cldm.py 13.3 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
2
3
4
5
6
7
#taken from: https://github.com/lllyasviel/ControlNet
#and modified

import torch
import torch as th
import torch.nn as nn

comfyanonymous's avatar
comfyanonymous committed
8
from ..ldm.modules.diffusionmodules.util import (
comfyanonymous's avatar
comfyanonymous committed
9
10
11
12
    zero_module,
    timestep_embedding,
)

comfyanonymous's avatar
comfyanonymous committed
13
from ..ldm.modules.attention import SpatialTransformer
comfyanonymous's avatar
comfyanonymous committed
14
from ..ldm.modules.diffusionmodules.openaimodel import UNetModel, TimestepEmbedSequential, ResBlock, Downsample
15
from ..ldm.util import exists
comfyanonymous's avatar
comfyanonymous committed
16
import comfy.ops
comfyanonymous's avatar
comfyanonymous committed
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

class ControlledUnetModel(UNetModel):
    #implemented in the ldm unet
    pass

class ControlNet(nn.Module):
    def __init__(
        self,
        image_size,
        in_channels,
        model_channels,
        hint_channels,
        num_res_blocks,
        dropout=0,
        channel_mult=(1, 2, 4, 8),
        conv_resample=True,
        dims=2,
34
        num_classes=None,
comfyanonymous's avatar
comfyanonymous committed
35
        use_checkpoint=False,
36
        dtype=torch.float32,
comfyanonymous's avatar
comfyanonymous committed
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
        num_heads=-1,
        num_head_channels=-1,
        num_heads_upsample=-1,
        use_scale_shift_norm=False,
        resblock_updown=False,
        use_new_attention_order=False,
        use_spatial_transformer=False,    # custom transformer support
        transformer_depth=1,              # custom transformer support
        context_dim=None,                 # custom transformer support
        n_embed=None,                     # custom support for prediction of discrete ids into codebook of first stage vq model
        legacy=True,
        disable_self_attentions=None,
        num_attention_blocks=None,
        disable_middle_self_attn=False,
        use_linear_in_transformer=False,
52
53
        adm_in_channels=None,
        transformer_depth_middle=None,
54
        transformer_depth_output=None,
55
        attn_precision=None,
comfyanonymous's avatar
comfyanonymous committed
56
        device=None,
comfyanonymous's avatar
comfyanonymous committed
57
        operations=comfy.ops.disable_weight_init,
comfyanonymous's avatar
comfyanonymous committed
58
        **kwargs,
comfyanonymous's avatar
comfyanonymous committed
59
60
    ):
        super().__init__()
comfyanonymous's avatar
comfyanonymous committed
61
        assert use_spatial_transformer == True, "use_spatial_transformer has to be true"
comfyanonymous's avatar
comfyanonymous committed
62
63
64
65
66
        if use_spatial_transformer:
            assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...'

        if context_dim is not None:
            assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...'
67
68
69
            # from omegaconf.listconfig import ListConfig
            # if type(context_dim) == ListConfig:
            #     context_dim = list(context_dim)
comfyanonymous's avatar
comfyanonymous committed
70
71
72
73
74
75
76
77
78
79
80
81
82
83

        if num_heads_upsample == -1:
            num_heads_upsample = num_heads

        if num_heads == -1:
            assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'

        if num_head_channels == -1:
            assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'

        self.dims = dims
        self.image_size = image_size
        self.in_channels = in_channels
        self.model_channels = model_channels
84

comfyanonymous's avatar
comfyanonymous committed
85
86
87
88
89
90
91
        if isinstance(num_res_blocks, int):
            self.num_res_blocks = len(channel_mult) * [num_res_blocks]
        else:
            if len(num_res_blocks) != len(channel_mult):
                raise ValueError("provide num_res_blocks either as an int (globally constant) or "
                                 "as a list/tuple (per-level) with the same length as channel_mult")
            self.num_res_blocks = num_res_blocks
92

comfyanonymous's avatar
comfyanonymous committed
93
94
95
96
97
98
99
        if disable_self_attentions is not None:
            # should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
            assert len(disable_self_attentions) == len(channel_mult)
        if num_attention_blocks is not None:
            assert len(num_attention_blocks) == len(self.num_res_blocks)
            assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks))))

100
101
        transformer_depth = transformer_depth[:]

comfyanonymous's avatar
comfyanonymous committed
102
103
104
        self.dropout = dropout
        self.channel_mult = channel_mult
        self.conv_resample = conv_resample
105
        self.num_classes = num_classes
comfyanonymous's avatar
comfyanonymous committed
106
        self.use_checkpoint = use_checkpoint
107
        self.dtype = dtype
comfyanonymous's avatar
comfyanonymous committed
108
109
110
111
112
113
114
        self.num_heads = num_heads
        self.num_head_channels = num_head_channels
        self.num_heads_upsample = num_heads_upsample
        self.predict_codebook_ids = n_embed is not None

        time_embed_dim = model_channels * 4
        self.time_embed = nn.Sequential(
comfyanonymous's avatar
comfyanonymous committed
115
            operations.Linear(model_channels, time_embed_dim, dtype=self.dtype, device=device),
comfyanonymous's avatar
comfyanonymous committed
116
            nn.SiLU(),
comfyanonymous's avatar
comfyanonymous committed
117
            operations.Linear(time_embed_dim, time_embed_dim, dtype=self.dtype, device=device),
comfyanonymous's avatar
comfyanonymous committed
118
119
        )

