_seconds: Optional[float] = field(
sanchit-gandhi's avatar
sanchit-gandhi committed
198
        default=20,
sanchit-gandhi's avatar
sanchit-gandhi committed
199
200
        metadata={"help": "Audio samples will be randomly cut to this length during training if the value is set."},
    )
sanchit-gandhi's avatar
sanchit-gandhi committed
201
    min_length_seconds: Optional[float] = field(
sanchit-gandhi's avatar
sanchit-gandhi committed
202
203
        default=5,
        metadata={"help": "Audio samples less than this value will be filtered during training if the value is set."},
sanchit-gandhi's avatar
sanchit-gandhi committed
204
    )
sanchit-gandhi's avatar
sanchit-gandhi committed
205
206
207
208
    preprocessing_num_workers: Optional[int] = field(
        default=None,
        metadata={"help": "The number of processes to use for the preprocessing."},
    )
sanchit-gandhi's avatar
sanchit-gandhi committed
209
210
211
212
    filter_threshold: Optional[float] = field(
        default=1.0,
        metadata={"help": "Filter labels that occur less than `filter_threshold` percent in the training/eval data."},
    )
sanchit-gandhi's avatar
sanchit-gandhi committed
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238


@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
    """

    model_name_or_path: str = field(
        default="facebook/wav2vec2-base",
        metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"},
    )
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
    )
    cache_dir: Optional[str] = field(
        default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from the Hub"}
    )
    model_revision: str = field(
        default="main",
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
    )
    feature_extractor_name: Optional[str] = field(
        default=None, metadata={"help": "Name or path of preprocessor config."}
    )
    freeze_feature_encoder: bool = field(
sanchit-gandhi's avatar
sanchit-gandhi committed
239
240
241
242
        default=False,
        metadata={
            "help": "Whether to freeze the feature encoder layers of the model. Only relevant for Wav2Vec2-style models."
        },
sanchit-gandhi's avatar
sanchit-gandhi committed
243
244
245
    )
    freeze_base_model: bool = field(
        default=True, metadata={"help": "Whether to freeze the base encoder of the model."}
sanchit-gandhi's avatar
sanchit-gandhi committed
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
    )
    attention_mask: bool = field(
        default=True, metadata={"help": "Whether to generate an attention mask in the feature extractor."}
    )
    token: str = field(
        default=None,
        metadata={
            "help": (
                "The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
                "generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
            )
        },
    )
    trust_remote_code: bool = field(
        default=False,
        metadata={
            "help": (
                "Whether or not to allow for custom models defined on the Hub in their own modeling files. This option "
                "should only be set to `True` for repositories you trust and in which you have read the code, as it will "
                "execute code present on the Hub on your local machine."
            )
        },
    )
    ignore_mismatched_sizes: bool = field(
sanchit-gandhi's avatar
sanchit-gandhi committed
270
        default=True,
sanchit-gandhi's avatar
sanchit-gandhi committed
271
272
        metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."},
    )
sanchit-gandhi's avatar
sanchit-gandhi committed
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
    attention_dropout: float = field(
        default=0.0, metadata={"help": "The dropout ratio for the attention probabilities."}
    )
    activation_dropout: float = field(
        default=0.0, metadata={"help": "The dropout ratio for activations inside the fully connected layer."}
    )
    feat_proj_dropout: float = field(default=0.0, metadata={"help": "The dropout ratio for the projected features."})
    hidden_dropout: float = field(
        default=0.0,
        metadata={
            "help": "The dropout probability for all fully connected layers in the embeddings, encoder, and pooler."
        },
    )
    final_dropout: float = field(
        default=0.0,
        metadata={"help": "The dropout probability for the final projection layer."},
    )
    mask_time_prob: float = field(
        default=0.05,
        metadata={
            "help": (
                "Probability of each feature vector along the time axis to be chosen as the start of the vector "
                "span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature "
                "vectors will be masked along the time axis."
            )
        },
    )
    mask_time_length: int = field(
        default=10,
        metadata={"help": "Length of vector span to mask along the time axis."},
    )
    mask_feature_prob: float = field(
        default=0.0,
        metadata={
            "help": (
                "Probability of each feature vector along the feature axis to be chosen as the start of the vectorspan"
                " to be masked. Approximately ``mask_feature_prob * sequence_length // mask_feature_length`` feature"
                " bins will be masked along the time axis."
            )
        },
    )
    mask_feature_length: int = field(
        default=10,
        metadata={"help": "Length of vector span to mask along the feature axis."},
    )
    layerdrop: float = field(default=0.0, metadata={"help": "The LayerDrop probability."})
sanchit-gandhi's avatar
sanchit-gandhi committed
319

