run_audio_classification.py 32.2 KB
Newer Older
sanchit-gandhi's avatar
sanchit-gandhi committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
#!/usr/bin/env python
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import logging
import os
sanchit-gandhi's avatar
sanchit-gandhi committed
19
import re
sanchit-gandhi's avatar
sanchit-gandhi committed
20
import sys
sanchit-gandhi's avatar
sanchit-gandhi committed
21
from collections import Counter
sanchit-gandhi's avatar
sanchit-gandhi committed
22
23
from dataclasses import dataclass, field
from random import randint
24
from typing import List, Optional, Union
sanchit-gandhi's avatar
sanchit-gandhi committed
25
26
27
28
29

import datasets
import evaluate
import numpy as np
import transformers
30
31
from datasets import Dataset, DatasetDict, IterableDataset, concatenate_datasets, interleave_datasets, load_dataset
from tqdm import tqdm
sanchit-gandhi's avatar
sanchit-gandhi committed
32
33
34
35
36
37
38
from transformers import (
    AutoConfig,
    AutoFeatureExtractor,
    AutoModelForAudioClassification,
    HfArgumentParser,
    Trainer,
    TrainingArguments,
sanchit-gandhi's avatar
sanchit-gandhi committed
39
    set_seed,
sanchit-gandhi's avatar
sanchit-gandhi committed
40
)
sanchit-gandhi's avatar
sanchit-gandhi committed
41
from transformers.models.whisper.tokenization_whisper import LANGUAGES
sanchit-gandhi's avatar
sanchit-gandhi committed
42
from transformers.trainer_utils import get_last_checkpoint
sanchit-gandhi's avatar
sanchit-gandhi committed
43
from transformers.utils import check_min_version
sanchit-gandhi's avatar
sanchit-gandhi committed
44
45
46
47
48
49
50
51


logger = logging.getLogger(__name__)

# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.38.0.dev0")


sanchit-gandhi's avatar
sanchit-gandhi committed
52
def random_subsample(wav: np.ndarray, max_length: float, sample_rate: int = 16000) -> np.ndarray:
sanchit-gandhi's avatar
sanchit-gandhi committed
53
54
55
56
57
58
59
    """Randomly sample chunks of `max_length` seconds from the input audio"""
    sample_length = int(round(sample_rate * max_length))
    if len(wav) <= sample_length:
        return wav
    random_offset = randint(0, len(wav) - sample_length - 1)
    return wav[random_offset : random_offset + sample_length]

sanchit-gandhi's avatar
sanchit-gandhi committed
60
61
62
63
64
65
66
def deterministic_subsample(wav: np.ndarray, max_length: float, sample_rate: int = 16000) -> np.ndarray:
    """Take first `max_length` seconds from the input audio"""
    sample_length = int(round(sample_rate * max_length))
    if len(wav) <= sample_length:
        return wav
    return wav[0 : sample_length]

sanchit-gandhi's avatar
sanchit-gandhi committed
67

sanchit-gandhi's avatar
sanchit-gandhi committed
68
69
70
71
72
73
74
75
76
ACCENT_MAPPING = {
    "British": "English",
    "Canadian": "American",
    "Northern irish": "Irish",
    "New zealand": "Australian",
    "Pakistani": "Indian",
}


sanchit-gandhi's avatar
sanchit-gandhi committed
77
def preprocess_labels(label: str) -> str:
sanchit-gandhi's avatar
sanchit-gandhi committed
78
    """Apply pre-processing formatting to the accent labels"""
sanchit-gandhi's avatar
sanchit-gandhi committed
79
80
81
82
83
84
85
86
    if "_" in label:
        # voxpopuli stylises the accent as a language code (e.g. en_pl for "polish") - convert to full accent
        language_code = label.split("_")[-1]
        label = LANGUAGES[language_code]
    # VCTK labels for two words are concatenated into one (NewZeleand-> New Zealand)
    label = re.sub(r"(\w)([A-Z])", r"\1 \2", label)
    # convert Whisper language code (polish) to capitalised (Polish)
    label = label.capitalize()
sanchit-gandhi's avatar
sanchit-gandhi committed
87
88
    if label in ACCENT_MAPPING:
        label = ACCENT_MAPPING[label]
sanchit-gandhi's avatar
sanchit-gandhi committed
89
    return label
sanchit-gandhi's avatar
sanchit-gandhi committed
90
91


sanchit-gandhi's avatar
sanchit-gandhi committed
92
93
94
95
96
97
98
99
100
@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    Using `HfArgumentParser` we can turn this class
    into argparse arguments to be able to specify them on
    the command line.
    """

