run_audio_classification.py 28.1 KB
Newer Older
sanchit-gandhi's avatar
sanchit-gandhi committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
#!/usr/bin/env python
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import logging
import os
sanchit-gandhi's avatar
sanchit-gandhi committed
19
import re
sanchit-gandhi's avatar
sanchit-gandhi committed
20
21
22
import sys
from dataclasses import dataclass, field
from random import randint
23
from typing import List, Optional, Union
sanchit-gandhi's avatar
sanchit-gandhi committed
24
25
26
27
28

import datasets
import evaluate
import numpy as np
import transformers
29
30
from datasets import Dataset, DatasetDict, IterableDataset, concatenate_datasets, interleave_datasets, load_dataset
from tqdm import tqdm
sanchit-gandhi's avatar
sanchit-gandhi committed
31
32
33
34
35
36
37
from transformers import (
    AutoConfig,
    AutoFeatureExtractor,
    AutoModelForAudioClassification,
    HfArgumentParser,
    Trainer,
    TrainingArguments,
sanchit-gandhi's avatar
sanchit-gandhi committed
38
    set_seed,
sanchit-gandhi's avatar
sanchit-gandhi committed
39
)
sanchit-gandhi's avatar
sanchit-gandhi committed
40
from transformers.models.whisper.tokenization_whisper import LANGUAGES
sanchit-gandhi's avatar
sanchit-gandhi committed
41
from transformers.trainer_utils import get_last_checkpoint
sanchit-gandhi's avatar
sanchit-gandhi committed
42
from transformers.utils import check_min_version
sanchit-gandhi's avatar
sanchit-gandhi committed
43
44
45
46
47
48
49
50


logger = logging.getLogger(__name__)

# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.38.0.dev0")


sanchit-gandhi's avatar
sanchit-gandhi committed
51
def random_subsample(wav: np.ndarray, max_length: float, sample_rate: int = 16000) -> np.ndarray:
sanchit-gandhi's avatar
sanchit-gandhi committed
52
53
54
55
56
57
58
59
    """Randomly sample chunks of `max_length` seconds from the input audio"""
    sample_length = int(round(sample_rate * max_length))
    if len(wav) <= sample_length:
        return wav
    random_offset = randint(0, len(wav) - sample_length - 1)
    return wav[random_offset : random_offset + sample_length]


sanchit-gandhi's avatar
sanchit-gandhi committed
60
61
62
63
64
65
66
67
68
ACCENT_MAPPING = {
    "British": "English",
    "Canadian": "American",
    "Northern irish": "Irish",
    "New zealand": "Australian",
    "Pakistani": "Indian",
}


sanchit-gandhi's avatar
sanchit-gandhi committed
69
def preprocess_labels(label: str) -> str:
sanchit-gandhi's avatar
sanchit-gandhi committed
70
    """Apply pre-processing formatting to the accent labels"""
sanchit-gandhi's avatar
sanchit-gandhi committed
71
72
73
74
75
76
77
78
    if "_" in label:
        # voxpopuli stylises the accent as a language code (e.g. en_pl for "polish") - convert to full accent
        language_code = label.split("_")[-1]
        label = LANGUAGES[language_code]
    # VCTK labels for two words are concatenated into one (NewZeleand-> New Zealand)
    label = re.sub(r"(\w)([A-Z])", r"\1 \2", label)
    # convert Whisper language code (polish) to capitalised (Polish)
    label = label.capitalize()
sanchit-gandhi's avatar
sanchit-gandhi committed
79
80
    if label in ACCENT_MAPPING:
        label = ACCENT_MAPPING[label]
sanchit-gandhi's avatar
sanchit-gandhi committed
81
    return label
sanchit-gandhi's avatar
sanchit-gandhi committed
82
83


sanchit-gandhi's avatar
sanchit-gandhi committed
84
85
86
87
88
89
90
91
92
@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    Using `HfArgumentParser` we can turn this class
    into argparse arguments to be able to specify them on
    the command line.
    """

