run_audio_classification.py 31.6 KB
Newer Older
sanchit-gandhi's avatar
sanchit-gandhi committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
#!/usr/bin/env python
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import logging
import os
sanchit-gandhi's avatar
sanchit-gandhi committed
19
import re
sanchit-gandhi's avatar
sanchit-gandhi committed
20
import sys
sanchit-gandhi's avatar
sanchit-gandhi committed
21
from collections import Counter
sanchit-gandhi's avatar
sanchit-gandhi committed
22
23
from dataclasses import dataclass, field
from random import randint
24
from typing import List, Optional, Union
sanchit-gandhi's avatar
sanchit-gandhi committed
25
26
27
28
29

import datasets
import evaluate
import numpy as np
import transformers
30
31
from datasets import Dataset, DatasetDict, IterableDataset, concatenate_datasets, interleave_datasets, load_dataset
from tqdm import tqdm
sanchit-gandhi's avatar
sanchit-gandhi committed
32
33
34
35
36
37
38
from transformers import (
    AutoConfig,
    AutoFeatureExtractor,
    AutoModelForAudioClassification,
    HfArgumentParser,
    Trainer,
    TrainingArguments,
sanchit-gandhi's avatar
sanchit-gandhi committed
39
    set_seed,
sanchit-gandhi's avatar
sanchit-gandhi committed
40
)
sanchit-gandhi's avatar
sanchit-gandhi committed
41
from transformers.models.whisper.tokenization_whisper import LANGUAGES
sanchit-gandhi's avatar
sanchit-gandhi committed
42
from transformers.trainer_utils import get_last_checkpoint
sanchit-gandhi's avatar
sanchit-gandhi committed
43
from transformers.utils import check_min_version
sanchit-gandhi's avatar
sanchit-gandhi committed
44
45
46
47
48
49
50
51


logger = logging.getLogger(__name__)

# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.38.0.dev0")


sanchit-gandhi's avatar
sanchit-gandhi committed
52
def random_subsample(wav: np.ndarray, max_length: float, sample_rate: int = 16000) -> np.ndarray:
sanchit-gandhi's avatar
sanchit-gandhi committed
53
54
55
56
57
58
59
60
    """Randomly sample chunks of `max_length` seconds from the input audio"""
    sample_length = int(round(sample_rate * max_length))
    if len(wav) <= sample_length:
        return wav
    random_offset = randint(0, len(wav) - sample_length - 1)
    return wav[random_offset : random_offset + sample_length]


sanchit-gandhi's avatar
sanchit-gandhi committed
61
62
63
64
65
66
67
68
69
ACCENT_MAPPING = {
    "British": "English",
    "Canadian": "American",
    "Northern irish": "Irish",
    "New zealand": "Australian",
    "Pakistani": "Indian",
}


sanchit-gandhi's avatar
sanchit-gandhi committed
70
def preprocess_labels(label: str) -> str:
sanchit-gandhi's avatar
sanchit-gandhi committed
71
    """Apply pre-processing formatting to the accent labels"""
sanchit-gandhi's avatar
sanchit-gandhi committed
72
73
74
75
76
77
78
79
    if "_" in label:
        # voxpopuli stylises the accent as a language code (e.g. en_pl for "polish") - convert to full accent
        language_code = label.split("_")[-1]
        label = LANGUAGES[language_code]
    # VCTK labels for two words are concatenated into one (NewZeleand-> New Zealand)
    label = re.sub(r"(\w)([A-Z])", r"\1 \2", label)
    # convert Whisper language code (polish) to capitalised (Polish)
    label = label.capitalize()
sanchit-gandhi's avatar
sanchit-gandhi committed
80
81
    if label in ACCENT_MAPPING:
        label = ACCENT_MAPPING[label]
sanchit-gandhi's avatar
sanchit-gandhi committed
82
    return label
sanchit-gandhi's avatar
sanchit-gandhi committed
83
84


sanchit-gandhi's avatar
sanchit-gandhi committed
85
86
87
88
89
90
91
92
93
@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    Using `HfArgumentParser` we can turn this class
    into argparse arguments to be able to specify them on
    the command line.
    """