320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364

def convert_dataset_str_to_list(
    dataset_names,
    dataset_config_names,
    splits=None,
    label_column_names=None,
    dataset_samples=None,
    default_split="train",
):
    if isinstance(dataset_names, str):
        dataset_names = dataset_names.split("+")
        dataset_config_names = dataset_config_names.split("+")
        splits = splits.split("+") if splits is not None else None
        label_column_names = label_column_names.split("+") if label_column_names is not None else None
        dataset_samples = dataset_samples.split("+") if dataset_samples is not None else None

    # basic checks to ensure we've got the right number of datasets/configs/splits/columns/probs
    if len(dataset_names) != len(dataset_config_names):
        raise ValueError(
            f"Ensure one config is passed for each dataset, got {len(dataset_names)} datasets and"
            f" {len(dataset_config_names)} configs."
        )

    if splits is not None and len(splits) != len(dataset_names):
        raise ValueError(
            f"Ensure one split is passed for each dataset, got {len(dataset_names)} datasets and {len(splits)} splits."
        )

    if label_column_names is not None and len(label_column_names) != len(dataset_names):
        raise ValueError(
            f"Ensure one label column name is passed for each dataset, got {len(dataset_names)} datasets and"
            f" {len(label_column_names)} label column names."
        )

    if dataset_samples is not None:
        if len(dataset_samples) != len(dataset_names):
            raise ValueError(
                f"Ensure one sample is passed for each dataset, got {len(dataset_names)} datasets and "
                f"{len(dataset_samples)} samples."
            )
        dataset_samples = [float(ds_sample) for ds_sample in dataset_samples]
    else:
        dataset_samples = [None] * len(dataset_names)

    label_column_names = (
sanchit-gandhi's avatar
sanchit-gandhi committed
365
        label_column_names if label_column_names is not None else ["labels" for _ in range(len(dataset_names))]
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
    )
    splits = splits if splits is not None else [default_split for _ in range(len(dataset_names))]

    dataset_names_dict = []
    for i, ds_name in enumerate(dataset_names):
        dataset_names_dict.append(
            {
                "name": ds_name,
                "config": dataset_config_names[i],
                "split": splits[i],
                "label_column_name": label_column_names[i],
                "samples": dataset_samples[i],
            }
        )
    return dataset_names_dict


def load_multiple_datasets(
    dataset_names: Union[List, str],
    dataset_config_names: Union[List, str],
    splits: Optional[Union[List, str]] = None,
    label_column_names: Optional[List] = None,
sanchit-gandhi's avatar
sanchit-gandhi committed
388
    sampling_rate: Optional[int] = 16000,
389
390
    stopping_strategy: Optional[str] = "first_exhausted",
    dataset_samples: Optional[Union[List, np.array]] = None,
sanchit-gandhi's avatar
sanchit-gandhi committed
391
    streaming: Optional[bool] = False,
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
    seed: Optional[int] = None,
    audio_column_name: Optional[str] = "audio",
    **kwargs,
) -> Union[Dataset, IterableDataset]:
    dataset_names_dict = convert_dataset_str_to_list(
        dataset_names, dataset_config_names, splits, label_column_names, dataset_samples
    )