101
102
103
104
105
106
107
    train_dataset_name: str = field(
        default=None,
        metadata={
            "help": "The name of the training dataset to use (via the datasets library). Load and combine "
            "multiple datasets by separating dataset ids by a '+' symbol. For example, to load and combine "
            " librispeech and common voice, set `train_dataset_name='librispeech_asr+common_voice'`."
        },
sanchit-gandhi's avatar
sanchit-gandhi committed
108
    )
109
110
111
112
113
114
    train_dataset_config_name: Optional[str] = field(
        default=None,
        metadata={
            "help": "The configuration name of the training dataset to use (via the datasets library). Load and combine "
            "multiple datasets by separating dataset configs by a '+' symbol."
        },
sanchit-gandhi's avatar
sanchit-gandhi committed
115
    )
sanchit-gandhi's avatar
sanchit-gandhi committed
116
117
118
119
120
121
    train_split_name: str = field(
        default="train",
        metadata={
            "help": ("The name of the training data set split to use (via the datasets library). Defaults to 'train'")
        },
    )
122
123
124
125
126
127
    train_dataset_samples: str = field(
        default=None,
        metadata={
            "help": "Number of samples in the training data. Load and combine "
            "multiple datasets by separating dataset samples by a '+' symbol."
        },
sanchit-gandhi's avatar
sanchit-gandhi committed
128
    )
129
130
    eval_dataset_name: str = field(
        default=None,
sanchit-gandhi's avatar
sanchit-gandhi committed
131
        metadata={
132
            "help": "The name of the evaluation dataset to use (via the datasets library). Defaults to the training dataset name if unspecified."
sanchit-gandhi's avatar
sanchit-gandhi committed
133
134
        },
    )
135
136
    eval_dataset_config_name: Optional[str] = field(
        default=None,
sanchit-gandhi's avatar
sanchit-gandhi committed
137
        metadata={
138
            "help": "The configuration name of the evaluation dataset to use (via the datasets library). Defaults to the training dataset config name if unspecified"
sanchit-gandhi's avatar
sanchit-gandhi committed
139
140
        },
    )
sanchit-gandhi's avatar
sanchit-gandhi committed
141
142
143
144
145
146
147
148
149
    eval_split_name: str = field(
        default="validation",
        metadata={
            "help": (
                "The name of the evaluation data set split to use (via the datasets"
                " library). Defaults to 'validation'"
            )
        },
    )
sanchit-gandhi's avatar
sanchit-gandhi committed
150
151
152
153
    audio_column_name: str = field(
        default="audio",
        metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"},
    )
154
    train_label_column_name: str = field(
sanchit-gandhi's avatar
sanchit-gandhi committed
155
        default="labels",
156
157
158
159
160
        metadata={
            "help": "The name of the dataset column containing the labels in the train set. Defaults to 'label'"
        },
    )
    eval_label_column_name: str = field(
sanchit-gandhi's avatar
sanchit-gandhi committed
161
        default="labels",
162
        metadata={"help": "The name of the dataset column containing the labels in the eval set. Defaults to 'label'"},
sanchit-gandhi's avatar
sanchit-gandhi committed
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
    )
    max_train_samples: Optional[int] = field(
        default=None,
        metadata={
            "help": (
                "For debugging purposes or quicker training, truncate the number of training examples to this "
                "value if set."
            )
        },
    )
    max_eval_samples: Optional[int] = field(
        default=None,
        metadata={
            "help": (
                "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
                "value if set."
            )
        },
    )
sanchit-gandhi's avatar
sanchit-gandhi committed
182
    max_length_seconds: Optional[float] = field(
sanchit-gandhi's avatar
sanchit-gandhi committed
183
        default=20,
sanchit-gandhi's avatar
sanchit-gandhi committed
184
185
        metadata={"help": "Audio samples will be randomly cut to this length during training if the value is set."},
    )
sanchit-gandhi's avatar
sanchit-gandhi committed
186
    min_length_seconds: Optional[float] = field(
sanchit-gandhi's avatar
sanchit-gandhi committed
187
188
        default=5,
        metadata={"help": "Audio samples less than this value will be filtered during training if the value is set."},
sanchit-gandhi's avatar
sanchit-gandhi committed
189
    )
sanchit-gandhi's avatar
sanchit-gandhi committed
190
191
192
193
    preprocessing_num_workers: Optional[int] = field(
        default=None,
        metadata={"help": "The number of processes to use for the preprocessing."},
    )
sanchit-gandhi's avatar
sanchit-gandhi committed
194
195
196
197
    filter_threshold: Optional[float] = field(
        default=1.0,
        metadata={"help": "Filter labels that occur less than `filter_threshold` percent in the training/eval data."},
    )
sanchit-gandhi's avatar
sanchit-gandhi committed
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223