94
95
96
97
98
99
100
    train_dataset_name: str = field(
        default=None,
        metadata={
            "help": "The name of the training dataset to use (via the datasets library). Load and combine "
            "multiple datasets by separating dataset ids by a '+' symbol. For example, to load and combine "
            " librispeech and common voice, set `train_dataset_name='librispeech_asr+common_voice'`."
        },
sanchit-gandhi's avatar
sanchit-gandhi committed
101
    )
102
103
104
105
106
107
    train_dataset_config_name: Optional[str] = field(
        default=None,
        metadata={
            "help": "The configuration name of the training dataset to use (via the datasets library). Load and combine "
            "multiple datasets by separating dataset configs by a '+' symbol."
        },
sanchit-gandhi's avatar
sanchit-gandhi committed
108
    )
sanchit-gandhi's avatar
sanchit-gandhi committed
109
110
111
112
113
114
    train_split_name: str = field(
        default="train",
        metadata={
            "help": ("The name of the training data set split to use (via the datasets library). Defaults to 'train'")
        },
    )
115
116
117
118
119
120
    train_dataset_samples: str = field(
        default=None,
        metadata={
            "help": "Number of samples in the training data. Load and combine "
            "multiple datasets by separating dataset samples by a '+' symbol."
        },
sanchit-gandhi's avatar
sanchit-gandhi committed
121
    )
122
123
    eval_dataset_name: str = field(
        default=None,
sanchit-gandhi's avatar
sanchit-gandhi committed
124
        metadata={
125
            "help": "The name of the evaluation dataset to use (via the datasets library). Defaults to the training dataset name if unspecified."
sanchit-gandhi's avatar
sanchit-gandhi committed
126
127
        },
    )
128
129
    eval_dataset_config_name: Optional[str] = field(
        default=None,
sanchit-gandhi's avatar
sanchit-gandhi committed
130
        metadata={
131
            "help": "The configuration name of the evaluation dataset to use (via the datasets library). Defaults to the training dataset config name if unspecified"
sanchit-gandhi's avatar
sanchit-gandhi committed
132
133
        },
    )
sanchit-gandhi's avatar
sanchit-gandhi committed
134
135
136
137
138
139
140
141
142
    eval_split_name: str = field(
        default="validation",
        metadata={
            "help": (
                "The name of the evaluation data set split to use (via the datasets"
                " library). Defaults to 'validation'"
            )
        },
    )
sanchit-gandhi's avatar
sanchit-gandhi committed
143
144
145
146
    audio_column_name: str = field(
        default="audio",
        metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"},
    )
147
    train_label_column_name: str = field(
sanchit-gandhi's avatar
sanchit-gandhi committed
148
        default="labels",
149
150
151
152
153
        metadata={
            "help": "The name of the dataset column containing the labels in the train set. Defaults to 'label'"
        },
    )
    eval_label_column_name: str = field(
sanchit-gandhi's avatar
sanchit-gandhi committed
154
        default="labels",
155
        metadata={"help": "The name of the dataset column containing the labels in the eval set. Defaults to 'label'"},
sanchit-gandhi's avatar
sanchit-gandhi committed
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
    )
    max_train_samples: Optional[int] = field(
        default=None,
        metadata={
            "help": (
                "For debugging purposes or quicker training, truncate the number of training examples to this "
                "value if set."
            )
        },
    )
    max_eval_samples: Optional[int] = field(
        default=None,
        metadata={
            "help": (
                "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
                "value if set."
            )
        },
    )
sanchit-gandhi's avatar
sanchit-gandhi committed
175
    max_length_seconds: Optional[float] = field(
sanchit-gandhi's avatar
sanchit-gandhi committed
176
        default=20,
sanchit-gandhi's avatar
sanchit-gandhi committed
177
178
        metadata={"help": "Audio samples will be randomly cut to this length during training if the value is set."},
    )
sanchit-gandhi's avatar
sanchit-gandhi committed
179
    min_length_seconds: Optional[float] = field(
sanchit-gandhi's avatar
sanchit-gandhi committed
180
181
        default=5,
        metadata={"help": "Audio samples less than this value will be filtered during training if the value is set."},
sanchit-gandhi's avatar
sanchit-gandhi committed
182
    )
sanchit-gandhi's avatar
sanchit-gandhi committed
183
184
185
186
    preprocessing_num_workers: Optional[int] = field(
        default=None,
        metadata={"help": "The number of processes to use for the preprocessing."},
    )
sanchit-gandhi's avatar
sanchit-gandhi committed
187
188
189
190
    filter_threshold: Optional[float] = field(
        default=1.0,
        metadata={"help": "Filter labels that occur less than `filter_threshold` percent in the training/eval data."},
    )
sanchit-gandhi's avatar
sanchit-gandhi committed
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216


