cldm.py 12.7 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
2
3
4
5
6
7
#taken from: https://github.com/lllyasviel/ControlNet
#and modified

import torch
import torch as th
import torch.nn as nn

comfyanonymous's avatar
comfyanonymous committed
8
from ..ldm.modules.diffusionmodules.util import (
comfyanonymous's avatar
comfyanonymous committed
9
10
11
12
    zero_module,
    timestep_embedding,
)

comfyanonymous's avatar
comfyanonymous committed
13
from ..ldm.modules.attention import SpatialTransformer
comfyanonymous's avatar
comfyanonymous committed
14
from ..ldm.modules.diffusionmodules.openaimodel import UNetModel, TimestepEmbedSequential, ResBlock, Downsample
15
from ..ldm.util import exists
comfyanonymous's avatar
comfyanonymous committed
16
import comfy.ops
comfyanonymous's avatar
comfyanonymous committed
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

class ControlledUnetModel(UNetModel):
    #implemented in the ldm unet
    pass

class ControlNet(nn.Module):
    def __init__(
        self,
        image_size,
        in_channels,
        model_channels,
        hint_channels,
        num_res_blocks,
        dropout=0,
        channel_mult=(1, 2, 4, 8),
        conv_resample=True,
        dims=2,
34
        num_classes=None,
comfyanonymous's avatar
comfyanonymous committed
35
        use_checkpoint=False,
36
        dtype=torch.float32,
comfyanonymous's avatar
comfyanonymous committed
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
        num_heads=-1,
        num_head_channels=-1,
        num_heads_upsample=-1,
        use_scale_shift_norm=False,
        resblock_updown=False,
        use_new_attention_order=False,
        use_spatial_transformer=False,    # custom transformer support
        transformer_depth=1,              # custom transformer support
        context_dim=None,                 # custom transformer support
        n_embed=None,                     # custom support for prediction of discrete ids into codebook of first stage vq model
        legacy=True,
        disable_self_attentions=None,
        num_attention_blocks=None,
        disable_middle_self_attn=False,
        use_linear_in_transformer=False,
52
53
        adm_in_channels=None,
        transformer_depth_middle=None,
54
        transformer_depth_output=None,
comfyanonymous's avatar
comfyanonymous committed
55
56
        device=None,
        operations=comfy.ops,
comfyanonymous's avatar
comfyanonymous committed
57
58
    ):
        super().__init__()
comfyanonymous's avatar
comfyanonymous committed
59
        assert use_spatial_transformer == True, "use_spatial_transformer has to be true"
comfyanonymous's avatar
comfyanonymous committed
60
61
62
63
64
        if use_spatial_transformer:
            assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...'

        if context_dim is not None:
            assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...'
65
66
67
            # from omegaconf.listconfig import ListConfig
            # if type(context_dim) == ListConfig:
            #     context_dim = list(context_dim)
comfyanonymous's avatar
comfyanonymous committed
68
69
70
71
72
73
74
75
76
77
78
79
80
81

        if num_heads_upsample == -1:
            num_heads_upsample = num_heads

        if num_heads == -1:
            assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'

        if num_head_channels == -1:
            assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'

        self.dims = dims
        self.image_size = image_size
        self.in_channels = in_channels
        self.model_channels = model_channels
82

comfyanonymous's avatar
comfyanonymous committed
83
84
85
86
87
88
89
        if isinstance(num_res_blocks, int):
            self.num_res_blocks = len(channel_mult) * [num_res_blocks]
        else:
            if len(num_res_blocks) != len(channel_mult):
                raise ValueError("provide num_res_blocks either as an int (globally constant) or "
                                 "as a list/tuple (per-level) with the same length as channel_mult")
            self.num_res_blocks = num_res_blocks
90

comfyanonymous's avatar
comfyanonymous committed
91
92
93
94
95
96
97
        if disable_self_attentions is not None:
            # should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
            assert len(disable_self_attentions) == len(channel_mult)
        if num_attention_blocks is not None:
            assert len(num_attention_blocks) == len(self.num_res_blocks)
            assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks))))

98
99
        transformer_depth = transformer_depth[:]

comfyanonymous's avatar
comfyanonymous committed
100
101
102
        self.dropout = dropout
        self.channel_mult = channel_mult
        self.conv_resample = conv_resample
103
        self.num_classes = num_classes
comfyanonymous's avatar
comfyanonymous committed
104
        self.use_checkpoint = use_checkpoint
105
        self.dtype = dtype
comfyanonymous's avatar
comfyanonymous committed
106
107
108
109
110
111
112
        self.num_heads = num_heads
        self.num_head_channels = num_head_channels
        self.num_heads_upsample = num_heads_upsample
        self.predict_codebook_ids = n_embed is not None

        time_embed_dim = model_channels * 4
        self.time_embed = nn.Sequential(
comfyanonymous's avatar
comfyanonymous committed
113
            operations.Linear(model_channels, time_embed_dim, dtype=self.dtype, device=device),
comfyanonymous's avatar
comfyanonymous committed
114
            nn.SiLU(),
comfyanonymous's avatar
comfyanonymous committed
115
            operations.Linear(time_embed_dim, time_embed_dim, dtype=self.dtype, device=device),
comfyanonymous's avatar
comfyanonymous committed
116
117
        )

