nodes_post_processing.py 6.98 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
import numpy as np
import torch
import torch.nn.functional as F
from PIL import Image

import comfy.utils


class Blend:
    def __init__(self):
        pass

    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "image1": ("IMAGE",),
                "image2": ("IMAGE",),
                "blend_factor": ("FLOAT", {
                    "default": 0.5,
                    "min": 0.0,
                    "max": 1.0,
                    "step": 0.01
                }),
                "blend_mode": (["normal", "multiply", "screen", "overlay", "soft_light"],),
            },
        }

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "blend_images"

32
    CATEGORY = "image/postprocessing"
comfyanonymous's avatar
comfyanonymous committed
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

    def blend_images(self, image1: torch.Tensor, image2: torch.Tensor, blend_factor: float, blend_mode: str):
        if image1.shape != image2.shape:
            image2 = image2.permute(0, 3, 1, 2)
            image2 = comfy.utils.common_upscale(image2, image1.shape[2], image1.shape[1], upscale_method='bicubic', crop='center')
            image2 = image2.permute(0, 2, 3, 1)

        blended_image = self.blend_mode(image1, image2, blend_mode)
        blended_image = image1 * (1 - blend_factor) + blended_image * blend_factor
        blended_image = torch.clamp(blended_image, 0, 1)
        return (blended_image,)

    def blend_mode(self, img1, img2, mode):
        if mode == "normal":
            return img2
        elif mode == "multiply":
            return img1 * img2
        elif mode == "screen":
            return 1 - (1 - img1) * (1 - img2)
        elif mode == "overlay":
            return torch.where(img1 <= 0.5, 2 * img1 * img2, 1 - 2 * (1 - img1) * (1 - img2))
        elif mode == "soft_light":
            return torch.where(img2 <= 0.5, img1 - (1 - 2 * img2) * img1 * (1 - img1), img1 + (2 * img2 - 1) * (self.g(img1) - img1))
        else:
            raise ValueError(f"Unsupported blend mode: {mode}")

    def g(self, x):
        return torch.where(x <= 0.25, ((16 * x - 12) * x + 4) * x, torch.sqrt(x))

BlenderNeko's avatar
BlenderNeko committed
62
63
64
65
66
67
def gaussian_kernel(kernel_size: int, sigma: float):
    x, y = torch.meshgrid(torch.linspace(-1, 1, kernel_size), torch.linspace(-1, 1, kernel_size), indexing="ij")
    d = torch.sqrt(x * x + y * y)
    g = torch.exp(-(d * d) / (2.0 * sigma * sigma))
    return g / g.sum()

comfyanonymous's avatar
comfyanonymous committed
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
class Blur:
    def __init__(self):
        pass

    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "image": ("IMAGE",),
                "blur_radius": ("INT", {
                    "default": 1,
                    "min": 1,
                    "max": 31,
                    "step": 1
                }),
                "sigma": ("FLOAT", {
                    "default": 1.0,
                    "min": 0.1,
                    "max": 10.0,
                    "step": 0.1
                }),
            },
        }

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "blur"

95
    CATEGORY = "image/postprocessing"
comfyanonymous's avatar
comfyanonymous committed
96
97
98
99
100
101
102
103

    def blur(self, image: torch.Tensor, blur_radius: int, sigma: float):
        if blur_radius == 0:
            return (image,)

        batch_size, height, width, channels = image.shape

        kernel_size = blur_radius * 2 + 1
BlenderNeko's avatar
BlenderNeko committed
104
        kernel = gaussian_kernel(kernel_size, sigma).repeat(channels, 1, 1).unsqueeze(1)
comfyanonymous's avatar
comfyanonymous committed
105
106

        image = image.permute(0, 3, 1, 2) # Torch wants (B, C, H, W) we use (B, H, W, C)
BlenderNeko's avatar
BlenderNeko committed
107
108
        padded_image = F.pad(image, (blur_radius,blur_radius,blur_radius,blur_radius), 'reflect')
        blurred = F.conv2d(image, kernel, padding=kernel_size // 2, groups=channels)[:,:,blur_radius:-blur_radius, blur_radius:-blur_radius]
comfyanonymous's avatar
comfyanonymous committed
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
        blurred = blurred.permute(0, 2, 3, 1)

        return (blurred,)

class Quantize:
    def __init__(self):
        pass

    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "image": ("IMAGE",),
                "colors": ("INT", {
                    "default": 256,
                    "min": 1,
                    "max": 256,
                    "step": 1
                }),
                "dither": (["none", "floyd-steinberg"],),
            },
        }