93
94
95
96
97
98
99
    train_dataset_name: str = field(
        default=None,
        metadata={
            "help": "The name of the training dataset to use (via the datasets library). Load and combine "
            "multiple datasets by separating dataset ids by a '+' symbol. For example, to load and combine "
            " librispeech and common voice, set `train_dataset_name='librispeech_asr+common_voice'`."
        },
sanchit-gandhi's avatar
sanchit-gandhi committed
100
    )
101
102
103
104
105
106
    train_dataset_config_name: Optional[str] = field(
        default=None,
        metadata={
            "help": "The configuration name of the training dataset to use (via the datasets library). Load and combine "
            "multiple datasets by separating dataset configs by a '+' symbol."
        },
sanchit-gandhi's avatar
sanchit-gandhi committed
107
    )
sanchit-gandhi's avatar
sanchit-gandhi committed
108
109
110
111
112
113
    train_split_name: str = field(
        default="train",
        metadata={
            "help": ("The name of the training data set split to use (via the datasets library). Defaults to 'train'")
        },
    )
114
115
116
117
118
119
    train_dataset_samples: str = field(
        default=None,
        metadata={
            "help": "Number of samples in the training data. Load and combine "
            "multiple datasets by separating dataset samples by a '+' symbol."
        },
sanchit-gandhi's avatar
sanchit-gandhi committed
120
    )
121
122
    eval_dataset_name: str = field(
        default=None,
sanchit-gandhi's avatar
sanchit-gandhi committed
123
        metadata={
124
            "help": "The name of the evaluation dataset to use (via the datasets library). Defaults to the training dataset name if unspecified."
sanchit-gandhi's avatar
sanchit-gandhi committed
125
126
        },
    )
127
128
    eval_dataset_config_name: Optional[str] = field(
        default=None,
sanchit-gandhi's avatar
sanchit-gandhi committed
129
        metadata={
130
            "help": "The configuration name of the evaluation dataset to use (via the datasets library). Defaults to the training dataset config name if unspecified"
sanchit-gandhi's avatar
sanchit-gandhi committed
131
132
        },
    )
sanchit-gandhi's avatar
sanchit-gandhi committed
133
134
135
136
137
138
139
140
141
    eval_split_name: str = field(
        default="validation",
        metadata={
            "help": (
                "The name of the evaluation data set split to use (via the datasets"
                " library). Defaults to 'validation'"
            )
        },
    )
sanchit-gandhi's avatar
sanchit-gandhi committed
142
143
144
145
    audio_column_name: str = field(
        default="audio",
        metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"},
    )
146
    train_label_column_name: str = field(
sanchit-gandhi's avatar
sanchit-gandhi committed
147
        default="labels",
148
149
150
151
152
        metadata={
            "help": "The name of the dataset column containing the labels in the train set. Defaults to 'label'"
        },
    )
    eval_label_column_name: str = field(
sanchit-gandhi's avatar
sanchit-gandhi committed
153
        default="labels",
154
        metadata={"help": "The name of the dataset column containing the labels in the eval set. Defaults to 'label'"},
sanchit-gandhi's avatar
sanchit-gandhi committed
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
    )
    max_train_samples: Optional[int] = field(
        default=None,
        metadata={
            "help": (
                "For debugging purposes or quicker training, truncate the number of training examples to this "
                "value if set."
            )
        },
    )
    max_eval_samples: Optional[int] = field(
        default=None,
        metadata={
            "help": (
                "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
                "value if set."
            )
        },
    )
    max_length_seconds: float = field(
        default=20,
sanchit-gandhi's avatar
sanchit-gandhi committed
176
177
178
179
180
        metadata={"help": "Audio samples will be randomly cut to this length during training if the value is set."},
    )
    min_length_seconds: float = field(
        default=5,
        metadata={"help": "Audio samples less than this value will be filtered during training if the value is set."},
sanchit-gandhi's avatar
sanchit-gandhi committed
181
    )
sanchit-gandhi's avatar
sanchit-gandhi committed
182
183
184
185
    preprocessing_num_workers: Optional[int] = field(
        default=None,
        metadata={"help": "The number of processes to use for the preprocessing."},
    )
sanchit-gandhi's avatar
sanchit-gandhi committed
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211


