cldm.py 12.8 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
2
3
4
5
6
7
#taken from: https://github.com/lllyasviel/ControlNet
#and modified

import torch
import torch as th
import torch.nn as nn

comfyanonymous's avatar
comfyanonymous committed
8
from ..ldm.modules.diffusionmodules.util import (
comfyanonymous's avatar
comfyanonymous committed
9
10
11
12
    zero_module,
    timestep_embedding,
)

comfyanonymous's avatar
comfyanonymous committed
13
from ..ldm.modules.attention import SpatialTransformer
comfyanonymous's avatar
comfyanonymous committed
14
from ..ldm.modules.diffusionmodules.openaimodel import UNetModel, TimestepEmbedSequential, ResBlock, Downsample
15
from ..ldm.util import exists
comfyanonymous's avatar
comfyanonymous committed
16
import comfy.ops
comfyanonymous's avatar
comfyanonymous committed
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

class ControlledUnetModel(UNetModel):
    #implemented in the ldm unet
    pass

class ControlNet(nn.Module):
    def __init__(
        self,
        image_size,
        in_channels,
        model_channels,
        hint_channels,
        num_res_blocks,
        dropout=0,
        channel_mult=(1, 2, 4, 8),
        conv_resample=True,
        dims=2,
34
        num_classes=None,
comfyanonymous's avatar
comfyanonymous committed
35
        use_checkpoint=False,
36
        dtype=torch.float32,
comfyanonymous's avatar
comfyanonymous committed
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
        num_heads=-1,
        num_head_channels=-1,
        num_heads_upsample=-1,
        use_scale_shift_norm=False,
        resblock_updown=False,
        use_new_attention_order=False,
        use_spatial_transformer=False,    # custom transformer support
        transformer_depth=1,              # custom transformer support
        context_dim=None,                 # custom transformer support
        n_embed=None,                     # custom support for prediction of discrete ids into codebook of first stage vq model
        legacy=True,
        disable_self_attentions=None,
        num_attention_blocks=None,
        disable_middle_self_attn=False,
        use_linear_in_transformer=False,
52
53
        adm_in_channels=None,
        transformer_depth_middle=None,
54
        transformer_depth_output=None,
comfyanonymous's avatar
comfyanonymous committed
55
56
        device=None,
        operations=comfy.ops,
comfyanonymous's avatar
comfyanonymous committed
57
        **kwargs,
comfyanonymous's avatar
comfyanonymous committed
58
59
    ):
        super().__init__()
comfyanonymous's avatar
comfyanonymous committed
60
        assert use_spatial_transformer == True, "use_spatial_transformer has to be true"
comfyanonymous's avatar
comfyanonymous committed
61
62
63
64
65
        if use_spatial_transformer:
            assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...'

        if context_dim is not None:
            assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...'
66
67
68
            # from omegaconf.listconfig import ListConfig
            # if type(context_dim) == ListConfig:
            #     context_dim = list(context_dim)
comfyanonymous's avatar
comfyanonymous committed
69
70
71
72
73
74
75
76
77
78
79
80
81
82

        if num_heads_upsample == -1:
            num_heads_upsample = num_heads

        if num_heads == -1:
            assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'

        if num_head_channels == -1:
            assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'

        self.dims = dims
        self.image_size = image_size
        self.in_channels = in_channels
        self.model_channels = model_channels
83

comfyanonymous's avatar
comfyanonymous committed
84
85
86
87
88
89
90
        if isinstance(num_res_blocks, int):
            self.num_res_blocks = len(channel_mult) * [num_res_blocks]
        else:
            if len(num_res_blocks) != len(channel_mult):
                raise ValueError("provide num_res_blocks either as an int (globally constant) or "
                                 "as a list/tuple (per-level) with the same length as channel_mult")
            self.num_res_blocks = num_res_blocks
91

comfyanonymous's avatar
comfyanonymous committed
92
93
94
95
96
97
98
        if disable_self_attentions is not None:
            # should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
            assert len(disable_self_attentions) == len(channel_mult)
        if num_attention_blocks is not None:
            assert len(num_attention_blocks) == len(self.num_res_blocks)
            assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks))))

99
100
        transformer_depth = transformer_depth[:]

comfyanonymous's avatar
comfyanonymous committed
101
102
103
        self.dropout = dropout
        self.channel_mult = channel_mult
        self.conv_resample = conv_resample
104
        self.num_classes = num_classes
comfyanonymous's avatar
comfyanonymous committed
105
        self.use_checkpoint = use_checkpoint
106
        self.dtype = dtype
comfyanonymous's avatar
comfyanonymous committed
107
108
109
110
111
112
113
        self.num_heads = num_heads
        self.num_head_channels = num_head_channels
        self.num_heads_upsample = num_heads_upsample
        self.predict_codebook_ids = n_embed is not None

        time_embed_dim = model_channels * 4
        self.time_embed = nn.Sequential(
comfyanonymous's avatar
comfyanonymous committed
114
            operations.Linear(model_channels, time_embed_dim, dtype=self.dtype, device=device),
comfyanonymous's avatar
comfyanonymous committed
115
            nn.SiLU(),
comfyanonymous's avatar
comfyanonymous committed
116
            operations.Linear(time_embed_dim, time_embed_dim, dtype=self.dtype, device=device),
comfyanonymous's avatar
comfyanonymous committed
117
118
        )