120
121
122
123
124
125
126
127
128
129
        if self.num_classes is not None:
            if isinstance(self.num_classes, int):
                self.label_emb = nn.Embedding(num_classes, time_embed_dim)
            elif self.num_classes == "continuous":
                print("setting up linear c_adm embedding layer")
                self.label_emb = nn.Linear(1, time_embed_dim)
            elif self.num_classes == "sequential":
                assert adm_in_channels is not None
                self.label_emb = nn.Sequential(
                    nn.Sequential(
comfyanonymous's avatar
comfyanonymous committed
130
                        operations.Linear(adm_in_channels, time_embed_dim, dtype=self.dtype, device=device),
131
                        nn.SiLU(),
comfyanonymous's avatar
comfyanonymous committed
132
                        operations.Linear(time_embed_dim, time_embed_dim, dtype=self.dtype, device=device),
133
134
135
136
137
                    )
                )
            else:
                raise ValueError()

comfyanonymous's avatar
comfyanonymous committed
138
139
140
        self.input_blocks = nn.ModuleList(
            [
                TimestepEmbedSequential(
comfyanonymous's avatar
comfyanonymous committed
141
                    operations.conv_nd(dims, in_channels, model_channels, 3, padding=1, dtype=self.dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
142
143
144
                )
            ]
        )
145
        self.zero_convs = nn.ModuleList([self.make_zero_conv(model_channels, operations=operations, dtype=self.dtype, device=device)])
comfyanonymous's avatar
comfyanonymous committed
146
147

        self.input_hint_block = TimestepEmbedSequential(
148
                    operations.conv_nd(dims, hint_channels, 16, 3, padding=1, dtype=self.dtype, device=device),
comfyanonymous's avatar
comfyanonymous committed
149
                    nn.SiLU(),
150
                    operations.conv_nd(dims, 16, 16, 3, padding=1, dtype=self.dtype, device=device),
comfyanonymous's avatar
comfyanonymous committed
151
                    nn.SiLU(),
152
                    operations.conv_nd(dims, 16, 32, 3, padding=1, stride=2, dtype=self.dtype, device=device),
comfyanonymous's avatar
comfyanonymous committed
153
                    nn.SiLU(),
154
                    operations.conv_nd(dims, 32, 32, 3, padding=1, dtype=self.dtype, device=device),
comfyanonymous's avatar
comfyanonymous committed
155
                    nn.SiLU(),
156
                    operations.conv_nd(dims, 32, 96, 3, padding=1, stride=2, dtype=self.dtype, device=device),
comfyanonymous's avatar
comfyanonymous committed
157
                    nn.SiLU(),
158
                    operations.conv_nd(dims, 96, 96, 3, padding=1, dtype=self.dtype, device=device),
comfyanonymous's avatar
comfyanonymous committed
159
                    nn.SiLU(),
160
                    operations.conv_nd(dims, 96, 256, 3, padding=1, stride=2, dtype=self.dtype, device=device),
comfyanonymous's avatar
comfyanonymous committed
161
                    nn.SiLU(),
162
                    operations.conv_nd(dims, 256, model_channels, 3, padding=1, dtype=self.dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
        )

        self._feature_size = model_channels
        input_block_chans = [model_channels]
        ch = model_channels
        ds = 1
        for level, mult in enumerate(channel_mult):
            for nr in range(self.num_res_blocks[level]):
                layers = [
                    ResBlock(
                        ch,
                        time_embed_dim,
                        dropout,
                        out_channels=mult * model_channels,
                        dims=dims,
                        use_checkpoint=use_checkpoint,
                        use_scale_shift_norm=use_scale_shift_norm,
180
181
182
                        dtype=self.dtype,
                        device=device,
                        operations=operations,
comfyanonymous's avatar
comfyanonymous committed
183
184
185
                    )
                ]
                ch = mult * model_channels
186
187
                num_transformers = transformer_depth.pop(0)
                if num_transformers > 0:
comfyanonymous's avatar
comfyanonymous committed
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
                    if num_head_channels == -1:
                        dim_head = ch // num_heads
                    else:
                        num_heads = ch // num_head_channels
                        dim_head = num_head_channels
                    if legacy:
                        #num_heads = 1
                        dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
                    if exists(disable_self_attentions):
                        disabled_sa = disable_self_attentions[level]
                    else:
                        disabled_sa = False