@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
    """

    model_name_or_path: str = field(
        default="facebook/wav2vec2-base",
        metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"},
    )
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
    )
    cache_dir: Optional[str] = field(
        default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from the Hub"}
    )
    model_revision: str = field(
        default="main",
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
    )
    feature_extractor_name: Optional[str] = field(
        default=None, metadata={"help": "Name or path of preprocessor config."}
    )
    freeze_feature_encoder: bool = field(
sanchit-gandhi's avatar
sanchit-gandhi committed
224
225
226
227
        default=False,
        metadata={
            "help": "Whether to freeze the feature encoder layers of the model. Only relevant for Wav2Vec2-style models."
        },
sanchit-gandhi's avatar
sanchit-gandhi committed
228
229
230
    )
    freeze_base_model: bool = field(
        default=True, metadata={"help": "Whether to freeze the base encoder of the model."}
sanchit-gandhi's avatar
sanchit-gandhi committed
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
    )
    attention_mask: bool = field(
        default=True, metadata={"help": "Whether to generate an attention mask in the feature extractor."}
    )
    token: str = field(
        default=None,
        metadata={
            "help": (
                "The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
                "generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
            )
        },
    )
    trust_remote_code: bool = field(
        default=False,
        metadata={
            "help": (
                "Whether or not to allow for custom models defined on the Hub in their own modeling files. This option "
                "should only be set to `True` for repositories you trust and in which you have read the code, as it will "
                "execute code present on the Hub on your local machine."
            )
        },
    )
    ignore_mismatched_sizes: bool = field(
sanchit-gandhi's avatar
sanchit-gandhi committed
255
        default=True,
sanchit-gandhi's avatar
sanchit-gandhi committed
256
257
        metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."},
    )
sanchit-gandhi's avatar
sanchit-gandhi committed
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
    attention_dropout: float = field(
        default=0.0, metadata={"help": "The dropout ratio for the attention probabilities."}
    )
    activation_dropout: float = field(
        default=0.0, metadata={"help": "The dropout ratio for activations inside the fully connected layer."}
    )
    feat_proj_dropout: float = field(default=0.0, metadata={"help": "The dropout ratio for the projected features."})
    hidden_dropout: float = field(
        default=0.0,
        metadata={
            "help": "The dropout probability for all fully connected layers in the embeddings, encoder, and pooler."
        },
    )
    final_dropout: float = field(
        default=0.0,
        metadata={"help": "The dropout probability for the final projection layer."},
    )
    mask_time_prob: float = field(
        default=0.05,
        metadata={
            "help": (
                "Probability of each feature vector along the time axis to be chosen as the start of the vector "
                "span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature "
                "vectors will be masked along the time axis."
            )
        },
    )
    mask_time_length: int = field(
        default=10,
        metadata={"help": "Length of vector span to mask along the time axis."},
    )
    mask_feature_prob: float = field(
        default=0.0,
        metadata={
            "help": (
                "Probability of each feature vector along the feature axis to be chosen as the start of the vectorspan"
                " to be masked. Approximately ``mask_feature_prob * sequence_length // mask_feature_length`` feature"
                " bins will be masked along the time axis."
            )
        },
    )
    mask_feature_length: int = field(
        default=10,
        metadata={"help": "Length of vector span to mask along the feature axis."},
    )
    layerdrop: float = field(default=0.0, metadata={"help": "The LayerDrop probability."})
sanchit-gandhi's avatar
sanchit-gandhi committed
304

305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349

def convert_dataset_str_to_list(
    dataset_names,
    dataset_config_names,
    splits=None,
    label_column_names=None,
    dataset_samples=None,
    default_split="train",
):
    if isinstance(dataset_names, str):
        dataset_names = dataset_names.split("+")
        dataset_config_names = dataset_config_names.split("+")
        splits = splits.split("+") if splits is not None else None
        label_column_names = label_column_names.split("+") if label_column_names is not None else None
        dataset_samples = dataset_samples.split("+") if dataset_samples is not None else None