@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
    """

    model_name_or_path: str = field(
        default="facebook/wav2vec2-base",
        metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"},
    )
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
    )
    cache_dir: Optional[str] = field(
        default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from the Hub"}
    )
    model_revision: str = field(
        default="main",
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
    )
    feature_extractor_name: Optional[str] = field(
        default=None, metadata={"help": "Name or path of preprocessor config."}
    )
    freeze_feature_encoder: bool = field(
sanchit-gandhi's avatar
sanchit-gandhi committed
217
218
219
220
        default=False,
        metadata={
            "help": "Whether to freeze the feature encoder layers of the model. Only relevant for Wav2Vec2-style models."
        },
sanchit-gandhi's avatar
sanchit-gandhi committed
221
222
223
    )
    freeze_base_model: bool = field(
        default=True, metadata={"help": "Whether to freeze the base encoder of the model."}
sanchit-gandhi's avatar
sanchit-gandhi committed
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
    )
    attention_mask: bool = field(
        default=True, metadata={"help": "Whether to generate an attention mask in the feature extractor."}
    )
    token: str = field(
        default=None,
        metadata={
            "help": (
                "The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
                "generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
            )
        },
    )
    trust_remote_code: bool = field(
        default=False,
        metadata={
            "help": (
                "Whether or not to allow for custom models defined on the Hub in their own modeling files. This option "
                "should only be set to `True` for repositories you trust and in which you have read the code, as it will "
                "execute code present on the Hub on your local machine."
            )
        },
    )
    ignore_mismatched_sizes: bool = field(
sanchit-gandhi's avatar
sanchit-gandhi committed
248
        default=True,
sanchit-gandhi's avatar
sanchit-gandhi committed
249
250
        metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."},
    )
sanchit-gandhi's avatar
sanchit-gandhi committed
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
    attention_dropout: float = field(
        default=0.0, metadata={"help": "The dropout ratio for the attention probabilities."}
    )
    activation_dropout: float = field(
        default=0.0, metadata={"help": "The dropout ratio for activations inside the fully connected layer."}
    )
    feat_proj_dropout: float = field(default=0.0, metadata={"help": "The dropout ratio for the projected features."})
    hidden_dropout: float = field(
        default=0.0,
        metadata={
            "help": "The dropout probability for all fully connected layers in the embeddings, encoder, and pooler."
        },
    )
    final_dropout: float = field(
        default=0.0,
        metadata={"help": "The dropout probability for the final projection layer."},
    )
    mask_time_prob: float = field(
        default=0.05,
        metadata={
            "help": (
                "Probability of each feature vector along the time axis to be chosen as the start of the vector "
                "span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature "
                "vectors will be masked along the time axis."
            )
        },
    )
    mask_time_length: int = field(
        default=10,
        metadata={"help": "Length of vector span to mask along the time axis."},
    )
    mask_feature_prob: float = field(
        default=0.0,
        metadata={
            "help": (
                "Probability of each feature vector along the feature axis to be chosen as the start of the vectorspan"
                " to be masked. Approximately ``mask_feature_prob * sequence_length // mask_feature_length`` feature"
                " bins will be masked along the time axis."
            )
        },
    )
    mask_feature_length: int = field(
        default=10,
        metadata={"help": "Length of vector span to mask along the feature axis."},
    )
    layerdrop: float = field(default=0.0, metadata={"help": "The LayerDrop probability."})
sanchit-gandhi's avatar
sanchit-gandhi committed
297

298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342

def convert_dataset_str_to_list(
    dataset_names,
    dataset_config_names,
    splits=None,
    label_column_names=None,
    dataset_samples=None,
    default_split="train",
):
    if isinstance(dataset_names, str):
        dataset_names = dataset_names.split("+")
        dataset_config_names = dataset_config_names.split("+")
        splits = splits.split("+") if splits is not None else None
        label_column_names = label_column_names.split("+") if label_column_names is not None else None
        dataset_samples = dataset_samples.split("+") if dataset_samples is not None else None

