"web/vscode:/vscode.git/clone" did not exist on "5e2b4893da62dec1c9ee4d0167f6b62e3b11fbef"
nodes_post_processing.py 9.35 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
2
3
4
import numpy as np
import torch
import torch.nn.functional as F
from PIL import Image
5
import math
comfyanonymous's avatar
comfyanonymous committed
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

import comfy.utils


class Blend:
    def __init__(self):
        pass

    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "image1": ("IMAGE",),
                "image2": ("IMAGE",),
                "blend_factor": ("FLOAT", {
                    "default": 0.5,
                    "min": 0.0,
                    "max": 1.0,
                    "step": 0.01
                }),
matt3o's avatar
matt3o committed
26
                "blend_mode": (["normal", "multiply", "screen", "overlay", "soft_light", "difference"],),
comfyanonymous's avatar
comfyanonymous committed
27
28
29
30
31
32
            },
        }

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "blend_images"

33
    CATEGORY = "image/postprocessing"
comfyanonymous's avatar
comfyanonymous committed
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

    def blend_images(self, image1: torch.Tensor, image2: torch.Tensor, blend_factor: float, blend_mode: str):
        if image1.shape != image2.shape:
            image2 = image2.permute(0, 3, 1, 2)
            image2 = comfy.utils.common_upscale(image2, image1.shape[2], image1.shape[1], upscale_method='bicubic', crop='center')
            image2 = image2.permute(0, 2, 3, 1)

        blended_image = self.blend_mode(image1, image2, blend_mode)
        blended_image = image1 * (1 - blend_factor) + blended_image * blend_factor
        blended_image = torch.clamp(blended_image, 0, 1)
        return (blended_image,)

    def blend_mode(self, img1, img2, mode):
        if mode == "normal":
            return img2
        elif mode == "multiply":
            return img1 * img2
        elif mode == "screen":
            return 1 - (1 - img1) * (1 - img2)
        elif mode == "overlay":
            return torch.where(img1 <= 0.5, 2 * img1 * img2, 1 - 2 * (1 - img1) * (1 - img2))
        elif mode == "soft_light":
            return torch.where(img2 <= 0.5, img1 - (1 - 2 * img2) * img1 * (1 - img1), img1 + (2 * img2 - 1) * (self.g(img1) - img1))
matt3o's avatar
matt3o committed
57
58
        elif mode == "difference":
            return img1 - img2
comfyanonymous's avatar
comfyanonymous committed
59
60
61
62
63
64
        else:
            raise ValueError(f"Unsupported blend mode: {mode}")

    def g(self, x):
        return torch.where(x <= 0.25, ((16 * x - 12) * x + 4) * x, torch.sqrt(x))

65
66
def gaussian_kernel(kernel_size: int, sigma: float, device=None):
    x, y = torch.meshgrid(torch.linspace(-1, 1, kernel_size, device=device), torch.linspace(-1, 1, kernel_size, device=device), indexing="ij")
BlenderNeko's avatar
BlenderNeko committed
67
68
69
70
    d = torch.sqrt(x * x + y * y)
    g = torch.exp(-(d * d) / (2.0 * sigma * sigma))
    return g / g.sum()

comfyanonymous's avatar
comfyanonymous committed
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
class Blur:
    def __init__(self):
        pass

    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "image": ("IMAGE",),
                "blur_radius": ("INT", {
                    "default": 1,
                    "min": 1,
                    "max": 31,
                    "step": 1
                }),
                "sigma": ("FLOAT", {
                    "default": 1.0,
                    "min": 0.1,
                    "max": 10.0,
                    "step": 0.1
                }),
            },
        }

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "blur"