    # basic checks to ensure we've got the right number of datasets/configs/splits/columns/probs
    if len(dataset_names) != len(dataset_config_names):
        raise ValueError(
            f"Ensure one config is passed for each dataset, got {len(dataset_names)} datasets and"
            f" {len(dataset_config_names)} configs."
        )

    if splits is not None and len(splits) != len(dataset_names):
        raise ValueError(
            f"Ensure one split is passed for each dataset, got {len(dataset_names)} datasets and {len(splits)} splits."
        )

    if label_column_names is not None and len(label_column_names) != len(dataset_names):
        raise ValueError(
            f"Ensure one label column name is passed for each dataset, got {len(dataset_names)} datasets and"
            f" {len(label_column_names)} label column names."
        )

    if dataset_samples is not None:
        if len(dataset_samples) != len(dataset_names):
            raise ValueError(
                f"Ensure one sample is passed for each dataset, got {len(dataset_names)} datasets and "
                f"{len(dataset_samples)} samples."
            )
        dataset_samples = [float(ds_sample) for ds_sample in dataset_samples]
    else:
        dataset_samples = [None] * len(dataset_names)

    label_column_names = (
sanchit-gandhi's avatar
sanchit-gandhi committed
350
        label_column_names if label_column_names is not None else ["labels" for _ in range(len(dataset_names))]
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
    )
    splits = splits if splits is not None else [default_split for _ in range(len(dataset_names))]

    dataset_names_dict = []
    for i, ds_name in enumerate(dataset_names):
        dataset_names_dict.append(
            {
                "name": ds_name,
                "config": dataset_config_names[i],
                "split": splits[i],
                "label_column_name": label_column_names[i],
                "samples": dataset_samples[i],
            }
        )
    return dataset_names_dict


def load_multiple_datasets(
    dataset_names: Union[List, str],
    dataset_config_names: Union[List, str],
    splits: Optional[Union[List, str]] = None,
    label_column_names: Optional[List] = None,
sanchit-gandhi's avatar
sanchit-gandhi committed
373
    sampling_rate: Optional[int] = 16000,
374
375
    stopping_strategy: Optional[str] = "first_exhausted",
    dataset_samples: Optional[Union[List, np.array]] = None,
sanchit-gandhi's avatar
sanchit-gandhi committed
376
    streaming: Optional[bool] = False,
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
    seed: Optional[int] = None,
    audio_column_name: Optional[str] = "audio",
    **kwargs,
) -> Union[Dataset, IterableDataset]:
    dataset_names_dict = convert_dataset_str_to_list(
        dataset_names, dataset_config_names, splits, label_column_names, dataset_samples
    )

    if dataset_samples is not None:
        dataset_samples = [ds_dict["samples"] for ds_dict in dataset_names_dict]
        probabilities = np.array(dataset_samples) / np.sum(dataset_samples)
    else:
        probabilities = None

    all_datasets = []
    # iterate over the datasets we want to interleave
    for dataset_dict in tqdm(dataset_names_dict, desc="Combining datasets..."):
        dataset = load_dataset(
            dataset_dict["name"],
            dataset_dict["config"],
            split=dataset_dict["split"],
            streaming=streaming,
            **kwargs,
        )
        dataset_features = dataset.features.keys()

        if audio_column_name not in dataset_features:
            raise ValueError(
                f"Audio column name '{audio_column_name}' not found in dataset"
                f" '{dataset_dict['name']}'. Make sure to set `--audio_column_name` to"
                f" the correct audio column - one of {', '.join(dataset_features)}."
sanchit-gandhi's avatar
sanchit-gandhi committed
408
            )
sanchit-gandhi's avatar
sanchit-gandhi committed
409
410
        # resample to specified sampling rate
        dataset = dataset.cast_column("audio", datasets.features.Audio(sampling_rate))
411
412

        if dataset_dict["label_column_name"] not in dataset_features:
sanchit-gandhi's avatar
sanchit-gandhi committed
413
            raise ValueError(
sanchit-gandhi's avatar
sanchit-gandhi committed
414
                f"Label column name {dataset_dict['label_column_name']} not found in dataset"
415
416
                f" '{dataset_dict['name']}'. Make sure to set `--label_column_name` to the"
                f" correct text column - one of {', '.join(dataset_features)}."
sanchit-gandhi's avatar
sanchit-gandhi committed
417
418
            )