                    if not exists(num_attention_blocks) or nr < num_attention_blocks[level]:
                        layers.append(
comfyanonymous's avatar
comfyanonymous committed
203
                            SpatialTransformer(
204
                                ch, num_heads, dim_head, depth=num_transformers, context_dim=context_dim,
comfyanonymous's avatar
comfyanonymous committed
205
                                disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
206
                                use_checkpoint=use_checkpoint, attn_precision=attn_precision, dtype=self.dtype, device=device, operations=operations
comfyanonymous's avatar
comfyanonymous committed
207
208
209
                            )
                        )
                self.input_blocks.append(TimestepEmbedSequential(*layers))
210
                self.zero_convs.append(self.make_zero_conv(ch, operations=operations, dtype=self.dtype, device=device))
comfyanonymous's avatar
comfyanonymous committed
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
                self._feature_size += ch
                input_block_chans.append(ch)
            if level != len(channel_mult) - 1:
                out_ch = ch
                self.input_blocks.append(
                    TimestepEmbedSequential(
                        ResBlock(
                            ch,
                            time_embed_dim,
                            dropout,
                            out_channels=out_ch,
                            dims=dims,
                            use_checkpoint=use_checkpoint,
                            use_scale_shift_norm=use_scale_shift_norm,
                            down=True,
226
227
                            dtype=self.dtype,
                            device=device,
comfyanonymous's avatar
comfyanonymous committed
228
                            operations=operations
comfyanonymous's avatar
comfyanonymous committed
229
230
231
                        )
                        if resblock_updown
                        else Downsample(
232
                            ch, conv_resample, dims=dims, out_channels=out_ch, dtype=self.dtype, device=device, operations=operations
comfyanonymous's avatar
comfyanonymous committed
233
234
235
236
237
                        )
                    )
                )
                ch = out_ch
                input_block_chans.append(ch)
238
                self.zero_convs.append(self.make_zero_conv(ch, operations=operations, dtype=self.dtype, device=device))
comfyanonymous's avatar
comfyanonymous committed
239
240
241
242
243
244
245
246
247
248
249
                ds *= 2
                self._feature_size += ch

        if num_head_channels == -1:
            dim_head = ch // num_heads
        else:
            num_heads = ch // num_head_channels
            dim_head = num_head_channels
        if legacy:
            #num_heads = 1
            dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
250
        mid_block = [
comfyanonymous's avatar
comfyanonymous committed
251
252
253
254
255
256
257
            ResBlock(
                ch,
                time_embed_dim,
                dropout,
                dims=dims,
                use_checkpoint=use_checkpoint,
                use_scale_shift_norm=use_scale_shift_norm,
258
259
                dtype=self.dtype,
                device=device,
comfyanonymous's avatar
comfyanonymous committed
260
                operations=operations
261
262
263
            )]
        if transformer_depth_middle >= 0:
            mid_block += [SpatialTransformer(  # always uses a self-attn
264
                            ch, num_heads, dim_head, depth=transformer_depth_middle, context_dim=context_dim,
comfyanonymous's avatar
comfyanonymous committed
265
                            disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer,
266
                            use_checkpoint=use_checkpoint, attn_precision=attn_precision, dtype=self.dtype, device=device, operations=operations
comfyanonymous's avatar
comfyanonymous committed
267
268
269
270
271
272
273
274
                        ),
            ResBlock(
                ch,
                time_embed_dim,
                dropout,
                dims=dims,
                use_checkpoint=use_checkpoint,
                use_scale_shift_norm=use_scale_shift_norm,
275
276
                dtype=self.dtype,
                device=device,
comfyanonymous's avatar
comfyanonymous committed
277
                operations=operations
278
279
            )]
        self.middle_block = TimestepEmbedSequential(*mid_block)
280
        self.middle_block_out = self.make_zero_conv(ch, operations=operations, dtype=self.dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
281
282
        self._feature_size += ch

283
284
    def make_zero_conv(self, channels, operations=None, dtype=None, device=None):
        return TimestepEmbedSequential(operations.conv_nd(self.dims, channels, channels, 1, padding=0, dtype=dtype, device=device))
comfyanonymous's avatar
comfyanonymous committed
285

286
    def forward(self, x, hint, timesteps, context, y=None, **kwargs):
287
        t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False).to(x.dtype)
comfyanonymous's avatar
comfyanonymous committed
288
289
290
291
292
293
        emb = self.time_embed(t_emb)

        guided_hint = self.input_hint_block(hint, emb, context)

        outs = []

294
295
296
297
298
        hs = []
        if self.num_classes is not None:
            assert y.shape[0] == x.shape[0]
            emb = emb + self.label_emb(y)

299
        h = x
comfyanonymous's avatar
comfyanonymous committed
300
301
302
303
304
305
306
307
308
309
310
311
312
313
        for module, zero_conv in zip(self.input_blocks, self.zero_convs):
            if guided_hint is not None:
                h = module(h, emb, context)
                h += guided_hint
                guided_hint = None
            else:
                h = module(h, emb, context)
            outs.append(zero_conv(h, emb, context))

        h = self.middle_block(h, emb, context)
        outs.append(self.middle_block_out(h, emb, context))

        return outs