nodes_post_processing.py 9.42 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
2
3
4
import numpy as np
import torch
import torch.nn.functional as F
from PIL import Image
5
import math
comfyanonymous's avatar
comfyanonymous committed
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

import comfy.utils


class Blend:
    def __init__(self):
        pass

    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "image1": ("IMAGE",),
                "image2": ("IMAGE",),
                "blend_factor": ("FLOAT", {
                    "default": 0.5,
                    "min": 0.0,
                    "max": 1.0,
                    "step": 0.01
                }),
matt3o's avatar
matt3o committed
26
                "blend_mode": (["normal", "multiply", "screen", "overlay", "soft_light", "difference"],),
comfyanonymous's avatar
comfyanonymous committed
27
28
29
30
31
32
            },
        }

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "blend_images"

33
    CATEGORY = "image/postprocessing"
comfyanonymous's avatar
comfyanonymous committed
34
35

    def blend_images(self, image1: torch.Tensor, image2: torch.Tensor, blend_factor: float, blend_mode: str):
36
        image2 = image2.to(image1.device)
comfyanonymous's avatar
comfyanonymous committed
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
        if image1.shape != image2.shape:
            image2 = image2.permute(0, 3, 1, 2)
            image2 = comfy.utils.common_upscale(image2, image1.shape[2], image1.shape[1], upscale_method='bicubic', crop='center')
            image2 = image2.permute(0, 2, 3, 1)

        blended_image = self.blend_mode(image1, image2, blend_mode)
        blended_image = image1 * (1 - blend_factor) + blended_image * blend_factor
        blended_image = torch.clamp(blended_image, 0, 1)
        return (blended_image,)

    def blend_mode(self, img1, img2, mode):
        if mode == "normal":
            return img2
        elif mode == "multiply":
            return img1 * img2
        elif mode == "screen":
            return 1 - (1 - img1) * (1 - img2)
        elif mode == "overlay":
            return torch.where(img1 <= 0.5, 2 * img1 * img2, 1 - 2 * (1 - img1) * (1 - img2))
        elif mode == "soft_light":
            return torch.where(img2 <= 0.5, img1 - (1 - 2 * img2) * img1 * (1 - img1), img1 + (2 * img2 - 1) * (self.g(img1) - img1))
matt3o's avatar
matt3o committed
58
59
        elif mode == "difference":
            return img1 - img2
comfyanonymous's avatar
comfyanonymous committed
60
61
62
63
64
65
        else:
            raise ValueError(f"Unsupported blend mode: {mode}")

    def g(self, x):
        return torch.where(x <= 0.25, ((16 * x - 12) * x + 4) * x, torch.sqrt(x))

66
67
def gaussian_kernel(kernel_size: int, sigma: float, device=None):
    x, y = torch.meshgrid(torch.linspace(-1, 1, kernel_size, device=device), torch.linspace(-1, 1, kernel_size, device=device), indexing="ij")
BlenderNeko's avatar
BlenderNeko committed
68
69
70
71
    d = torch.sqrt(x * x + y * y)
    g = torch.exp(-(d * d) / (2.0 * sigma * sigma))
    return g / g.sum()

comfyanonymous's avatar
comfyanonymous committed
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
class Blur:
    def __init__(self):
        pass

    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "image": ("IMAGE",),
                "blur_radius": ("INT", {
                    "default": 1,
                    "min": 1,
                    "max": 31,
                    "step": 1
                }),
                "sigma": ("FLOAT", {
                    "default": 1.0,
                    "min": 0.1,
                    "max": 10.0,
                    "step": 0.1
                }),
            },
        }

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "blur"