    if dataset_samples is not None:
        dataset_samples = [ds_dict["samples"] for ds_dict in dataset_names_dict]
        probabilities = np.array(dataset_samples) / np.sum(dataset_samples)
    else:
        probabilities = None

    all_datasets = []
    # iterate over the datasets we want to interleave
    for dataset_dict in tqdm(dataset_names_dict, desc="Combining datasets..."):
        dataset = load_dataset(
            dataset_dict["name"],
            dataset_dict["config"],
            split=dataset_dict["split"],
            streaming=streaming,
            **kwargs,
        )
        dataset_features = dataset.features.keys()

        if audio_column_name not in dataset_features:
            raise ValueError(
                f"Audio column name '{audio_column_name}' not found in dataset"
                f" '{dataset_dict['name']}'. Make sure to set `--audio_column_name` to"
                f" the correct audio column - one of {', '.join(dataset_features)}."
sanchit-gandhi's avatar
sanchit-gandhi committed
423
            )
sanchit-gandhi's avatar
sanchit-gandhi committed
424
425
        # resample to specified sampling rate
        dataset = dataset.cast_column("audio", datasets.features.Audio(sampling_rate))
426
427

        if dataset_dict["label_column_name"] not in dataset_features:
sanchit-gandhi's avatar
sanchit-gandhi committed
428
            raise ValueError(
sanchit-gandhi's avatar
sanchit-gandhi committed
429
                f"Label column name {dataset_dict['label_column_name']} not found in dataset"
430
431
                f" '{dataset_dict['name']}'. Make sure to set `--label_column_name` to the"
                f" correct text column - one of {', '.join(dataset_features)}."
sanchit-gandhi's avatar
sanchit-gandhi committed
432
433
            )

434
        # blanket renaming of all label columns to label
sanchit-gandhi's avatar
sanchit-gandhi committed
435
436
        if dataset_dict["label_column_name"] != "labels":
            dataset = dataset.rename_column(dataset_dict["label_column_name"], "labels")
437
438

        dataset_features = dataset.features.keys()
sanchit-gandhi's avatar
sanchit-gandhi committed
439
        columns_to_keep = {"audio", "labels"}
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
        dataset = dataset.remove_columns(set(dataset_features - columns_to_keep))
        all_datasets.append(dataset)

    if len(all_datasets) == 1:
        # we have a single dataset so just return it as is
        return all_datasets[0]

    if streaming:
        interleaved_dataset = interleave_datasets(
            all_datasets,
            stopping_strategy=stopping_strategy,
            probabilities=probabilities,
            seed=seed,
        )
    else:
        interleaved_dataset = concatenate_datasets(all_datasets)

    return interleaved_dataset

sanchit-gandhi's avatar
sanchit-gandhi committed
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516

def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()

    # Setup logging
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        handlers=[logging.StreamHandler(sys.stdout)],
    )

    if training_args.should_log:
        # The default of training_args.log_level is passive, so we set log level at info here to have that default.
        transformers.utils.logging.set_verbosity_info()

    log_level = training_args.get_process_log_level()
    logger.setLevel(log_level)
    transformers.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.enable_default_handler()
    transformers.utils.logging.enable_explicit_format()

    # Log on each process the small summary:
    logger.warning(
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, "
        + f"distributed training: {training_args.parallel_mode.value == 'distributed'}, 16-bits training: {training_args.fp16}"
    )
    logger.info(f"Training/evaluation parameters {training_args}")

    # Set seed before initializing model.
    set_seed(training_args.seed)

    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to train from scratch."
            )
        elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )

    # Initialize our dataset and prepare it for the audio classification task.
    raw_datasets = DatasetDict()
517
518
    # set seed for determinism
    set_seed(training_args.seed)
sanchit-gandhi's avatar
sanchit-gandhi committed
519