    # basic checks to ensure we've got the right number of datasets/configs/splits/columns/probs
    if len(dataset_names) != len(dataset_config_names):
        raise ValueError(
            f"Ensure one config is passed for each dataset, got {len(dataset_names)} datasets and"
            f" {len(dataset_config_names)} configs."
        )

    if splits is not None and len(splits) != len(dataset_names):
        raise ValueError(
            f"Ensure one split is passed for each dataset, got {len(dataset_names)} datasets and {len(splits)} splits."
        )

    if label_column_names is not None and len(label_column_names) != len(dataset_names):
        raise ValueError(
            f"Ensure one label column name is passed for each dataset, got {len(dataset_names)} datasets and"
            f" {len(label_column_names)} label column names."
        )

    if dataset_samples is not None:
        if len(dataset_samples) != len(dataset_names):
            raise ValueError(
                f"Ensure one sample is passed for each dataset, got {len(dataset_names)} datasets and "
                f"{len(dataset_samples)} samples."
            )
        dataset_samples = [float(ds_sample) for ds_sample in dataset_samples]
    else:
        dataset_samples = [None] * len(dataset_names)

    label_column_names = (
sanchit-gandhi's avatar
sanchit-gandhi committed
343
        label_column_names if label_column_names is not None else ["labels" for _ in range(len(dataset_names))]
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
    )
    splits = splits if splits is not None else [default_split for _ in range(len(dataset_names))]

    dataset_names_dict = []
    for i, ds_name in enumerate(dataset_names):
        dataset_names_dict.append(
            {
                "name": ds_name,
                "config": dataset_config_names[i],
                "split": splits[i],
                "label_column_name": label_column_names[i],
                "samples": dataset_samples[i],
            }
        )
    return dataset_names_dict


def load_multiple_datasets(
    dataset_names: Union[List, str],
    dataset_config_names: Union[List, str],
    splits: Optional[Union[List, str]] = None,
    label_column_names: Optional[List] = None,
sanchit-gandhi's avatar
sanchit-gandhi committed
366
    sampling_rate: Optional[int] = 16000,
367
368
    stopping_strategy: Optional[str] = "first_exhausted",
    dataset_samples: Optional[Union[List, np.array]] = None,
sanchit-gandhi's avatar
sanchit-gandhi committed
369
    streaming: Optional[bool] = False,
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
    seed: Optional[int] = None,
    audio_column_name: Optional[str] = "audio",
    **kwargs,
) -> Union[Dataset, IterableDataset]:
    dataset_names_dict = convert_dataset_str_to_list(
        dataset_names, dataset_config_names, splits, label_column_names, dataset_samples
    )

    if dataset_samples is not None:
        dataset_samples = [ds_dict["samples"] for ds_dict in dataset_names_dict]
        probabilities = np.array(dataset_samples) / np.sum(dataset_samples)
    else:
        probabilities = None

    all_datasets = []
    # iterate over the datasets we want to interleave
    for dataset_dict in tqdm(dataset_names_dict, desc="Combining datasets..."):
        dataset = load_dataset(
            dataset_dict["name"],
            dataset_dict["config"],
            split=dataset_dict["split"],
            streaming=streaming,
            **kwargs,
        )
        dataset_features = dataset.features.keys()

        if audio_column_name not in dataset_features:
            raise ValueError(
                f"Audio column name '{audio_column_name}' not found in dataset"
                f" '{dataset_dict['name']}'. Make sure to set `--audio_column_name` to"
                f" the correct audio column - one of {', '.join(dataset_features)}."
sanchit-gandhi's avatar
sanchit-gandhi committed
401
            )
sanchit-gandhi's avatar
sanchit-gandhi committed
402
403
        # resample to specified sampling rate
        dataset = dataset.cast_column("audio", datasets.features.Audio(sampling_rate))
404
405

        if dataset_dict["label_column_name"] not in dataset_features:
sanchit-gandhi's avatar
sanchit-gandhi committed
406
            raise ValueError(
sanchit-gandhi's avatar
sanchit-gandhi committed
407
                f"Label column name {dataset_dict['label_column_name']} not found in dataset"
408
409
                f" '{dataset_dict['name']}'. Make sure to set `--label_column_name` to the"
                f" correct text column - one of {', '.join(dataset_features)}."
sanchit-gandhi's avatar
sanchit-gandhi committed
410
411
            )