419
        # blanket renaming of all label columns to label
sanchit-gandhi's avatar
sanchit-gandhi committed
420
421
        if dataset_dict["label_column_name"] != "labels":
            dataset = dataset.rename_column(dataset_dict["label_column_name"], "labels")
422
423

        dataset_features = dataset.features.keys()
sanchit-gandhi's avatar
sanchit-gandhi committed
424
        columns_to_keep = {"audio", "labels"}
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
        dataset = dataset.remove_columns(set(dataset_features - columns_to_keep))
        all_datasets.append(dataset)

    if len(all_datasets) == 1:
        # we have a single dataset so just return it as is
        return all_datasets[0]

    if streaming:
        interleaved_dataset = interleave_datasets(
            all_datasets,
            stopping_strategy=stopping_strategy,
            probabilities=probabilities,
            seed=seed,
        )
    else:
        interleaved_dataset = concatenate_datasets(all_datasets)

    return interleaved_dataset

sanchit-gandhi's avatar
sanchit-gandhi committed
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501

def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()

    # Setup logging
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        handlers=[logging.StreamHandler(sys.stdout)],
    )

    if training_args.should_log:
        # The default of training_args.log_level is passive, so we set log level at info here to have that default.
        transformers.utils.logging.set_verbosity_info()

    log_level = training_args.get_process_log_level()
    logger.setLevel(log_level)
    transformers.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.enable_default_handler()
    transformers.utils.logging.enable_explicit_format()

    # Log on each process the small summary:
    logger.warning(
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, "
        + f"distributed training: {training_args.parallel_mode.value == 'distributed'}, 16-bits training: {training_args.fp16}"
    )
    logger.info(f"Training/evaluation parameters {training_args}")

    # Set seed before initializing model.
    set_seed(training_args.seed)

    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to train from scratch."
            )
        elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )

    # Initialize our dataset and prepare it for the audio classification task.
    raw_datasets = DatasetDict()
502
503
    # set seed for determinism
    set_seed(training_args.seed)
sanchit-gandhi's avatar
sanchit-gandhi committed
504

505
506
507
508
509
510
511
512
    if training_args.do_train:
        raw_datasets["train"] = load_multiple_datasets(
            data_args.train_dataset_name,
            data_args.train_dataset_config_name,
            splits=data_args.train_split_name,
            label_column_names=data_args.train_label_column_name,
            dataset_samples=data_args.train_dataset_samples,
            seed=training_args.seed,
sanchit-gandhi's avatar
sanchit-gandhi committed
513
            cache_dir=model_args.cache_dir,
514
            token=True if model_args.token else None,
sanchit-gandhi's avatar
sanchit-gandhi committed
515
            trust_remote_code=model_args.trust_remote_code,
sanchit-gandhi's avatar
sanchit-gandhi committed
516
            num_proc=data_args.preprocessing_num_workers,
sanchit-gandhi's avatar
sanchit-gandhi committed
517
            # streaming=data_args.streaming, TODO(SG): optionally enable streaming mode
sanchit-gandhi's avatar
sanchit-gandhi committed
518
519
        )

520
521
522
    if training_args.do_eval:
        dataset_names_dict = convert_dataset_str_to_list(
            data_args.eval_dataset_name if data_args.eval_dataset_name else data_args.train_dataset_name,
sanchit-gandhi's avatar
style  
sanchit-gandhi committed
523
524
525
526
527
            (
                data_args.eval_dataset_config_name
                if data_args.eval_dataset_config_name
                else data_args.train_dataset_config_name
            ),
528
529
530
531
            splits=data_args.eval_split_name,
            label_column_names=data_args.eval_label_column_name,
        )
        all_eval_splits = []
sanchit-gandhi's avatar
sanchit-gandhi committed
532
533
534
535
536
537
538
539
540
        # load multiple eval sets
        for dataset_dict in dataset_names_dict:
            pretty_name = (
                f"{dataset_dict['name'].split('/')[-1]}/{dataset_dict['split'].replace('.', '-')}"
                if len(dataset_names_dict) > 1
                else "eval"
            )
            all_eval_splits.append(pretty_name)
            raw_datasets[pretty_name] = load_dataset(
541
542
543
                dataset_dict["name"],
                dataset_dict["config"],
                split=dataset_dict["split"],
sanchit-gandhi's avatar
sanchit-gandhi committed
544
                cache_dir=model_args.cache_dir,
545
                token=True if model_args.token else None,
sanchit-gandhi's avatar
sanchit-gandhi committed
546
                trust_remote_code=model_args.trust_remote_code,
sanchit-gandhi's avatar
sanchit-gandhi committed
547
                num_proc=data_args.preprocessing_num_workers,
sanchit-gandhi's avatar
sanchit-gandhi committed
548
                # streaming=data_args.streaming,
549
            )
sanchit-gandhi's avatar
sanchit-gandhi committed
550
551
552
553
554
555
            features = raw_datasets[pretty_name].features.keys()
            if dataset_dict["label_column_name"] not in features:
                raise ValueError(
                    f"--label_column_name {data_args.eval_label_column_name} not found in dataset '{data_args.dataset_name}'. "
                    "Make sure to set `--label_column_name` to the correct text column - one of "
                    f"{', '.join(raw_datasets['train'].column_names)}."
556
                )
sanchit-gandhi's avatar
sanchit-gandhi committed
557
558
559
            elif dataset_dict["label_column_name"] != "labels":
                raw_datasets[pretty_name] = raw_datasets[pretty_name].rename_column(
                    dataset_dict["label_column_name"], "labels"
560
                )
sanchit-gandhi's avatar
sanchit-gandhi committed
561
562
563
            raw_datasets[pretty_name] = raw_datasets[pretty_name].remove_columns(
                set(raw_datasets[pretty_name].features.keys()) - {"audio", "labels"}
            )
564
565