520
521
522
523
524
525
526
527
    if training_args.do_train:
        raw_datasets["train"] = load_multiple_datasets(
            data_args.train_dataset_name,
            data_args.train_dataset_config_name,
            splits=data_args.train_split_name,
            label_column_names=data_args.train_label_column_name,
            dataset_samples=data_args.train_dataset_samples,
            seed=training_args.seed,
sanchit-gandhi's avatar
sanchit-gandhi committed
528
            cache_dir=model_args.cache_dir,
529
            token=True if model_args.token else None,
sanchit-gandhi's avatar
sanchit-gandhi committed
530
            trust_remote_code=model_args.trust_remote_code,
sanchit-gandhi's avatar
sanchit-gandhi committed
531
            num_proc=data_args.preprocessing_num_workers,
sanchit-gandhi's avatar
sanchit-gandhi committed
532
            # streaming=data_args.streaming, TODO(SG): optionally enable streaming mode
sanchit-gandhi's avatar
sanchit-gandhi committed
533
534
        )

535
536
537
    if training_args.do_eval:
        dataset_names_dict = convert_dataset_str_to_list(
            data_args.eval_dataset_name if data_args.eval_dataset_name else data_args.train_dataset_name,
sanchit-gandhi's avatar
style  
sanchit-gandhi committed
538
539
540
541
542
            (
                data_args.eval_dataset_config_name
                if data_args.eval_dataset_config_name
                else data_args.train_dataset_config_name
            ),
543
544
545
546
            splits=data_args.eval_split_name,
            label_column_names=data_args.eval_label_column_name,
        )
        all_eval_splits = []
sanchit-gandhi's avatar
sanchit-gandhi committed
547
548
549
550
551
552
553
554
555
        # load multiple eval sets
        for dataset_dict in dataset_names_dict:
            pretty_name = (
                f"{dataset_dict['name'].split('/')[-1]}/{dataset_dict['split'].replace('.', '-')}"
                if len(dataset_names_dict) > 1
                else "eval"
            )
            all_eval_splits.append(pretty_name)
            raw_datasets[pretty_name] = load_dataset(
556
557
558
                dataset_dict["name"],
                dataset_dict["config"],
                split=dataset_dict["split"],
sanchit-gandhi's avatar
sanchit-gandhi committed
559
                cache_dir=model_args.cache_dir,
560
                token=True if model_args.token else None,
sanchit-gandhi's avatar
sanchit-gandhi committed
561
                trust_remote_code=model_args.trust_remote_code,
sanchit-gandhi's avatar
sanchit-gandhi committed
562
                num_proc=data_args.preprocessing_num_workers,
sanchit-gandhi's avatar
sanchit-gandhi committed
563
                # streaming=data_args.streaming,
564
            )
sanchit-gandhi's avatar
sanchit-gandhi committed
565
566
567
568
569
570
            features = raw_datasets[pretty_name].features.keys()
            if dataset_dict["label_column_name"] not in features:
                raise ValueError(
                    f"--label_column_name {data_args.eval_label_column_name} not found in dataset '{data_args.dataset_name}'. "
                    "Make sure to set `--label_column_name` to the correct text column - one of "
                    f"{', '.join(raw_datasets['train'].column_names)}."
571
                )
sanchit-gandhi's avatar
sanchit-gandhi committed
572
573
574
            elif dataset_dict["label_column_name"] != "labels":
                raw_datasets[pretty_name] = raw_datasets[pretty_name].rename_column(
                    dataset_dict["label_column_name"], "labels"
575
                )
sanchit-gandhi's avatar
sanchit-gandhi committed
576
577
578
            raw_datasets[pretty_name] = raw_datasets[pretty_name].remove_columns(
                set(raw_datasets[pretty_name].features.keys()) - {"audio", "labels"}
            )
579
580

    if not training_args.do_train and not training_args.do_eval:
sanchit-gandhi's avatar
sanchit-gandhi committed
581
        raise ValueError(
582
            "Cannot not train and not do evaluation. At least one of training or evaluation has to be performed."
sanchit-gandhi's avatar
sanchit-gandhi committed
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
        )

    # Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over
    # transformer outputs in the classifier, but it doesn't always lead to better accuracy
    feature_extractor = AutoFeatureExtractor.from_pretrained(
        model_args.feature_extractor_name or model_args.model_name_or_path,
        return_attention_mask=model_args.attention_mask,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        token=model_args.token,
        trust_remote_code=model_args.trust_remote_code,
    )

    # `datasets` takes care of automatically loading and resampling the audio,
    # so we just need to set the correct target sampling rate.
    raw_datasets = raw_datasets.cast_column(
        data_args.audio_column_name, datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate)
    )

sanchit-gandhi's avatar
sanchit-gandhi committed
602
603
604
605
606
    if training_args.do_train:
        if data_args.max_train_samples is not None:
            raw_datasets["train"] = (
                raw_datasets["train"].shuffle(seed=training_args.seed).select(range(data_args.max_train_samples))
            )
sanchit-gandhi's avatar
sanchit-gandhi committed
607

sanchit-gandhi's avatar
sanchit-gandhi committed
608
609
610
611
    if training_args.do_eval:
        if data_args.max_eval_samples is not None:
            raw_datasets["eval"] = (
                raw_datasets["eval"].shuffle(seed=training_args.seed).select(range(data_args.max_eval_samples))
sanchit-gandhi's avatar
sanchit-gandhi committed
612
            )
sanchit-gandhi's avatar
sanchit-gandhi committed
613
614
615
616

    sampling_rate = feature_extractor.sampling_rate
    model_input_name = feature_extractor.model_input_names[0]

sanchit-gandhi's avatar
sanchit-gandhi committed
617
618
619
620
621
622
623
624
625
626
627
    def prepare_dataset(batch):
        batch["length"] = len(batch["audio"]["array"])
        batch["labels"] = preprocess_labels(batch["labels"])
        return batch

    raw_datasets = raw_datasets.map(
        prepare_dataset,
        num_proc=data_args.preprocessing_num_workers,
        desc="Computing audio length",
    )

sanchit-gandhi's avatar
sanchit-gandhi committed
628
629
630
    # filter training data with inputs < min_input_length
    min_input_length = data_args.min_length_seconds * sampling_rate

sanchit-gandhi's avatar
sanchit-gandhi committed
631
632
    def is_audio_valid(input_length):
        return input_length > min_input_length
sanchit-gandhi's avatar
sanchit-gandhi committed
633
634
635

    raw_datasets = raw_datasets.filter(
        is_audio_valid,
sanchit-gandhi's avatar
sanchit-gandhi committed
636
        input_columns=["length"],
sanchit-gandhi's avatar
sanchit-gandhi committed
637
638
639
640
        num_proc=data_args.preprocessing_num_workers,
        desc="Filtering by audio length",
    )

sanchit-gandhi's avatar
sanchit-gandhi committed
641
642
643
644
645
646
647
648
649
650
651
    # filter training data with non-valid labels
    def is_label_valid(label):
        return label != "Unknown"

    raw_datasets = raw_datasets.filter(
        is_label_valid,
        input_columns=["labels"],
        num_proc=data_args.preprocessing_num_workers,
        desc="Filtering by labels",
    )

sanchit-gandhi's avatar
sanchit-gandhi committed
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
    # Print a summary of the labels to the stddout (helps identify low-label classes that could be filtered)
    # sort by freq
    count_labels_dict = Counter(raw_datasets["train"]["labels"])
    count_labels_dict = sorted(count_labels_dict.items(), key=lambda item: (-item[1], item[0]))
    labels, frequencies = zip(*count_labels_dict)
    total_labels = sum(frequencies)
    labels_to_remove = []

    logger.info(f"{'Accent':<15} {'Perc.':<5}")
    logger.info("-" * 20)
    for lab, freq in zip(labels, frequencies):
        freq = 100 * freq / total_labels
        logger.info(f"{lab:<15} {freq:<5}")
        if freq < data_args.filter_threshold:
            labels_to_remove.append(lab)