412
        # blanket renaming of all label columns to label
sanchit-gandhi's avatar
sanchit-gandhi committed
413
414
        if dataset_dict["label_column_name"] != "labels":
            dataset = dataset.rename_column(dataset_dict["label_column_name"], "labels")
415
416

        dataset_features = dataset.features.keys()
sanchit-gandhi's avatar
sanchit-gandhi committed
417
        columns_to_keep = {"audio", "labels"}
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
        dataset = dataset.remove_columns(set(dataset_features - columns_to_keep))
        all_datasets.append(dataset)

    if len(all_datasets) == 1:
        # we have a single dataset so just return it as is
        return all_datasets[0]

    if streaming:
        interleaved_dataset = interleave_datasets(
            all_datasets,
            stopping_strategy=stopping_strategy,
            probabilities=probabilities,
            seed=seed,
        )
    else:
        interleaved_dataset = concatenate_datasets(all_datasets)

    return interleaved_dataset

sanchit-gandhi's avatar
sanchit-gandhi committed
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()

    # Setup logging
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        handlers=[logging.StreamHandler(sys.stdout)],
    )

    if training_args.should_log:
        # The default of training_args.log_level is passive, so we set log level at info here to have that default.
        transformers.utils.logging.set_verbosity_info()

    log_level = training_args.get_process_log_level()
    logger.setLevel(log_level)
    transformers.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.enable_default_handler()
    transformers.utils.logging.enable_explicit_format()

    # Log on each process the small summary:
    logger.warning(
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, "
        + f"distributed training: {training_args.parallel_mode.value == 'distributed'}, 16-bits training: {training_args.fp16}"
    )
    logger.info(f"Training/evaluation parameters {training_args}")

    # Set seed before initializing model.
    set_seed(training_args.seed)

    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to train from scratch."
            )
        elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )

    # Initialize our dataset and prepare it for the audio classification task.
    raw_datasets = DatasetDict()
495
496
    # set seed for determinism
    set_seed(training_args.seed)
sanchit-gandhi's avatar
sanchit-gandhi committed
497

498
499
500
501
502
503
504
505
    if training_args.do_train:
        raw_datasets["train"] = load_multiple_datasets(
            data_args.train_dataset_name,
            data_args.train_dataset_config_name,
            splits=data_args.train_split_name,
            label_column_names=data_args.train_label_column_name,
            dataset_samples=data_args.train_dataset_samples,
            seed=training_args.seed,
sanchit-gandhi's avatar
sanchit-gandhi committed
506
            cache_dir=model_args.cache_dir,
507
            token=True if model_args.token else None,
sanchit-gandhi's avatar
sanchit-gandhi committed
508
            trust_remote_code=model_args.trust_remote_code,
sanchit-gandhi's avatar
sanchit-gandhi committed
509
            num_proc=data_args.preprocessing_num_workers,
sanchit-gandhi's avatar
sanchit-gandhi committed
510
            # streaming=data_args.streaming, TODO(SG): optionally enable streaming mode
sanchit-gandhi's avatar
sanchit-gandhi committed
511
512
        )

513
514
515
516
517
518
519
520
521
522
    if training_args.do_eval:
        dataset_names_dict = convert_dataset_str_to_list(
            data_args.eval_dataset_name if data_args.eval_dataset_name else data_args.train_dataset_name,
            data_args.eval_dataset_config_name
            if data_args.eval_dataset_config_name
            else data_args.train_dataset_config_name,
            splits=data_args.eval_split_name,
            label_column_names=data_args.eval_label_column_name,
        )
        all_eval_splits = []
sanchit-gandhi's avatar
sanchit-gandhi committed
523
524
525
526
527
528
529
530
531
        # load multiple eval sets
        for dataset_dict in dataset_names_dict:
            pretty_name = (
                f"{dataset_dict['name'].split('/')[-1]}/{dataset_dict['split'].replace('.', '-')}"
                if len(dataset_names_dict) > 1
                else "eval"
            )
            all_eval_splits.append(pretty_name)
            raw_datasets[pretty_name] = load_dataset(
532
533
534
                dataset_dict["name"],
                dataset_dict["config"],
                split=dataset_dict["split"],
sanchit-gandhi's avatar
sanchit-gandhi committed
535
                cache_dir=model_args.cache_dir,
536
                token=True if model_args.token else None,
sanchit-gandhi's avatar
sanchit-gandhi committed
537
                trust_remote_code=model_args.trust_remote_code,
sanchit-gandhi's avatar
sanchit-gandhi committed
538
                num_proc=data_args.preprocessing_num_workers,
sanchit-gandhi's avatar
sanchit-gandhi committed
539
                # streaming=data_args.streaming,
540
            )
sanchit-gandhi's avatar
sanchit-gandhi committed
541
542
543
544
545
546
            features = raw_datasets[pretty_name].features.keys()
            if dataset_dict["label_column_name"] not in features:
                raise ValueError(
                    f"--label_column_name {data_args.eval_label_column_name} not found in dataset '{data_args.dataset_name}'. "
                    "Make sure to set `--label_column_name` to the correct text column - one of "
                    f"{', '.join(raw_datasets['train'].column_names)}."
547
                )
sanchit-gandhi's avatar
sanchit-gandhi committed
548
549
550
            elif dataset_dict["label_column_name"] != "labels":
                raw_datasets[pretty_name] = raw_datasets[pretty_name].rename_column(
                    dataset_dict["label_column_name"], "labels"
551
                )
sanchit-gandhi's avatar
sanchit-gandhi committed
552
553
554
            raw_datasets[pretty_name] = raw_datasets[pretty_name].remove_columns(
                set(raw_datasets[pretty_name].features.keys()) - {"audio", "labels"}
            )
555
556