    if not training_args.do_train and not training_args.do_eval:
sanchit-gandhi's avatar
sanchit-gandhi committed
566
        raise ValueError(
567
            "Cannot not train and not do evaluation. At least one of training or evaluation has to be performed."
sanchit-gandhi's avatar
sanchit-gandhi committed
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
        )

    # Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over
    # transformer outputs in the classifier, but it doesn't always lead to better accuracy
    feature_extractor = AutoFeatureExtractor.from_pretrained(
        model_args.feature_extractor_name or model_args.model_name_or_path,
        return_attention_mask=model_args.attention_mask,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        token=model_args.token,
        trust_remote_code=model_args.trust_remote_code,
    )

    # `datasets` takes care of automatically loading and resampling the audio,
    # so we just need to set the correct target sampling rate.
    raw_datasets = raw_datasets.cast_column(
        data_args.audio_column_name, datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate)
    )

sanchit-gandhi's avatar
sanchit-gandhi committed
587
588
589
590
591
    if training_args.do_train:
        if data_args.max_train_samples is not None:
            raw_datasets["train"] = (
                raw_datasets["train"].shuffle(seed=training_args.seed).select(range(data_args.max_train_samples))
            )
sanchit-gandhi's avatar
sanchit-gandhi committed
592

sanchit-gandhi's avatar
sanchit-gandhi committed
593
594
595
596
    if training_args.do_eval:
        if data_args.max_eval_samples is not None:
            raw_datasets["eval"] = (
                raw_datasets["eval"].shuffle(seed=training_args.seed).select(range(data_args.max_eval_samples))
sanchit-gandhi's avatar
sanchit-gandhi committed
597
            )
sanchit-gandhi's avatar
sanchit-gandhi committed
598
599
600
601

    sampling_rate = feature_extractor.sampling_rate
    model_input_name = feature_extractor.model_input_names[0]

sanchit-gandhi's avatar
sanchit-gandhi committed
602
    # filter training data with non-valid labels
sanchit-gandhi's avatar
sanchit-gandhi committed
603
604
605
    def is_label_valid(label):
        return label != "Unknown"

sanchit-gandhi's avatar
sanchit-gandhi committed
606
    raw_datasets = raw_datasets.filter(
sanchit-gandhi's avatar
sanchit-gandhi committed
607
608
609
610
611
        is_label_valid,
        input_columns=["labels"],
        num_proc=data_args.preprocessing_num_workers,
        desc="Filtering by labels",
    )
sanchit-gandhi's avatar
sanchit-gandhi committed
612

sanchit-gandhi's avatar
sanchit-gandhi committed
613
614
615
616
617
618
619
620
621
622
623
    def prepare_dataset(batch):
        batch["length"] = len(batch["audio"]["array"])
        batch["labels"] = preprocess_labels(batch["labels"])
        return batch

    raw_datasets = raw_datasets.map(
        prepare_dataset,
        num_proc=data_args.preprocessing_num_workers,
        desc="Computing audio length",
    )

sanchit-gandhi's avatar
sanchit-gandhi committed
624
625
626
    # filter training data with inputs < min_input_length
    min_input_length = data_args.min_length_seconds * sampling_rate

sanchit-gandhi's avatar
sanchit-gandhi committed
627
628
    def is_audio_valid(input_length):
        return input_length > min_input_length
sanchit-gandhi's avatar
sanchit-gandhi committed
629
630
631