@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
    """

    model_name_or_path: str = field(
        default="facebook/wav2vec2-base",
        metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"},
    )
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
    )
    cache_dir: Optional[str] = field(
        default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from the Hub"}
    )
    model_revision: str = field(
        default="main",
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
    )
    feature_extractor_name: Optional[str] = field(
        default=None, metadata={"help": "Name or path of preprocessor config."}
    )
    freeze_feature_encoder: bool = field(
sanchit-gandhi's avatar
sanchit-gandhi committed
212
213
214
215
        default=False,
        metadata={
            "help": "Whether to freeze the feature encoder layers of the model. Only relevant for Wav2Vec2-style models."
        },
sanchit-gandhi's avatar
sanchit-gandhi committed
216
217
218
    )
    freeze_base_model: bool = field(
        default=True, metadata={"help": "Whether to freeze the base encoder of the model."}
sanchit-gandhi's avatar
sanchit-gandhi committed
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
    )
    attention_mask: bool = field(
        default=True, metadata={"help": "Whether to generate an attention mask in the feature extractor."}
    )
    token: str = field(
        default=None,
        metadata={
            "help": (
                "The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
                "generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
            )
        },
    )
    trust_remote_code: bool = field(
        default=False,
        metadata={
            "help": (
                "Whether or not to allow for custom models defined on the Hub in their own modeling files. This option "
                "should only be set to `True` for repositories you trust and in which you have read the code, as it will "
                "execute code present on the Hub on your local machine."
            )
        },
    )
    ignore_mismatched_sizes: bool = field(
sanchit-gandhi's avatar
sanchit-gandhi committed
243
        default=True,
sanchit-gandhi's avatar
sanchit-gandhi committed
244
245
246
        metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."},
    )

247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291

def convert_dataset_str_to_list(
    dataset_names,
    dataset_config_names,
    splits=None,
    label_column_names=None,
    dataset_samples=None,
    default_split="train",
):
    if isinstance(dataset_names, str):
        dataset_names = dataset_names.split("+")
        dataset_config_names = dataset_config_names.split("+")
        splits = splits.split("+") if splits is not None else None
        label_column_names = label_column_names.split("+") if label_column_names is not None else None
        dataset_samples = dataset_samples.split("+") if dataset_samples is not None else None

    # basic checks to ensure we've got the right number of datasets/configs/splits/columns/probs
    if len(dataset_names) != len(dataset_config_names):
        raise ValueError(
            f"Ensure one config is passed for each dataset, got {len(dataset_names)} datasets and"
            f" {len(dataset_config_names)} configs."
        )

    if splits is not None and len(splits) != len(dataset_names):
        raise ValueError(
            f"Ensure one split is passed for each dataset, got {len(dataset_names)} datasets and {len(splits)} splits."
        )

    if label_column_names is not None and len(label_column_names) != len(dataset_names):
        raise ValueError(
            f"Ensure one label column name is passed for each dataset, got {len(dataset_names)} datasets and"
            f" {len(label_column_names)} label column names."
        )

    if dataset_samples is not None:
        if len(dataset_samples) != len(dataset_names):
            raise ValueError(
                f"Ensure one sample is passed for each dataset, got {len(dataset_names)} datasets and "
                f"{len(dataset_samples)} samples."
            )
        dataset_samples = [float(ds_sample) for ds_sample in dataset_samples]
    else:
        dataset_samples = [None] * len(dataset_names)

    label_column_names = (
sanchit-gandhi's avatar
sanchit-gandhi committed
292
        label_column_names if label_column_names is not None else ["labels" for _ in range(len(dataset_names))]
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
    )
    splits = splits if splits is not None else [default_split for _ in range(len(dataset_names))]

    dataset_names_dict = []
    for i, ds_name in enumerate(dataset_names):
        dataset_names_dict.append(
            {
                "name": ds_name,
                "config": dataset_config_names[i],
                "split": splits[i],
                "label_column_name": label_column_names[i],
                "samples": dataset_samples[i],
            }
        )
    return dataset_names_dict


def load_multiple_datasets(
    dataset_names: Union[List, str],
    dataset_config_names: Union[List, str],
    splits: Optional[Union[List, str]] = None,
    label_column_names: Optional[List] = None,
sanchit-gandhi's avatar
sanchit-gandhi committed
315
    sampling_rate: Optional[int] = 16000,
316
317
    stopping_strategy: Optional[str] = "first_exhausted",
    dataset_samples: Optional[Union[List, np.array]] = None,
sanchit-gandhi's avatar
sanchit-gandhi committed
318
    streaming: Optional[bool] = False,
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
    seed: Optional[int] = None,
    audio_column_name: Optional[str] = "audio",
    **kwargs,
) -> Union[Dataset, IterableDataset]:
    dataset_names_dict = convert_dataset_str_to_list(
        dataset_names, dataset_config_names, splits, label_column_names, dataset_samples
    )