    if not training_args.do_train and not training_args.do_eval:
sanchit-gandhi's avatar
sanchit-gandhi committed
557
        raise ValueError(
558
            "Cannot not train and not do evaluation. At least one of training or evaluation has to be performed."
sanchit-gandhi's avatar
sanchit-gandhi committed
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
        )

    # Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over
    # transformer outputs in the classifier, but it doesn't always lead to better accuracy
    feature_extractor = AutoFeatureExtractor.from_pretrained(
        model_args.feature_extractor_name or model_args.model_name_or_path,
        return_attention_mask=model_args.attention_mask,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        token=model_args.token,
        trust_remote_code=model_args.trust_remote_code,
    )

    # `datasets` takes care of automatically loading and resampling the audio,
    # so we just need to set the correct target sampling rate.
    raw_datasets = raw_datasets.cast_column(
        data_args.audio_column_name, datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate)
    )

sanchit-gandhi's avatar
sanchit-gandhi committed
578
579
580
581
582
    if training_args.do_train:
        if data_args.max_train_samples is not None:
            raw_datasets["train"] = (
                raw_datasets["train"].shuffle(seed=training_args.seed).select(range(data_args.max_train_samples))
            )
sanchit-gandhi's avatar
sanchit-gandhi committed
583

sanchit-gandhi's avatar
sanchit-gandhi committed
584
585
586
587
    if training_args.do_eval:
        if data_args.max_eval_samples is not None:
            raw_datasets["eval"] = (
                raw_datasets["eval"].shuffle(seed=training_args.seed).select(range(data_args.max_eval_samples))
sanchit-gandhi's avatar
sanchit-gandhi committed
588
            )
sanchit-gandhi's avatar
sanchit-gandhi committed
589
590
591
592

    sampling_rate = feature_extractor.sampling_rate
    model_input_name = feature_extractor.model_input_names[0]

sanchit-gandhi's avatar
sanchit-gandhi committed
593
    # filter training data with non-valid labels
sanchit-gandhi's avatar
sanchit-gandhi committed
594
595
596
    def is_label_valid(label):
        return label != "Unknown"

sanchit-gandhi's avatar
sanchit-gandhi committed
597
    raw_datasets = raw_datasets.filter(
sanchit-gandhi's avatar
sanchit-gandhi committed
598
599
600
601
602
        is_label_valid,
        input_columns=["labels"],
        num_proc=data_args.preprocessing_num_workers,
        desc="Filtering by labels",
    )
sanchit-gandhi's avatar
sanchit-gandhi committed
603

sanchit-gandhi's avatar
sanchit-gandhi committed
604
    # filter training data with inputs < min_input_length
sanchit-gandhi's avatar
sanchit-gandhi committed
605
    max_input_length = data_args.max_length_seconds * sampling_rate
sanchit-gandhi's avatar
sanchit-gandhi committed
606
607
608
    min_input_length = data_args.min_length_seconds * sampling_rate

    def is_audio_valid(audio):
sanchit-gandhi's avatar
sanchit-gandhi committed
609
        return max_input_length > len(audio["array"]) > min_input_length
sanchit-gandhi's avatar
sanchit-gandhi committed
610
611
612
613
614
615
616
617

    raw_datasets = raw_datasets.filter(
        is_audio_valid,
        input_columns=["audio"],
        num_proc=data_args.preprocessing_num_workers,
        desc="Filtering by audio length",
    )

sanchit-gandhi's avatar
sanchit-gandhi committed
618
619
620
621
622
623
624
    # Prepare label mappings
    raw_datasets = raw_datasets.map(
        lambda label: {"labels": preprocess_labels(label)},
        input_columns=["labels"],
        num_proc=data_args.preprocessing_num_workers,
        desc="Pre-processing labels",
    )
sanchit-gandhi's avatar
sanchit-gandhi committed
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653