99
    CATEGORY = "image/postprocessing"
comfyanonymous's avatar
comfyanonymous committed
100
101
102
103
104
105
106
107

    def blur(self, image: torch.Tensor, blur_radius: int, sigma: float):
        if blur_radius == 0:
            return (image,)

        batch_size, height, width, channels = image.shape

        kernel_size = blur_radius * 2 + 1
108
        kernel = gaussian_kernel(kernel_size, sigma, device=image.device).repeat(channels, 1, 1).unsqueeze(1)
comfyanonymous's avatar
comfyanonymous committed
109
110

        image = image.permute(0, 3, 1, 2) # Torch wants (B, C, H, W) we use (B, H, W, C)
BlenderNeko's avatar
BlenderNeko committed
111
        padded_image = F.pad(image, (blur_radius,blur_radius,blur_radius,blur_radius), 'reflect')
comfyanonymous's avatar
comfyanonymous committed
112
        blurred = F.conv2d(padded_image, kernel, padding=kernel_size // 2, groups=channels)[:,:,blur_radius:-blur_radius, blur_radius:-blur_radius]
comfyanonymous's avatar
comfyanonymous committed
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
        blurred = blurred.permute(0, 2, 3, 1)

        return (blurred,)

class Quantize:
    def __init__(self):
        pass

    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "image": ("IMAGE",),
                "colors": ("INT", {
                    "default": 256,
                    "min": 1,
                    "max": 256,
                    "step": 1
                }),
132
                "dither": (["none", "floyd-steinberg", "bayer-2", "bayer-4", "bayer-8", "bayer-16"],),
comfyanonymous's avatar
comfyanonymous committed
133
134
135
136
137
138
            },
        }

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "quantize"

139
    CATEGORY = "image/postprocessing"
comfyanonymous's avatar
comfyanonymous committed
140

141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
    def bayer(im, pal_im, order):
        def normalized_bayer_matrix(n):
            if n == 0:
                return np.zeros((1,1), "float32")
            else:
                q = 4 ** n
                m = q * normalized_bayer_matrix(n - 1)
                return np.bmat(((m-1.5, m+0.5), (m+1.5, m-0.5))) / q

        num_colors = len(pal_im.getpalette()) // 3
        spread = 2 * 256 / num_colors
        bayer_n = int(math.log2(order))
        bayer_matrix = torch.from_numpy(spread * normalized_bayer_matrix(bayer_n) + 0.5)

        result = torch.from_numpy(np.array(im).astype(np.float32))
        tw = math.ceil(result.shape[0] / bayer_matrix.shape[0])
        th = math.ceil(result.shape[1] / bayer_matrix.shape[1])
        tiled_matrix = bayer_matrix.tile(tw, th).unsqueeze(-1)
        result.add_(tiled_matrix[:result.shape[0],:result.shape[1]]).clamp_(0, 255)
        result = result.to(dtype=torch.uint8)

        im = Image.fromarray(result.cpu().numpy())
        im = im.quantize(palette=pal_im, dither=Image.Dither.NONE)
        return im

    def quantize(self, image: torch.Tensor, colors: int, dither: str):
comfyanonymous's avatar
comfyanonymous committed
167
168
169
170
        batch_size, height, width, _ = image.shape
        result = torch.zeros_like(image)

        for b in range(batch_size):
171
172
173
            im = Image.fromarray((image[b] * 255).to(torch.uint8).numpy(), mode='RGB')

            pal_im = im.quantize(colors=colors) # Required as described in https://github.com/python-pillow/Pillow/issues/5836
comfyanonymous's avatar
comfyanonymous committed
174

175
176
177
178
179
180
181
            if dither == "none":
                quantized_image = im.quantize(palette=pal_im, dither=Image.Dither.NONE)
            elif dither == "floyd-steinberg":
                quantized_image = im.quantize(palette=pal_im, dither=Image.Dither.FLOYDSTEINBERG)
            elif dither.startswith("bayer"):
                order = int(dither.split('-')[-1])
                quantized_image = Quantize.bayer(im, pal_im, order)
comfyanonymous's avatar
comfyanonymous committed
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202

            quantized_array = torch.tensor(np.array(quantized_image.convert("RGB"))).float() / 255
            result[b] = quantized_array

        return (result,)