    if dataset_samples is not None:
        dataset_samples = [ds_dict["samples"] for ds_dict in dataset_names_dict]
        probabilities = np.array(dataset_samples) / np.sum(dataset_samples)
    else:
        probabilities = None

    all_datasets = []
    # iterate over the datasets we want to interleave
    for dataset_dict in tqdm(dataset_names_dict, desc="Combining datasets..."):
        dataset = load_dataset(
            dataset_dict["name"],
            dataset_dict["config"],
            split=dataset_dict["split"],
            streaming=streaming,
            **kwargs,
        )
        dataset_features = dataset.features.keys()

        if audio_column_name not in dataset_features:
            raise ValueError(
                f"Audio column name '{audio_column_name}' not found in dataset"
                f" '{dataset_dict['name']}'. Make sure to set `--audio_column_name` to"
                f" the correct audio column - one of {', '.join(dataset_features)}."
sanchit-gandhi's avatar
sanchit-gandhi committed
350
            )
sanchit-gandhi's avatar
sanchit-gandhi committed
351
352
        # resample to specified sampling rate
        dataset = dataset.cast_column("audio", datasets.features.Audio(sampling_rate))
353
354

        if dataset_dict["label_column_name"] not in dataset_features:
sanchit-gandhi's avatar
sanchit-gandhi committed
355
            raise ValueError(
sanchit-gandhi's avatar
sanchit-gandhi committed
356
                f"Label column name {dataset_dict['label_column_name']} not found in dataset"
357
358
                f" '{dataset_dict['name']}'. Make sure to set `--label_column_name` to the"
                f" correct text column - one of {', '.join(dataset_features)}."
sanchit-gandhi's avatar
sanchit-gandhi committed
359
360
            )

361
        # blanket renaming of all label columns to label
sanchit-gandhi's avatar
sanchit-gandhi committed
362
363
        if dataset_dict["label_column_name"] != "labels":
            dataset = dataset.rename_column(dataset_dict["label_column_name"], "labels")
364
365

        dataset_features = dataset.features.keys()
sanchit-gandhi's avatar
sanchit-gandhi committed
366
        columns_to_keep = {"audio", "labels"}
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
        dataset = dataset.remove_columns(set(dataset_features - columns_to_keep))
        all_datasets.append(dataset)

    if len(all_datasets) == 1:
        # we have a single dataset so just return it as is
        return all_datasets[0]

    if streaming:
        interleaved_dataset = interleave_datasets(
            all_datasets,
            stopping_strategy=stopping_strategy,
            probabilities=probabilities,
            seed=seed,
        )
    else:
        interleaved_dataset = concatenate_datasets(all_datasets)

    return interleaved_dataset

sanchit-gandhi's avatar
sanchit-gandhi committed
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443

def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()

    # Setup logging
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        handlers=[logging.StreamHandler(sys.stdout)],
    )

    if training_args.should_log:
        # The default of training_args.log_level is passive, so we set log level at info here to have that default.
        transformers.utils.logging.set_verbosity_info()

    log_level = training_args.get_process_log_level()
    logger.setLevel(log_level)
    transformers.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.enable_default_handler()
    transformers.utils.logging.enable_explicit_format()

    # Log on each process the small summary:
    logger.warning(
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, "
        + f"distributed training: {training_args.parallel_mode.value == 'distributed'}, 16-bits training: {training_args.fp16}"
    )
    logger.info(f"Training/evaluation parameters {training_args}")

    # Set seed before initializing model.
    set_seed(training_args.seed)

    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to train from scratch."
            )
        elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )

    # Initialize our dataset and prepare it for the audio classification task.
    raw_datasets = DatasetDict()
444
445
    # set seed for determinism
    set_seed(training_args.seed)
sanchit-gandhi's avatar
sanchit-gandhi committed
446