98
    CATEGORY = "image/postprocessing"
comfyanonymous's avatar
comfyanonymous committed
99
100
101
102
103
104
105
106

    def blur(self, image: torch.Tensor, blur_radius: int, sigma: float):
        if blur_radius == 0:
            return (image,)

        batch_size, height, width, channels = image.shape

        kernel_size = blur_radius * 2 + 1
107
        kernel = gaussian_kernel(kernel_size, sigma, device=image.device).repeat(channels, 1, 1).unsqueeze(1)
comfyanonymous's avatar
comfyanonymous committed
108
109

        image = image.permute(0, 3, 1, 2) # Torch wants (B, C, H, W) we use (B, H, W, C)
BlenderNeko's avatar
BlenderNeko committed
110
        padded_image = F.pad(image, (blur_radius,blur_radius,blur_radius,blur_radius), 'reflect')
comfyanonymous's avatar
comfyanonymous committed
111
        blurred = F.conv2d(padded_image, kernel, padding=kernel_size // 2, groups=channels)[:,:,blur_radius:-blur_radius, blur_radius:-blur_radius]
comfyanonymous's avatar
comfyanonymous committed
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
        blurred = blurred.permute(0, 2, 3, 1)

        return (blurred,)

class Quantize:
    def __init__(self):
        pass

    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "image": ("IMAGE",),
                "colors": ("INT", {
                    "default": 256,
                    "min": 1,
                    "max": 256,
                    "step": 1
                }),
131
                "dither": (["none", "floyd-steinberg", "bayer-2", "bayer-4", "bayer-8", "bayer-16"],),
comfyanonymous's avatar
comfyanonymous committed
132
133
134
135
136
137
            },
        }

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "quantize"

138
    CATEGORY = "image/postprocessing"
comfyanonymous's avatar
comfyanonymous committed
139

140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
    def bayer(im, pal_im, order):
        def normalized_bayer_matrix(n):
            if n == 0:
                return np.zeros((1,1), "float32")
            else:
                q = 4 ** n
                m = q * normalized_bayer_matrix(n - 1)
                return np.bmat(((m-1.5, m+0.5), (m+1.5, m-0.5))) / q

        num_colors = len(pal_im.getpalette()) // 3
        spread = 2 * 256 / num_colors
        bayer_n = int(math.log2(order))
        bayer_matrix = torch.from_numpy(spread * normalized_bayer_matrix(bayer_n) + 0.5)

        result = torch.from_numpy(np.array(im).astype(np.float32))
        tw = math.ceil(result.shape[0] / bayer_matrix.shape[0])
        th = math.ceil(result.shape[1] / bayer_matrix.shape[1])
        tiled_matrix = bayer_matrix.tile(tw, th).unsqueeze(-1)
        result.add_(tiled_matrix[:result.shape[0],:result.shape[1]]).clamp_(0, 255)
        result = result.to(dtype=torch.uint8)

        im = Image.fromarray(result.cpu().numpy())
        im = im.quantize(palette=pal_im, dither=Image.Dither.NONE)
        return im

    def quantize(self, image: torch.Tensor, colors: int, dither: str):
comfyanonymous's avatar
comfyanonymous committed
166
167
168
169
        batch_size, height, width, _ = image.shape
        result = torch.zeros_like(image)

        for b in range(batch_size):
170
171
172
            im = Image.fromarray((image[b] * 255).to(torch.uint8).numpy(), mode='RGB')

            pal_im = im.quantize(colors=colors) # Required as described in https://github.com/python-pillow/Pillow/issues/5836
comfyanonymous's avatar
comfyanonymous committed
173

174
175
176
177
178
179
180
            if dither == "none":
                quantized_image = im.quantize(palette=pal_im, dither=Image.Dither.NONE)
            elif dither == "floyd-steinberg":
                quantized_image = im.quantize(palette=pal_im, dither=Image.Dither.FLOYDSTEINBERG)
            elif dither.startswith("bayer"):
                order = int(dither.split('-')[-1])
                quantized_image = Quantize.bayer(im, pal_im, order)
comfyanonymous's avatar
comfyanonymous committed
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201

            quantized_array = torch.tensor(np.array(quantized_image.convert("RGB"))).float() / 255
            result[b] = quantized_array

        return (result,)