    if len(labels_to_remove):
sanchit-gandhi's avatar
sanchit-gandhi committed
669
670
671
672
        # filter training data with label freq below threshold
        def is_label_valid(label):
            return label not in labels_to_remove

sanchit-gandhi's avatar
sanchit-gandhi committed
673
674
675
676
677
678
679
        raw_datasets = raw_datasets.filter(
            is_label_valid,
            input_columns=["labels"],
            num_proc=data_args.preprocessing_num_workers,
            desc="Filtering low freq labels",
        )

sanchit-gandhi's avatar
sanchit-gandhi committed
680
    # We'll include these in the model's config to get human readable labels in the Inference API.
sanchit-gandhi's avatar
sanchit-gandhi committed
681
682
683
    set_labels = set(raw_datasets["train"]["labels"])
    if training_args.do_eval:
        set_labels = set_labels.union(set(raw_datasets["eval"]["labels"]))
sanchit-gandhi's avatar
sanchit-gandhi committed
684
685
686
687
688
689
690
    label2id, id2label = {}, {}
    for i, label in enumerate(set(set_labels)):
        label2id[label] = str(i)
        id2label[str(i)] = label

    def train_transforms(batch):
        """Apply train_transforms across a batch."""
sanchit-gandhi's avatar
sanchit-gandhi committed
691
692
693
694
695
696
        subsampled_wavs = []
        for audio in batch["audio"]:
            wav = deterministic_subsample(
                audio["array"], max_length=data_args.max_length_seconds, sample_rate=feature_extractor.sampling_rate
            )
            subsampled_wavs.append(wav)
sanchit-gandhi's avatar
sanchit-gandhi committed
697
        inputs = feature_extractor(
sanchit-gandhi's avatar
sanchit-gandhi committed
698
            subsampled_wavs, return_attention_mask=model_args.attention_mask, sampling_rate=sampling_rate
sanchit-gandhi's avatar
sanchit-gandhi committed
699
700
701
702
703
704
        )
        output_batch = {
            model_input_name: inputs.get(model_input_name),
            "attention_mask": inputs.get("attention_mask"),
            "labels": [int(label2id[label]) for label in batch["labels"]],
        }
sanchit-gandhi's avatar
sanchit-gandhi committed
705
706
707
708
709
710
711
712
        return output_batch

    if training_args.do_train:
        # Set the training transforms
        raw_datasets["train"].set_transform(train_transforms, output_all_columns=False)

    if training_args.do_eval:
        # Set the validation transforms
713
        raw_datasets["eval"].set_transform(train_transforms, output_all_columns=False)
sanchit-gandhi's avatar
sanchit-gandhi committed
714
715
716
717
718
719
720
721
722
723
724
725
726

    # Load the accuracy metric from the datasets package
    metric = evaluate.load("accuracy", cache_dir=model_args.cache_dir)

    # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with
    # `predictions` and `label_ids` fields) and has to return a dictionary string to float.
    def compute_metrics(eval_pred):
        """Computes accuracy on a batch of predictions"""
        predictions = np.argmax(eval_pred.predictions, axis=1)
        return metric.compute(predictions=predictions, references=eval_pred.label_ids)

    config = AutoConfig.from_pretrained(
        model_args.config_name or model_args.model_name_or_path,
sanchit-gandhi's avatar
sanchit-gandhi committed
727
        num_labels=len(label2id),
sanchit-gandhi's avatar
sanchit-gandhi committed
728
729
730
731
732
733
734
735
        label2id=label2id,
        id2label=id2label,
        finetuning_task="audio-classification",
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        token=model_args.token,
        trust_remote_code=model_args.trust_remote_code,
    )
sanchit-gandhi's avatar
sanchit-gandhi committed
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
    # adapt config with regularization
    config.update(
        {
            "feat_proj_dropout": model_args.feat_proj_dropout,
            "attention_dropout": model_args.attention_dropout,
            "hidden_dropout": model_args.hidden_dropout,
            "final_dropout": model_args.final_dropout,
            "mask_time_prob": model_args.mask_time_prob,
            "mask_time_length": model_args.mask_time_length,
            "mask_feature_prob": model_args.mask_feature_prob,
            "mask_feature_length": model_args.mask_feature_length,
            "layerdrop": model_args.layerdrop,
            "activation_dropout": model_args.activation_dropout,
        }
    )