118
119
120
121
122
123
124
125
126
127
        if self.num_classes is not None:
            if isinstance(self.num_classes, int):
                self.label_emb = nn.Embedding(num_classes, time_embed_dim)
            elif self.num_classes == "continuous":
                print("setting up linear c_adm embedding layer")
                self.label_emb = nn.Linear(1, time_embed_dim)
            elif self.num_classes == "sequential":
                assert adm_in_channels is not None
                self.label_emb = nn.Sequential(
                    nn.Sequential(
comfyanonymous's avatar
comfyanonymous committed
128
                        operations.Linear(adm_in_channels, time_embed_dim, dtype=self.dtype, device=device),
129
                        nn.SiLU(),
comfyanonymous's avatar
comfyanonymous committed
130
                        operations.Linear(time_embed_dim, time_embed_dim, dtype=self.dtype, device=device),
131
132
133
134
135
                    )
                )
            else:
                raise ValueError()

comfyanonymous's avatar
comfyanonymous committed
136
137
138
        self.input_blocks = nn.ModuleList(
            [
                TimestepEmbedSequential(
comfyanonymous's avatar
comfyanonymous committed
139
                    operations.conv_nd(dims, in_channels, model_channels, 3, padding=1, dtype=self.dtype, device=device)
comfyanonymous's avatar
comfyanonymous committed
140
141
142
                )
            ]
        )
comfyanonymous's avatar
comfyanonymous committed
143
        self.zero_convs = nn.ModuleList([self.make_zero_conv(model_channels, operations=operations)])
comfyanonymous's avatar
comfyanonymous committed
144
145

        self.input_hint_block = TimestepEmbedSequential(
comfyanonymous's avatar
comfyanonymous committed
146
                    operations.conv_nd(dims, hint_channels, 16, 3, padding=1),
comfyanonymous's avatar
comfyanonymous committed
147
                    nn.SiLU(),
comfyanonymous's avatar
comfyanonymous committed
148
                    operations.conv_nd(dims, 16, 16, 3, padding=1),
comfyanonymous's avatar
comfyanonymous committed
149
                    nn.SiLU(),
comfyanonymous's avatar
comfyanonymous committed
150
                    operations.conv_nd(dims, 16, 32, 3, padding=1, stride=2),
comfyanonymous's avatar
comfyanonymous committed
151
                    nn.SiLU(),
comfyanonymous's avatar
comfyanonymous committed
152
                    operations.conv_nd(dims, 32, 32, 3, padding=1),
comfyanonymous's avatar
comfyanonymous committed
153
                    nn.SiLU(),
comfyanonymous's avatar
comfyanonymous committed
154
                    operations.conv_nd(dims, 32, 96, 3, padding=1, stride=2),
comfyanonymous's avatar
comfyanonymous committed
155
                    nn.SiLU(),
comfyanonymous's avatar
comfyanonymous committed
156
                    operations.conv_nd(dims, 96, 96, 3, padding=1),
comfyanonymous's avatar
comfyanonymous committed
157
                    nn.SiLU(),
comfyanonymous's avatar
comfyanonymous committed
158
                    operations.conv_nd(dims, 96, 256, 3, padding=1, stride=2),
comfyanonymous's avatar
comfyanonymous committed
159
                    nn.SiLU(),
comfyanonymous's avatar
comfyanonymous committed
160
                    zero_module(operations.conv_nd(dims, 256, model_channels, 3, padding=1))
comfyanonymous's avatar
comfyanonymous committed
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
        )

        self._feature_size = model_channels
        input_block_chans = [model_channels]
        ch = model_channels
        ds = 1
        for level, mult in enumerate(channel_mult):
            for nr in range(self.num_res_blocks[level]):
                layers = [
                    ResBlock(
                        ch,
                        time_embed_dim,
                        dropout,
                        out_channels=mult * model_channels,
                        dims=dims,
                        use_checkpoint=use_checkpoint,
                        use_scale_shift_norm=use_scale_shift_norm,
178
179
180
                        dtype=self.dtype,
                        device=device,
                        operations=operations,
comfyanonymous's avatar
comfyanonymous committed
181
182
183
                    )
                ]
                ch = mult * model_channels
184
185
                num_transformers = transformer_depth.pop(0)
                if num_transformers > 0:
comfyanonymous's avatar
comfyanonymous committed
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
                    if num_head_channels == -1:
                        dim_head = ch // num_heads
                    else:
                        num_heads = ch // num_head_channels
                        dim_head = num_head_channels
                    if legacy:
                        #num_heads = 1
                        dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
                    if exists(disable_self_attentions):
                        disabled_sa = disable_self_attentions[level]
                    else:
                        disabled_sa = False