    # Print a summary of the labels to the stddout (helps identify low-label classes that could be filtered)
    # sort by freq
    count_labels_dict = Counter(raw_datasets["train"]["labels"])
    count_labels_dict = sorted(count_labels_dict.items(), key=lambda item: (-item[1], item[0]))
    labels, frequencies = zip(*count_labels_dict)
    total_labels = sum(frequencies)
    labels_to_remove = []

    logger.info(f"{'Accent':<15} {'Perc.':<5}")
    logger.info("-" * 20)
    for lab, freq in zip(labels, frequencies):
        freq = 100 * freq / total_labels
        logger.info(f"{lab:<15} {freq:<5}")
        if freq < data_args.filter_threshold:
            labels_to_remove.append(lab)

    # filter training data with label freq below threshold
    def is_label_valid(label):
        return label not in labels_to_remove

    if len(labels_to_remove):
        raw_datasets = raw_datasets.filter(
            is_label_valid,
            input_columns=["labels"],
            num_proc=data_args.preprocessing_num_workers,
            desc="Filtering low freq labels",
        )

sanchit-gandhi's avatar
sanchit-gandhi committed
654
    # We'll include these in the model's config to get human readable labels in the Inference API.
sanchit-gandhi's avatar
sanchit-gandhi committed
655
656
657
    set_labels = set(raw_datasets["train"]["labels"])
    if training_args.do_eval:
        set_labels = set_labels.union(set(raw_datasets["eval"]["labels"]))
sanchit-gandhi's avatar
sanchit-gandhi committed
658
659
660
661
662
663
664
    label2id, id2label = {}, {}
    for i, label in enumerate(set(set_labels)):
        label2id[label] = str(i)
        id2label[str(i)] = label

    def train_transforms(batch):
        """Apply train_transforms across a batch."""
sanchit-gandhi's avatar
sanchit-gandhi committed
665
666
667
668
669
670
671
672
673
        audios = [audio["array"] for audio in batch["audio"]]
        inputs = feature_extractor(
            audios, return_attention_mask=model_args.attention_mask, sampling_rate=sampling_rate
        )
        output_batch = {
            model_input_name: inputs.get(model_input_name),
            "attention_mask": inputs.get("attention_mask"),
            "labels": [int(label2id[label]) for label in batch["labels"]],
        }
sanchit-gandhi's avatar
sanchit-gandhi committed
674
675
676
677
678
679
680
681
        return output_batch

    if training_args.do_train:
        # Set the training transforms
        raw_datasets["train"].set_transform(train_transforms, output_all_columns=False)

    if training_args.do_eval:
        # Set the validation transforms
682
        raw_datasets["eval"].set_transform(train_transforms, output_all_columns=False)
sanchit-gandhi's avatar
sanchit-gandhi committed
683
684
685
686
687
688
689
690
691
692
693
694
695

    # Load the accuracy metric from the datasets package
    metric = evaluate.load("accuracy", cache_dir=model_args.cache_dir)

    # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with
    # `predictions` and `label_ids` fields) and has to return a dictionary string to float.
    def compute_metrics(eval_pred):
        """Computes accuracy on a batch of predictions"""
        predictions = np.argmax(eval_pred.predictions, axis=1)
        return metric.compute(predictions=predictions, references=eval_pred.label_ids)