class Sharpen:
    def __init__(self):
        pass

    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "image": ("IMAGE",),
                "sharpen_radius": ("INT", {
                    "default": 1,
                    "min": 1,
                    "max": 31,
                    "step": 1
                }),
BlenderNeko's avatar
BlenderNeko committed
202
                "sigma": ("FLOAT", {
comfyanonymous's avatar
comfyanonymous committed
203
204
                    "default": 1.0,
                    "min": 0.1,
BlenderNeko's avatar
BlenderNeko committed
205
206
207
208
209
210
                    "max": 10.0,
                    "step": 0.1
                }),
                "alpha": ("FLOAT", {
                    "default": 1.0,
                    "min": 0.0,
comfyanonymous's avatar
comfyanonymous committed
211
212
213
214
215
216
217
218
219
                    "max": 5.0,
                    "step": 0.1
                }),
            },
        }

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "sharpen"

220
    CATEGORY = "image/postprocessing"
comfyanonymous's avatar
comfyanonymous committed
221

BlenderNeko's avatar
BlenderNeko committed
222
    def sharpen(self, image: torch.Tensor, sharpen_radius: int, sigma:float, alpha: float):
comfyanonymous's avatar
comfyanonymous committed
223
224
225
226
227
228
        if sharpen_radius == 0:
            return (image,)

        batch_size, height, width, channels = image.shape

        kernel_size = sharpen_radius * 2 + 1
BlenderNeko's avatar
BlenderNeko committed
229
        kernel = gaussian_kernel(kernel_size, sigma) * -(alpha*10)
comfyanonymous's avatar
comfyanonymous committed
230
        center = kernel_size // 2
BlenderNeko's avatar
BlenderNeko committed
231
        kernel[center, center] = kernel[center, center] - kernel.sum() + 1.0
comfyanonymous's avatar
comfyanonymous committed
232
233
234
        kernel = kernel.repeat(channels, 1, 1).unsqueeze(1)

        tensor_image = image.permute(0, 3, 1, 2) # Torch wants (B, C, H, W) we use (B, H, W, C)
BlenderNeko's avatar
BlenderNeko committed
235
236
        tensor_image = F.pad(tensor_image, (sharpen_radius,sharpen_radius,sharpen_radius,sharpen_radius), 'reflect')
        sharpened = F.conv2d(tensor_image, kernel, padding=center, groups=channels)[:,:,sharpen_radius:-sharpen_radius, sharpen_radius:-sharpen_radius]
comfyanonymous's avatar
comfyanonymous committed
237
238
239
240
241
242
        sharpened = sharpened.permute(0, 2, 3, 1)

        result = torch.clamp(sharpened, 0, 1)

        return (result,)

243
class ImageScaleToTotalPixels:
244
    upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "lanczos"]
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
    crop_methods = ["disabled", "center"]

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "image": ("IMAGE",), "upscale_method": (s.upscale_methods,),
                              "megapixels": ("FLOAT", {"default": 1.0, "min": 0.01, "max": 16.0, "step": 0.01}),
                            }}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "upscale"

    CATEGORY = "image/upscaling"

    def upscale(self, image, upscale_method, megapixels):
        samples = image.movedim(-1,1)
        total = int(megapixels * 1024 * 1024)

        scale_by = math.sqrt(total / (samples.shape[3] * samples.shape[2]))
        width = round(samples.shape[3] * scale_by)
        height = round(samples.shape[2] * scale_by)

        s = comfy.utils.common_upscale(samples, width, height, upscale_method, "disabled")
        s = s.movedim(1,-1)
        return (s,)

comfyanonymous's avatar
comfyanonymous committed
269
NODE_CLASS_MAPPINGS = {
270
271
272
273
    "ImageBlend": Blend,
    "ImageBlur": Blur,
    "ImageQuantize": Quantize,
    "ImageSharpen": Sharpen,
274
    "ImageScaleToTotalPixels": ImageScaleToTotalPixels,
comfyanonymous's avatar
comfyanonymous committed
275
}