119
120
121
122
123
124
125
126
127
128
        if self.num_classes is not None:
            if isinstance(self.num_classes, int):
                self.label_emb = nn.Embedding(num_classes, time_embed_dim)
            elif self.num_classes == "continuous":
                print("setting up linear c_adm embedding layer")
                self.label_emb = nn.Linear(1, time_embed_dim)
            elif self.num_classes == "sequential":
                assert adm_in_channels is not None
                self.label_emb = nn.Sequential(
                    nn.Sequential(
comfyanonymous's avatar
comfyanonymous committed
129
                        operations.Linear(adm_in_channels, time_embed_dim, dtype=self.dtype, device=device),
130
                        nn.SiLU(),
comfyanonymous's avatar
comfyanonymous committed
131
                        operations.Linear(time_embed_dim, time_embed_dim, dtype=self.dtype, device=device),
132
133
134
135
136
                    )
                )
            else:
                raise ValueError()

comfyanonymous's avatar
comfyanonymous committed
137
138
139
        self.input_blocks = nn.ModuleList(
            [
                TimestepEmbedSequential(
comfyanonymous's avatar
comfyanonymous committed
140
                    operations.conv_nd(dims, in_channels, model_channels, 3, padding=1, dtype=self.dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
141
142
143
                )
            ]
        )
comfyanonymous's avatar
comfyanonymous committed
144
        self.zero_convs = nn.ModuleList([self.make_zero_conv(model_channels, operations=operations)])
comfyanonymous's avatar
comfyanonymous committed
145
146

        self.input_hint_block = TimestepEmbedSequential(
comfyanonymous's avatar
comfyanonymous committed
147
                    operations.conv_nd(dims, hint_channels, 16, 3, padding=1),
comfyanonymous's avatar
comfyanonymous committed
148
                    nn.SiLU(),
comfyanonymous's avatar
comfyanonymous committed
149
                    operations.conv_nd(dims, 16, 16, 3, padding=1),
comfyanonymous's avatar
comfyanonymous committed
150
                    nn.SiLU(),
comfyanonymous's avatar
comfyanonymous committed
151
                    operations.conv_nd(dims, 16, 32, 3, padding=1, stride=2),
comfyanonymous's avatar
comfyanonymous committed
152
                    nn.SiLU(),
comfyanonymous's avatar
comfyanonymous committed
153
                    operations.conv_nd(dims, 32, 32, 3, padding=1),
comfyanonymous's avatar
comfyanonymous committed
154
                    nn.SiLU(),
comfyanonymous's avatar
comfyanonymous committed
155
                    operations.conv_nd(dims, 32, 96, 3, padding=1, stride=2),
comfyanonymous's avatar
comfyanonymous committed
156
                    nn.SiLU(),
comfyanonymous's avatar
comfyanonymous committed
157
                    operations.conv_nd(dims, 96, 96, 3, padding=1),
comfyanonymous's avatar
comfyanonymous committed
158
                    nn.SiLU(),
comfyanonymous's avatar
comfyanonymous committed
159
                    operations.conv_nd(dims, 96, 256, 3, padding=1, stride=2),
comfyanonymous's avatar
comfyanonymous committed
160
                    nn.SiLU(),
comfyanonymous's avatar
comfyanonymous committed
161
                    zero_module(operations.conv_nd(dims, 256, model_channels, 3, padding=1))
comfyanonymous's avatar
comfyanonymous committed
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
        )

        self._feature_size = model_channels
        input_block_chans = [model_channels]
        ch = model_channels
        ds = 1
        for level, mult in enumerate(channel_mult):
            for nr in range(self.num_res_blocks[level]):
                layers = [
                    ResBlock(
                        ch,
                        time_embed_dim,
                        dropout,
                        out_channels=mult * model_channels,
                        dims=dims,
                        use_checkpoint=use_checkpoint,
                        use_scale_shift_norm=use_scale_shift_norm,
179
180
181
                        dtype=self.dtype,
                        device=device,
                        operations=operations,
comfyanonymous's avatar
comfyanonymous committed
182
183
184
                    )
                ]
                ch = mult * model_channels
185
186
                num_transformers = transformer_depth.pop(0)
                if num_transformers > 0:
comfyanonymous's avatar
comfyanonymous committed
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
                    if num_head_channels == -1:
                        dim_head = ch // num_heads
                    else:
                        num_heads = ch // num_head_channels
                        dim_head = num_head_channels
                    if legacy:
                        #num_heads = 1
                        dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
                    if exists(disable_self_attentions):
                        disabled_sa = disable_self_attentions[level]
                    else:
                        disabled_sa = False