                    if not exists(num_attention_blocks) or nr < num_attention_blocks[level]:
                        layers.append(
comfyanonymous's avatar
comfyanonymous committed
201
                            SpatialTransformer(
202
                                ch, num_heads, dim_head, depth=num_transformers, context_dim=context_dim,
comfyanonymous's avatar
comfyanonymous committed
203
                                disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
204
                                use_checkpoint=use_checkpoint, dtype=self.dtype, device=device, operations=operations
comfyanonymous's avatar
comfyanonymous committed
205
206
207
                            )
                        )
                self.input_blocks.append(TimestepEmbedSequential(*layers))
comfyanonymous's avatar
comfyanonymous committed
208
                self.zero_convs.append(self.make_zero_conv(ch, operations=operations))
comfyanonymous's avatar
comfyanonymous committed
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
                self._feature_size += ch
                input_block_chans.append(ch)
            if level != len(channel_mult) - 1:
                out_ch = ch
                self.input_blocks.append(
                    TimestepEmbedSequential(
                        ResBlock(
                            ch,
                            time_embed_dim,
                            dropout,
                            out_channels=out_ch,
                            dims=dims,
                            use_checkpoint=use_checkpoint,
                            use_scale_shift_norm=use_scale_shift_norm,
                            down=True,
224
225
                            dtype=self.dtype,
                            device=device,
comfyanonymous's avatar
comfyanonymous committed
226
                            operations=operations
comfyanonymous's avatar
comfyanonymous committed
227
228
229
                        )
                        if resblock_updown
                        else Downsample(
230
                            ch, conv_resample, dims=dims, out_channels=out_ch, dtype=self.dtype, device=device, operations=operations
comfyanonymous's avatar
comfyanonymous committed
231
232
233
234
235
                        )
                    )
                )
                ch = out_ch
                input_block_chans.append(ch)
comfyanonymous's avatar
comfyanonymous committed
236
                self.zero_convs.append(self.make_zero_conv(ch, operations=operations))
comfyanonymous's avatar
comfyanonymous committed
237
238
239
240
241
242
243
244
245
246
247
                ds *= 2
                self._feature_size += ch

        if num_head_channels == -1:
            dim_head = ch // num_heads
        else:
            num_heads = ch // num_head_channels
            dim_head = num_head_channels
        if legacy:
            #num_heads = 1
            dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
248
        mid_block = [
comfyanonymous's avatar
comfyanonymous committed
249
250
251
252
253
254
255
            ResBlock(
                ch,
                time_embed_dim,
                dropout,
                dims=dims,
                use_checkpoint=use_checkpoint,
                use_scale_shift_norm=use_scale_shift_norm,
256
257
                dtype=self.dtype,
                device=device,
comfyanonymous's avatar
comfyanonymous committed
258
                operations=operations
259
260
261
            )]
        if transformer_depth_middle >= 0:
            mid_block += [SpatialTransformer(  # always uses a self-attn
262
                            ch, num_heads, dim_head, depth=transformer_depth_middle, context_dim=context_dim,
comfyanonymous's avatar
comfyanonymous committed
263
                            disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer,
264
                            use_checkpoint=use_checkpoint, dtype=self.dtype, device=device, operations=operations
comfyanonymous's avatar
comfyanonymous committed
265
266
267
268
269
270
271
272
                        ),
            ResBlock(
                ch,
                time_embed_dim,
                dropout,
                dims=dims,
                use_checkpoint=use_checkpoint,
                use_scale_shift_norm=use_scale_shift_norm,
273
274
                dtype=self.dtype,
                device=device,
comfyanonymous's avatar
comfyanonymous committed
275
                operations=operations
276
277
            )]
        self.middle_block = TimestepEmbedSequential(*mid_block)
comfyanonymous's avatar
comfyanonymous committed
278
        self.middle_block_out = self.make_zero_conv(ch, operations=operations)
comfyanonymous's avatar
comfyanonymous committed
279
280
        self._feature_size += ch

comfyanonymous's avatar
comfyanonymous committed
281
282
    def make_zero_conv(self, channels, operations=None):
        return TimestepEmbedSequential(zero_module(operations.conv_nd(self.dims, channels, channels, 1, padding=0)))
comfyanonymous's avatar
comfyanonymous committed
283

284
    def forward(self, x, hint, timesteps, context, y=None, **kwargs):
285
        t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False).to(self.dtype)
comfyanonymous's avatar
comfyanonymous committed
286
287
288
289
290
291
        emb = self.time_embed(t_emb)

        guided_hint = self.input_hint_block(hint, emb, context)

        outs = []

292
293
294
295
296
        hs = []
        if self.num_classes is not None:
            assert y.shape[0] == x.shape[0]
            emb = emb + self.label_emb(y)

comfyanonymous's avatar
comfyanonymous committed
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
        h = x.type(self.dtype)
        for module, zero_conv in zip(self.input_blocks, self.zero_convs):
            if guided_hint is not None:
                h = module(h, emb, context)
                h += guided_hint
                guided_hint = None
            else:
                h = module(h, emb, context)
            outs.append(zero_conv(h, emb, context))

        h = self.middle_block(h, emb, context)
        outs.append(self.middle_block_out(h, emb, context))

        return outs