    config = AutoConfig.from_pretrained(
        model_args.config_name or model_args.model_name_or_path,
sanchit-gandhi's avatar
sanchit-gandhi committed
696
        num_labels=len(label2id),
sanchit-gandhi's avatar
sanchit-gandhi committed
697
698
699
700
701
702
703
704
        label2id=label2id,
        id2label=id2label,
        finetuning_task="audio-classification",
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        token=model_args.token,
        trust_remote_code=model_args.trust_remote_code,
    )
sanchit-gandhi's avatar
sanchit-gandhi committed
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
    # adapt config with regularization
    config.update(
        {
            "feat_proj_dropout": model_args.feat_proj_dropout,
            "attention_dropout": model_args.attention_dropout,
            "hidden_dropout": model_args.hidden_dropout,
            "final_dropout": model_args.final_dropout,
            "mask_time_prob": model_args.mask_time_prob,
            "mask_time_length": model_args.mask_time_length,
            "mask_feature_prob": model_args.mask_feature_prob,
            "mask_feature_length": model_args.mask_feature_length,
            "layerdrop": model_args.layerdrop,
            "activation_dropout": model_args.activation_dropout,
        }
    )

sanchit-gandhi's avatar
sanchit-gandhi committed
721
722
723
724
725
726
727
728
729
730
731
    model = AutoModelForAudioClassification.from_pretrained(
        model_args.model_name_or_path,
        from_tf=bool(".ckpt" in model_args.model_name_or_path),
        config=config,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        token=model_args.token,
        trust_remote_code=model_args.trust_remote_code,
        ignore_mismatched_sizes=model_args.ignore_mismatched_sizes,
    )

sanchit-gandhi's avatar
sanchit-gandhi committed
732
    # freeze the convolutional waveform encoder for wav2vec2-style models
sanchit-gandhi's avatar
sanchit-gandhi committed
733
    if model_args.freeze_feature_encoder:
sanchit-gandhi's avatar
sanchit-gandhi committed
734
735
736
737
        if hasattr(model, "freeze_feature_encoder"):
            model.freeze_feature_encoder()
        else:
            raise ValueError("Method for freezing the feature encoder is not defined for Whisper-style models.")
sanchit-gandhi's avatar
sanchit-gandhi committed
738

sanchit-gandhi's avatar
sanchit-gandhi committed
739
    if model_args.freeze_base_model:
sanchit-gandhi's avatar
sanchit-gandhi committed
740
        if hasattr(model, "freeze_base_model"):
sanchit-gandhi's avatar
sanchit-gandhi committed
741
742
            # wav2vec2-style models
            model.freeze_base_model()
sanchit-gandhi's avatar
sanchit-gandhi committed
743
744
            if hasattr(model, "freeze_feature_encoder"):
                model.freeze_feature_encoder()
sanchit-gandhi's avatar
sanchit-gandhi committed
745
        elif hasattr(model, "freeze_encoder"):
sanchit-gandhi's avatar
sanchit-gandhi committed
746
747
748
749
750
            # whisper-style models
            model.freeze_encoder()
        else:
            raise ValueError("Method for freezing the base module of the audio encoder is not defined")

sanchit-gandhi's avatar
sanchit-gandhi committed
751
752
753
754
    # Initialize our trainer
    trainer = Trainer(
        model=model,
        args=training_args,
sanchit-gandhi's avatar
sanchit-gandhi committed
755
756
        train_dataset=raw_datasets["train"] if training_args.do_train else None,
        eval_dataset=raw_datasets["eval"] if training_args.do_eval else None,
sanchit-gandhi's avatar
sanchit-gandhi committed
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
        compute_metrics=compute_metrics,
        tokenizer=feature_extractor,
    )

    # Training
    if training_args.do_train:
        checkpoint = None
        if training_args.resume_from_checkpoint is not None:
            checkpoint = training_args.resume_from_checkpoint
        elif last_checkpoint is not None:
            checkpoint = last_checkpoint
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
        trainer.save_model()
        trainer.log_metrics("train", train_result.metrics)
        trainer.save_metrics("train", train_result.metrics)
        trainer.save_state()

    # Evaluation
    if training_args.do_eval:
        metrics = trainer.evaluate()
        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)

    # Write model card and (optionally) push to hub
    kwargs = {
        "finetuned_from": model_args.model_name_or_path,
        "tasks": "audio-classification",
sanchit-gandhi's avatar
sanchit-gandhi committed
784
        "dataset": data_args.train_dataset_name.split("+")[0],
sanchit-gandhi's avatar
sanchit-gandhi committed
785
786
787
788
789
790
791
792
793
794
        "tags": ["audio-classification"],
    }
    if training_args.push_to_hub:
        trainer.push_to_hub(**kwargs)
    else:
        trainer.create_model_card(**kwargs)


if __name__ == "__main__":
    main()