    raw_datasets = raw_datasets.filter(
        is_audio_valid,
sanchit-gandhi's avatar
sanchit-gandhi committed
632
        input_columns=["length"],
sanchit-gandhi's avatar
sanchit-gandhi committed
633
634
635
636
        num_proc=data_args.preprocessing_num_workers,
        desc="Filtering by audio length",
    )

sanchit-gandhi's avatar
sanchit-gandhi committed
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
    # Print a summary of the labels to the stddout (helps identify low-label classes that could be filtered)
    # sort by freq
    count_labels_dict = Counter(raw_datasets["train"]["labels"])
    count_labels_dict = sorted(count_labels_dict.items(), key=lambda item: (-item[1], item[0]))
    labels, frequencies = zip(*count_labels_dict)
    total_labels = sum(frequencies)
    labels_to_remove = []

    logger.info(f"{'Accent':<15} {'Perc.':<5}")
    logger.info("-" * 20)
    for lab, freq in zip(labels, frequencies):
        freq = 100 * freq / total_labels
        logger.info(f"{lab:<15} {freq:<5}")
        if freq < data_args.filter_threshold:
            labels_to_remove.append(lab)

    # filter training data with label freq below threshold
    def is_label_valid(label):
        return label not in labels_to_remove

    if len(labels_to_remove):
        raw_datasets = raw_datasets.filter(
            is_label_valid,
            input_columns=["labels"],
            num_proc=data_args.preprocessing_num_workers,
            desc="Filtering low freq labels",
        )

sanchit-gandhi's avatar
sanchit-gandhi committed
665
    # We'll include these in the model's config to get human readable labels in the Inference API.
sanchit-gandhi's avatar
sanchit-gandhi committed
666
667
668
    set_labels = set(raw_datasets["train"]["labels"])
    if training_args.do_eval:
        set_labels = set_labels.union(set(raw_datasets["eval"]["labels"]))
sanchit-gandhi's avatar
sanchit-gandhi committed
669
670
671
672
673
674
675
    label2id, id2label = {}, {}
    for i, label in enumerate(set(set_labels)):
        label2id[label] = str(i)
        id2label[str(i)] = label

    def train_transforms(batch):
        """Apply train_transforms across a batch."""
sanchit-gandhi's avatar
sanchit-gandhi committed
676
677
678
679
680
681
        subsampled_wavs = []
        for audio in batch["audio"]:
            wav = deterministic_subsample(
                audio["array"], max_length=data_args.max_length_seconds, sample_rate=feature_extractor.sampling_rate
            )
            subsampled_wavs.append(wav)
sanchit-gandhi's avatar
sanchit-gandhi committed
682
        inputs = feature_extractor(
sanchit-gandhi's avatar
sanchit-gandhi committed
683
            subsampled_wavs, return_attention_mask=model_args.attention_mask, sampling_rate=sampling_rate
sanchit-gandhi's avatar
sanchit-gandhi committed
684
685
686
687
688
689
        )
        output_batch = {
            model_input_name: inputs.get(model_input_name),
            "attention_mask": inputs.get("attention_mask"),
            "labels": [int(label2id[label]) for label in batch["labels"]],
        }
sanchit-gandhi's avatar
sanchit-gandhi committed
690
691
692
693
694
695
696
697
        return output_batch

    if training_args.do_train:
        # Set the training transforms
        raw_datasets["train"].set_transform(train_transforms, output_all_columns=False)

    if training_args.do_eval:
        # Set the validation transforms
698
        raw_datasets["eval"].set_transform(train_transforms, output_all_columns=False)
sanchit-gandhi's avatar
sanchit-gandhi committed
699
700
701
702
703
704
705
706
707
708
709
710
711

    # Load the accuracy metric from the datasets package
    metric = evaluate.load("accuracy", cache_dir=model_args.cache_dir)

    # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with
    # `predictions` and `label_ids` fields) and has to return a dictionary string to float.
    def compute_metrics(eval_pred):
        """Computes accuracy on a batch of predictions"""
        predictions = np.argmax(eval_pred.predictions, axis=1)
        return metric.compute(predictions=predictions, references=eval_pred.label_ids)

    config = AutoConfig.from_pretrained(
        model_args.config_name or model_args.model_name_or_path,
sanchit-gandhi's avatar
sanchit-gandhi committed
712
        num_labels=len(label2id),
sanchit-gandhi's avatar
sanchit-gandhi committed
713
714
715
716
717
718
719
720
        label2id=label2id,
        id2label=id2label,
        finetuning_task="audio-classification",
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        token=model_args.token,
        trust_remote_code=model_args.trust_remote_code,
    )
sanchit-gandhi's avatar
sanchit-gandhi committed
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
    # adapt config with regularization
    config.update(
        {
            "feat_proj_dropout": model_args.feat_proj_dropout,
            "attention_dropout": model_args.attention_dropout,
            "hidden_dropout": model_args.hidden_dropout,
            "final_dropout": model_args.final_dropout,
            "mask_time_prob": model_args.mask_time_prob,
            "mask_time_length": model_args.mask_time_length,
            "mask_feature_prob": model_args.mask_feature_prob,
            "mask_feature_length": model_args.mask_feature_length,
            "layerdrop": model_args.layerdrop,
            "activation_dropout": model_args.activation_dropout,
        }
    )

sanchit-gandhi's avatar
sanchit-gandhi committed
737
738
739
740
741
742
743
744
745
746
747
    model = AutoModelForAudioClassification.from_pretrained(
        model_args.model_name_or_path,
        from_tf=bool(".ckpt" in model_args.model_name_or_path),
        config=config,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        token=model_args.token,
        trust_remote_code=model_args.trust_remote_code,
        ignore_mismatched_sizes=model_args.ignore_mismatched_sizes,
    )

sanchit-gandhi's avatar
sanchit-gandhi committed
748
    # freeze the convolutional waveform encoder for wav2vec2-style models
sanchit-gandhi's avatar
sanchit-gandhi committed
749
    if model_args.freeze_feature_encoder:
sanchit-gandhi's avatar
sanchit-gandhi committed
750
751
752
753
        if hasattr(model, "freeze_feature_encoder"):
            model.freeze_feature_encoder()
        else:
            raise ValueError("Method for freezing the feature encoder is not defined for Whisper-style models.")
sanchit-gandhi's avatar
sanchit-gandhi committed
754

sanchit-gandhi's avatar
sanchit-gandhi committed
755
    if model_args.freeze_base_model:
sanchit-gandhi's avatar
sanchit-gandhi committed
756
        if hasattr(model, "freeze_base_model"):
sanchit-gandhi's avatar
sanchit-gandhi committed
757
758
            # wav2vec2-style models
            model.freeze_base_model()
sanchit-gandhi's avatar
sanchit-gandhi committed
759
760
            if hasattr(model, "freeze_feature_encoder"):
                model.freeze_feature_encoder()
sanchit-gandhi's avatar
sanchit-gandhi committed
761
        elif hasattr(model, "freeze_encoder"):
sanchit-gandhi's avatar
sanchit-gandhi committed
762
763
764
765
766
            # whisper-style models
            model.freeze_encoder()
        else:
            raise ValueError("Method for freezing the base module of the audio encoder is not defined")

sanchit-gandhi's avatar
sanchit-gandhi committed
767
768
769
770
    # Initialize our trainer
    trainer = Trainer(
        model=model,
        args=training_args,
sanchit-gandhi's avatar
sanchit-gandhi committed
771
772
        train_dataset=raw_datasets["train"] if training_args.do_train else None,
        eval_dataset=raw_datasets["eval"] if training_args.do_eval else None,
sanchit-gandhi's avatar
sanchit-gandhi committed
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
        compute_metrics=compute_metrics,
        tokenizer=feature_extractor,
    )

    # Training
    if training_args.do_train:
        checkpoint = None
        if training_args.resume_from_checkpoint is not None:
            checkpoint = training_args.resume_from_checkpoint
        elif last_checkpoint is not None:
            checkpoint = last_checkpoint
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
        trainer.save_model()
        trainer.log_metrics("train", train_result.metrics)
        trainer.save_metrics("train", train_result.metrics)
        trainer.save_state()

    # Evaluation
    if training_args.do_eval:
        metrics = trainer.evaluate()
        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)

    # Write model card and (optionally) push to hub
    kwargs = {
        "finetuned_from": model_args.model_name_or_path,
        "tasks": "audio-classification",
sanchit-gandhi's avatar
sanchit-gandhi committed
800
        "dataset": data_args.train_dataset_name.split("+")[0],
sanchit-gandhi's avatar
sanchit-gandhi committed
801
802
803
804
805
806
807
808
809
810
        "tags": ["audio-classification"],
    }
    if training_args.push_to_hub:
        trainer.push_to_hub(**kwargs)
    else:
        trainer.create_model_card(**kwargs)


if __name__ == "__main__":
    main()