class Sharpen:
    def __init__(self):
        pass

    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "image": ("IMAGE",),
                "sharpen_radius": ("INT", {
                    "default": 1,
                    "min": 1,
                    "max": 31,
                    "step": 1
                }),
BlenderNeko's avatar
BlenderNeko committed
203
                "sigma": ("FLOAT", {
comfyanonymous's avatar
comfyanonymous committed
204
205
                    "default": 1.0,
                    "min": 0.1,
BlenderNeko's avatar
BlenderNeko committed
206
                    "max": 10.0,
207
                    "step": 0.01
BlenderNeko's avatar
BlenderNeko committed
208
209
210
211
                }),
                "alpha": ("FLOAT", {
                    "default": 1.0,
                    "min": 0.0,
comfyanonymous's avatar
comfyanonymous committed
212
                    "max": 5.0,
213
                    "step": 0.01
comfyanonymous's avatar
comfyanonymous committed
214
215
216
217
218
219
220
                }),
            },
        }

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "sharpen"

221
    CATEGORY = "image/postprocessing"
comfyanonymous's avatar
comfyanonymous committed
222

BlenderNeko's avatar
BlenderNeko committed
223
    def sharpen(self, image: torch.Tensor, sharpen_radius: int, sigma:float, alpha: float):
comfyanonymous's avatar
comfyanonymous committed
224
225
226
227
228
229
        if sharpen_radius == 0:
            return (image,)

        batch_size, height, width, channels = image.shape

        kernel_size = sharpen_radius * 2 + 1
230
        kernel = gaussian_kernel(kernel_size, sigma, device=image.device) * -(alpha*10)
comfyanonymous's avatar
comfyanonymous committed
231
        center = kernel_size // 2
BlenderNeko's avatar
BlenderNeko committed
232
        kernel[center, center] = kernel[center, center] - kernel.sum() + 1.0
comfyanonymous's avatar
comfyanonymous committed
233
234
235
        kernel = kernel.repeat(channels, 1, 1).unsqueeze(1)

        tensor_image = image.permute(0, 3, 1, 2) # Torch wants (B, C, H, W) we use (B, H, W, C)
BlenderNeko's avatar
BlenderNeko committed
236
237
        tensor_image = F.pad(tensor_image, (sharpen_radius,sharpen_radius,sharpen_radius,sharpen_radius), 'reflect')
        sharpened = F.conv2d(tensor_image, kernel, padding=center, groups=channels)[:,:,sharpen_radius:-sharpen_radius, sharpen_radius:-sharpen_radius]
comfyanonymous's avatar
comfyanonymous committed
238
239
240
241
242
243
        sharpened = sharpened.permute(0, 2, 3, 1)

        result = torch.clamp(sharpened, 0, 1)

        return (result,)

244
class ImageScaleToTotalPixels:
245
    upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "lanczos"]
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
    crop_methods = ["disabled", "center"]

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "image": ("IMAGE",), "upscale_method": (s.upscale_methods,),
                              "megapixels": ("FLOAT", {"default": 1.0, "min": 0.01, "max": 16.0, "step": 0.01}),
                            }}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "upscale"

    CATEGORY = "image/upscaling"

    def upscale(self, image, upscale_method, megapixels):
        samples = image.movedim(-1,1)
        total = int(megapixels * 1024 * 1024)

        scale_by = math.sqrt(total / (samples.shape[3] * samples.shape[2]))
        width = round(samples.shape[3] * scale_by)
        height = round(samples.shape[2] * scale_by)

        s = comfy.utils.common_upscale(samples, width, height, upscale_method, "disabled")
        s = s.movedim(1,-1)
        return (s,)

comfyanonymous's avatar
comfyanonymous committed
270
NODE_CLASS_MAPPINGS = {
271
272
273
274
    "ImageBlend": Blend,
    "ImageBlur": Blur,
    "ImageQuantize": Quantize,
    "ImageSharpen": Sharpen,
275
    "ImageScaleToTotalPixels": ImageScaleToTotalPixels,
comfyanonymous's avatar
comfyanonymous committed
276
}