sanchit-gandhi's avatar
sanchit-gandhi committed
752
753
754
755
756
757
758
759
760
761
762
    model = AutoModelForAudioClassification.from_pretrained(
        model_args.model_name_or_path,
        from_tf=bool(".ckpt" in model_args.model_name_or_path),
        config=config,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        token=model_args.token,
        trust_remote_code=model_args.trust_remote_code,
        ignore_mismatched_sizes=model_args.ignore_mismatched_sizes,
    )

sanchit-gandhi's avatar
sanchit-gandhi committed
763
    # freeze the convolutional waveform encoder for wav2vec2-style models
sanchit-gandhi's avatar
sanchit-gandhi committed
764
    if model_args.freeze_feature_encoder:
sanchit-gandhi's avatar
sanchit-gandhi committed
765
766
767
768
        if hasattr(model, "freeze_feature_encoder"):
            model.freeze_feature_encoder()
        else:
            raise ValueError("Method for freezing the feature encoder is not defined for Whisper-style models.")
sanchit-gandhi's avatar
sanchit-gandhi committed
769

sanchit-gandhi's avatar
sanchit-gandhi committed
770
    if model_args.freeze_base_model:
sanchit-gandhi's avatar
sanchit-gandhi committed
771
        if hasattr(model, "freeze_base_model"):
sanchit-gandhi's avatar
sanchit-gandhi committed
772
773
            # wav2vec2-style models
            model.freeze_base_model()
sanchit-gandhi's avatar
sanchit-gandhi committed
774
775
            if hasattr(model, "freeze_feature_encoder"):
                model.freeze_feature_encoder()
sanchit-gandhi's avatar
sanchit-gandhi committed
776
        elif hasattr(model, "freeze_encoder"):
sanchit-gandhi's avatar
sanchit-gandhi committed
777
778
779
780
781
            # whisper-style models
            model.freeze_encoder()
        else:
            raise ValueError("Method for freezing the base module of the audio encoder is not defined")

sanchit-gandhi's avatar
sanchit-gandhi committed
782
783
784
785
    # Initialize our trainer
    trainer = Trainer(
        model=model,
        args=training_args,
sanchit-gandhi's avatar
sanchit-gandhi committed
786
787
        train_dataset=raw_datasets["train"] if training_args.do_train else None,
        eval_dataset=raw_datasets["eval"] if training_args.do_eval else None,
sanchit-gandhi's avatar
sanchit-gandhi committed
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
        compute_metrics=compute_metrics,
        tokenizer=feature_extractor,
    )

    # Training
    if training_args.do_train:
        checkpoint = None
        if training_args.resume_from_checkpoint is not None:
            checkpoint = training_args.resume_from_checkpoint
        elif last_checkpoint is not None:
            checkpoint = last_checkpoint
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
        trainer.save_model()
        trainer.log_metrics("train", train_result.metrics)
        trainer.save_metrics("train", train_result.metrics)
        trainer.save_state()

    # Evaluation
    if training_args.do_eval:
        metrics = trainer.evaluate()
        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)

    # Write model card and (optionally) push to hub
    kwargs = {
        "finetuned_from": model_args.model_name_or_path,
        "tasks": "audio-classification",
sanchit-gandhi's avatar
sanchit-gandhi committed
815
        "dataset": data_args.train_dataset_name.split("+")[0],
sanchit-gandhi's avatar
sanchit-gandhi committed
816
817
818
819
820
821
822
823
824
825
        "tags": ["audio-classification"],
    }
    if training_args.push_to_hub:
        trainer.push_to_hub(**kwargs)
    else:
        trainer.create_model_card(**kwargs)


if __name__ == "__main__":
    main()