447
448
449
450
451
452
453
454
    if training_args.do_train:
        raw_datasets["train"] = load_multiple_datasets(
            data_args.train_dataset_name,
            data_args.train_dataset_config_name,
            splits=data_args.train_split_name,
            label_column_names=data_args.train_label_column_name,
            dataset_samples=data_args.train_dataset_samples,
            seed=training_args.seed,
sanchit-gandhi's avatar
sanchit-gandhi committed
455
            cache_dir=model_args.cache_dir,
456
            token=True if model_args.token else None,
sanchit-gandhi's avatar
sanchit-gandhi committed
457
            trust_remote_code=model_args.trust_remote_code,
sanchit-gandhi's avatar
sanchit-gandhi committed
458
            num_proc=data_args.preprocessing_num_workers,
sanchit-gandhi's avatar
sanchit-gandhi committed
459
            # streaming=data_args.streaming, TODO(SG): optionally enable streaming mode
sanchit-gandhi's avatar
sanchit-gandhi committed
460
461
        )

462
463
464
465
466
467
468
469
470
471
    if training_args.do_eval:
        dataset_names_dict = convert_dataset_str_to_list(
            data_args.eval_dataset_name if data_args.eval_dataset_name else data_args.train_dataset_name,
            data_args.eval_dataset_config_name
            if data_args.eval_dataset_config_name
            else data_args.train_dataset_config_name,
            splits=data_args.eval_split_name,
            label_column_names=data_args.eval_label_column_name,
        )
        all_eval_splits = []
sanchit-gandhi's avatar
sanchit-gandhi committed
472
473
474
475
476
477
478
479
480
        # load multiple eval sets
        for dataset_dict in dataset_names_dict:
            pretty_name = (
                f"{dataset_dict['name'].split('/')[-1]}/{dataset_dict['split'].replace('.', '-')}"
                if len(dataset_names_dict) > 1
                else "eval"
            )
            all_eval_splits.append(pretty_name)
            raw_datasets[pretty_name] = load_dataset(
481
482
483
                dataset_dict["name"],
                dataset_dict["config"],
                split=dataset_dict["split"],
sanchit-gandhi's avatar
sanchit-gandhi committed
484
                cache_dir=model_args.cache_dir,
485
                token=True if model_args.token else None,
sanchit-gandhi's avatar
sanchit-gandhi committed
486
                trust_remote_code=model_args.trust_remote_code,
sanchit-gandhi's avatar
sanchit-gandhi committed
487
                num_proc=data_args.preprocessing_num_workers,
sanchit-gandhi's avatar
sanchit-gandhi committed
488
                # streaming=data_args.streaming,
489
            )
sanchit-gandhi's avatar
sanchit-gandhi committed
490
491
492
493
494
495
            features = raw_datasets[pretty_name].features.keys()
            if dataset_dict["label_column_name"] not in features:
                raise ValueError(
                    f"--label_column_name {data_args.eval_label_column_name} not found in dataset '{data_args.dataset_name}'. "
                    "Make sure to set `--label_column_name` to the correct text column - one of "
                    f"{', '.join(raw_datasets['train'].column_names)}."
496
                )
sanchit-gandhi's avatar
sanchit-gandhi committed
497
498
499
            elif dataset_dict["label_column_name"] != "labels":
                raw_datasets[pretty_name] = raw_datasets[pretty_name].rename_column(
                    dataset_dict["label_column_name"], "labels"
500
                )
sanchit-gandhi's avatar
sanchit-gandhi committed
501
502
503
            raw_datasets[pretty_name] = raw_datasets[pretty_name].remove_columns(
                set(raw_datasets[pretty_name].features.keys()) - {"audio", "labels"}
            )
504
505

    if not training_args.do_train and not training_args.do_eval:
sanchit-gandhi's avatar
sanchit-gandhi committed
506
        raise ValueError(
507
            "Cannot not train and not do evaluation. At least one of training or evaluation has to be performed."
sanchit-gandhi's avatar
sanchit-gandhi committed
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
        )

    # Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over
    # transformer outputs in the classifier, but it doesn't always lead to better accuracy
    feature_extractor = AutoFeatureExtractor.from_pretrained(
        model_args.feature_extractor_name or model_args.model_name_or_path,
        return_attention_mask=model_args.attention_mask,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        token=model_args.token,
        trust_remote_code=model_args.trust_remote_code,
    )