                    if not exists(num_attention_blocks) or nr < num_attention_blocks[level]:
                        layers.append(
comfyanonymous's avatar
comfyanonymous committed
202
                            SpatialTransformer(
203
                                ch, num_heads, dim_head, depth=num_transformers, context_dim=context_dim,
comfyanonymous's avatar
comfyanonymous committed
204
                                disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
205
                                use_checkpoint=use_checkpoint, dtype=self.dtype, device=device, operations=operations
comfyanonymous's avatar
comfyanonymous committed
206
207
208
                            )
                        )
                self.input_blocks.append(TimestepEmbedSequential(*layers))
comfyanonymous's avatar
comfyanonymous committed
209
                self.zero_convs.append(self.make_zero_conv(ch, operations=operations))
comfyanonymous's avatar
comfyanonymous committed
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
                self._feature_size += ch
                input_block_chans.append(ch)
            if level != len(channel_mult) - 1:
                out_ch = ch
                self.input_blocks.append(
                    TimestepEmbedSequential(
                        ResBlock(
                            ch,
                            time_embed_dim,
                            dropout,
                            out_channels=out_ch,
                            dims=dims,
                            use_checkpoint=use_checkpoint,
                            use_scale_shift_norm=use_scale_shift_norm,
                            down=True,
225
226
                            dtype=self.dtype,
                            device=device,
comfyanonymous's avatar
comfyanonymous committed
227
                            operations=operations
comfyanonymous's avatar
comfyanonymous committed
228
229
230
                        )
                        if resblock_updown
                        else Downsample(
231
                            ch, conv_resample, dims=dims, out_channels=out_ch, dtype=self.dtype, device=device, operations=operations
comfyanonymous's avatar
comfyanonymous committed
232
233
234
235
236
                        )
                    )
                )
                ch = out_ch
                input_block_chans.append(ch)
comfyanonymous's avatar
comfyanonymous committed
237
                self.zero_convs.append(self.make_zero_conv(ch, operations=operations))
comfyanonymous's avatar
comfyanonymous committed
238
239
240
241
242
243
244
245
246
247
248
                ds *= 2
                self._feature_size += ch

        if num_head_channels == -1:
            dim_head = ch // num_heads
        else:
            num_heads = ch // num_head_channels
            dim_head = num_head_channels
        if legacy:
            #num_heads = 1
            dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
249
        mid_block = [
comfyanonymous's avatar
comfyanonymous committed
250
251
252
253
254
255
256
            ResBlock(
                ch,
                time_embed_dim,
                dropout,
                dims=dims,
                use_checkpoint=use_checkpoint,
                use_scale_shift_norm=use_scale_shift_norm,
257
258
                dtype=self.dtype,
                device=device,
comfyanonymous's avatar
comfyanonymous committed
259
                operations=operations
260
261
262
            )]
        if transformer_depth_middle >= 0:
            mid_block += [SpatialTransformer(  # always uses a self-attn
263
                            ch, num_heads, dim_head, depth=transformer_depth_middle, context_dim=context_dim,
comfyanonymous's avatar
comfyanonymous committed
264
                            disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer,
265
                            use_checkpoint=use_checkpoint, dtype=self.dtype, device=device, operations=operations
comfyanonymous's avatar
comfyanonymous committed
266
267
268
269
270
271
272
273
                        ),
            ResBlock(
                ch,
                time_embed_dim,
                dropout,
                dims=dims,
                use_checkpoint=use_checkpoint,
                use_scale_shift_norm=use_scale_shift_norm,
274
275
                dtype=self.dtype,
                device=device,
comfyanonymous's avatar
comfyanonymous committed
276
                operations=operations
277
278
            )]
        self.middle_block = TimestepEmbedSequential(*mid_block)
comfyanonymous's avatar
comfyanonymous committed
279
        self.middle_block_out = self.make_zero_conv(ch, operations=operations)
comfyanonymous's avatar
comfyanonymous committed
280
281
        self._feature_size += ch

comfyanonymous's avatar
comfyanonymous committed
282
283
    def make_zero_conv(self, channels, operations=None):
        return TimestepEmbedSequential(zero_module(operations.conv_nd(self.dims, channels, channels, 1, padding=0)))
comfyanonymous's avatar
comfyanonymous committed
284

285
    def forward(self, x, hint, timesteps, context, y=None, **kwargs):
286
        t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False).to(self.dtype)
comfyanonymous's avatar
comfyanonymous committed
287
288
289
290
291
292
        emb = self.time_embed(t_emb)

        guided_hint = self.input_hint_block(hint, emb, context)

        outs = []

293
294
295
296
297
        hs = []
        if self.num_classes is not None:
            assert y.shape[0] == x.shape[0]
            emb = emb + self.label_emb(y)

comfyanonymous's avatar
comfyanonymous committed
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
        h = x.type(self.dtype)
        for module, zero_conv in zip(self.input_blocks, self.zero_convs):
            if guided_hint is not None:
                h = module(h, emb, context)
                h += guided_hint
                guided_hint = None
            else:
                h = module(h, emb, context)
            outs.append(zero_conv(h, emb, context))

        h = self.middle_block(h, emb, context)
        outs.append(self.middle_block_out(h, emb, context))

        return outs