    # `datasets` takes care of automatically loading and resampling the audio,
    # so we just need to set the correct target sampling rate.
    raw_datasets = raw_datasets.cast_column(
        data_args.audio_column_name, datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate)
    )

sanchit-gandhi's avatar
sanchit-gandhi committed
527
528
529
530
531
    if training_args.do_train:
        if data_args.max_train_samples is not None:
            raw_datasets["train"] = (
                raw_datasets["train"].shuffle(seed=training_args.seed).select(range(data_args.max_train_samples))
            )
sanchit-gandhi's avatar
sanchit-gandhi committed
532

sanchit-gandhi's avatar
sanchit-gandhi committed
533
534
535
536
    if training_args.do_eval:
        if data_args.max_eval_samples is not None:
            raw_datasets["eval"] = (
                raw_datasets["eval"].shuffle(seed=training_args.seed).select(range(data_args.max_eval_samples))
sanchit-gandhi's avatar
sanchit-gandhi committed
537
            )
sanchit-gandhi's avatar
sanchit-gandhi committed
538
539
540
541

    sampling_rate = feature_extractor.sampling_rate
    model_input_name = feature_extractor.model_input_names[0]

sanchit-gandhi's avatar
sanchit-gandhi committed
542
    # filter training data with non-valid labels
sanchit-gandhi's avatar
sanchit-gandhi committed
543
544
545
    def is_label_valid(label):
        return label != "Unknown"

sanchit-gandhi's avatar
sanchit-gandhi committed
546
    raw_datasets = raw_datasets.filter(
sanchit-gandhi's avatar
sanchit-gandhi committed
547
548
549
550
551
        is_label_valid,
        input_columns=["labels"],
        num_proc=data_args.preprocessing_num_workers,
        desc="Filtering by labels",
    )
sanchit-gandhi's avatar
sanchit-gandhi committed
552

sanchit-gandhi's avatar
sanchit-gandhi committed
553
554
555
556
557
558
559
560
561
562
563
564
565
    # filter training data with inputs < min_input_length
    min_input_length = data_args.min_length_seconds * sampling_rate

    def is_audio_valid(audio):
        return len(audio["array"]) > min_input_length

    raw_datasets = raw_datasets.filter(
        is_audio_valid,
        input_columns=["audio"],
        num_proc=data_args.preprocessing_num_workers,
        desc="Filtering by audio length",
    )

sanchit-gandhi's avatar
sanchit-gandhi committed
566
567
568
569
570
571
572
    # Prepare label mappings
    raw_datasets = raw_datasets.map(
        lambda label: {"labels": preprocess_labels(label)},
        input_columns=["labels"],
        num_proc=data_args.preprocessing_num_workers,
        desc="Pre-processing labels",
    )
sanchit-gandhi's avatar
sanchit-gandhi committed
573
    # We'll include these in the model's config to get human readable labels in the Inference API.
sanchit-gandhi's avatar
sanchit-gandhi committed
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
    set_labels = set(raw_datasets["train"]["labels"]).union(set(raw_datasets["eval"]["labels"]))
    label2id, id2label = {}, {}
    for i, label in enumerate(set(set_labels)):
        label2id[label] = str(i)
        id2label[str(i)] = label

    train_labels = raw_datasets["train"]["labels"]
    num_labels = {key: 0 for key in set(train_labels)}
    for label in train_labels:
        num_labels[label] += 1

    # Print a summary of the labels to the stddout (helps identify low-label classes that could be filtered)
    num_labels = sorted(num_labels.items(), key=lambda x: (-x[1], x[0]))
    logger.info(f"{'Language':<15} {'Count':<5}")
    logger.info("-" * 20)
    for language, count in num_labels:
        logger.info(f"{language:<15} {count:<5}")

    def train_transforms(batch):
        """Apply train_transforms across a batch."""
        subsampled_wavs = []
        for audio in batch["audio"]:
            wav = random_subsample(audio["array"], max_length=data_args.max_length_seconds, sample_rate=sampling_rate)
            subsampled_wavs.append(wav)
        inputs = feature_extractor(subsampled_wavs, sampling_rate=sampling_rate)
        output_batch = {model_input_name: inputs.get(model_input_name)}
        output_batch["labels"] = [int(label2id[label]) for label in batch["labels"]]
        return output_batch

    if training_args.do_train:
        # Set the training transforms
        raw_datasets["train"].set_transform(train_transforms, output_all_columns=False)

    if training_args.do_eval:
        # Set the validation transforms
609
        raw_datasets["eval"].set_transform(train_transforms, output_all_columns=False)
sanchit-gandhi's avatar
sanchit-gandhi committed
610
611
612
613
614
615
616
617
618
619
620
621
622

    # Load the accuracy metric from the datasets package
    metric = evaluate.load("accuracy", cache_dir=model_args.cache_dir)

    # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with
    # `predictions` and `label_ids` fields) and has to return a dictionary string to float.
    def compute_metrics(eval_pred):
        """Computes accuracy on a batch of predictions"""
        predictions = np.argmax(eval_pred.predictions, axis=1)
        return metric.compute(predictions=predictions, references=eval_pred.label_ids)

    config = AutoConfig.from_pretrained(
        model_args.config_name or model_args.model_name_or_path,
sanchit-gandhi's avatar
sanchit-gandhi committed
623
        num_labels=len(label2id),
sanchit-gandhi's avatar
sanchit-gandhi committed
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
        label2id=label2id,
        id2label=id2label,
        finetuning_task="audio-classification",
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        token=model_args.token,
        trust_remote_code=model_args.trust_remote_code,
    )
    model = AutoModelForAudioClassification.from_pretrained(
        model_args.model_name_or_path,
        from_tf=bool(".ckpt" in model_args.model_name_or_path),
        config=config,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        token=model_args.token,
        trust_remote_code=model_args.trust_remote_code,
        ignore_mismatched_sizes=model_args.ignore_mismatched_sizes,
    )

sanchit-gandhi's avatar
sanchit-gandhi committed
643
    # freeze the convolutional waveform encoder for wav2vec2-style models
sanchit-gandhi's avatar
sanchit-gandhi committed
644
    if model_args.freeze_feature_encoder:
sanchit-gandhi's avatar
sanchit-gandhi committed
645
646
647
648
        if hasattr(model, "freeze_feature_encoder"):
            model.freeze_feature_encoder()
        else:
            raise ValueError("Method for freezing the feature encoder is not defined for Whisper-style models.")
sanchit-gandhi's avatar
sanchit-gandhi committed
649

sanchit-gandhi's avatar
sanchit-gandhi committed
650
    if model_args.freeze_base_model:
sanchit-gandhi's avatar
sanchit-gandhi committed
651
        if hasattr(model, "freeze_base_model"):
sanchit-gandhi's avatar
sanchit-gandhi committed
652
653
            # wav2vec2-style models
            model.freeze_base_model()
sanchit-gandhi's avatar
sanchit-gandhi committed
654
655
            if hasattr(model, "freeze_feature_encoder"):
                model.freeze_feature_encoder()
sanchit-gandhi's avatar
sanchit-gandhi committed
656
        elif hasattr(model, "freeze_encoder"):
sanchit-gandhi's avatar
sanchit-gandhi committed
657
658
659
660
661
            # whisper-style models
            model.freeze_encoder()
        else:
            raise ValueError("Method for freezing the base module of the audio encoder is not defined")

sanchit-gandhi's avatar
sanchit-gandhi committed
662
663
664
665
    # Initialize our trainer
    trainer = Trainer(
        model=model,
        args=training_args,
sanchit-gandhi's avatar
sanchit-gandhi committed
666
667
        train_dataset=raw_datasets["train"] if training_args.do_train else None,
        eval_dataset=raw_datasets["eval"] if training_args.do_eval else None,
sanchit-gandhi's avatar
sanchit-gandhi committed
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
        compute_metrics=compute_metrics,
        tokenizer=feature_extractor,
    )

    # Training
    if training_args.do_train:
        checkpoint = None
        if training_args.resume_from_checkpoint is not None:
            checkpoint = training_args.resume_from_checkpoint
        elif last_checkpoint is not None:
            checkpoint = last_checkpoint
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
        trainer.save_model()
        trainer.log_metrics("train", train_result.metrics)
        trainer.save_metrics("train", train_result.metrics)
        trainer.save_state()

    # Evaluation
    if training_args.do_eval:
        metrics = trainer.evaluate()
        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)

    # Write model card and (optionally) push to hub
    kwargs = {
        "finetuned_from": model_args.model_name_or_path,
        "tasks": "audio-classification",
sanchit-gandhi's avatar
sanchit-gandhi committed
695
        "dataset": data_args.train_dataset_name.split("+")[0],
sanchit-gandhi's avatar
sanchit-gandhi committed
696
697
698
699
700
701
702
703
704
705
        "tags": ["audio-classification"],
    }
    if training_args.push_to_hub:
        trainer.push_to_hub(**kwargs)
    else:
        trainer.create_model_card(**kwargs)


if __name__ == "__main__":
    main()