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "quantize"

135
    CATEGORY = "image/postprocessing"
comfyanonymous's avatar
comfyanonymous committed
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170

    def quantize(self, image: torch.Tensor, colors: int = 256, dither: str = "FLOYDSTEINBERG"):
        batch_size, height, width, _ = image.shape
        result = torch.zeros_like(image)

        dither_option = Image.Dither.FLOYDSTEINBERG if dither == "floyd-steinberg" else Image.Dither.NONE

        for b in range(batch_size):
            tensor_image = image[b]
            img = (tensor_image * 255).to(torch.uint8).numpy()
            pil_image = Image.fromarray(img, mode='RGB')

            palette = pil_image.quantize(colors=colors) # Required as described in https://github.com/python-pillow/Pillow/issues/5836
            quantized_image = pil_image.quantize(colors=colors, palette=palette, dither=dither_option)

            quantized_array = torch.tensor(np.array(quantized_image.convert("RGB"))).float() / 255
            result[b] = quantized_array

        return (result,)

class Sharpen:
    def __init__(self):
        pass

    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "image": ("IMAGE",),
                "sharpen_radius": ("INT", {
                    "default": 1,
                    "min": 1,
                    "max": 31,
                    "step": 1
                }),
BlenderNeko's avatar
BlenderNeko committed
171
                "sigma": ("FLOAT", {
comfyanonymous's avatar
comfyanonymous committed
172
173
                    "default": 1.0,
                    "min": 0.1,
BlenderNeko's avatar
BlenderNeko committed
174
175
176
177
178
179
                    "max": 10.0,
                    "step": 0.1
                }),
                "alpha": ("FLOAT", {
                    "default": 1.0,
                    "min": 0.0,
comfyanonymous's avatar
comfyanonymous committed
180
181
182
183
184
185
186
187
188
                    "max": 5.0,
                    "step": 0.1
                }),
            },
        }

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "sharpen"

189
    CATEGORY = "image/postprocessing"
comfyanonymous's avatar
comfyanonymous committed
190

BlenderNeko's avatar
BlenderNeko committed
191
    def sharpen(self, image: torch.Tensor, sharpen_radius: int, sigma:float, alpha: float):
comfyanonymous's avatar
comfyanonymous committed
192
193
194
195
196
197
        if sharpen_radius == 0:
            return (image,)

        batch_size, height, width, channels = image.shape

        kernel_size = sharpen_radius * 2 + 1
BlenderNeko's avatar
BlenderNeko committed
198
        kernel = gaussian_kernel(kernel_size, sigma) * -(alpha*10)
comfyanonymous's avatar
comfyanonymous committed
199
        center = kernel_size // 2
BlenderNeko's avatar
BlenderNeko committed
200
        kernel[center, center] = kernel[center, center] - kernel.sum() + 1.0
comfyanonymous's avatar
comfyanonymous committed
201
202
203
        kernel = kernel.repeat(channels, 1, 1).unsqueeze(1)

        tensor_image = image.permute(0, 3, 1, 2) # Torch wants (B, C, H, W) we use (B, H, W, C)
BlenderNeko's avatar
BlenderNeko committed
204
205
        tensor_image = F.pad(tensor_image, (sharpen_radius,sharpen_radius,sharpen_radius,sharpen_radius), 'reflect')
        sharpened = F.conv2d(tensor_image, kernel, padding=center, groups=channels)[:,:,sharpen_radius:-sharpen_radius, sharpen_radius:-sharpen_radius]
comfyanonymous's avatar
comfyanonymous committed
206
207
208
209
210
211
212
        sharpened = sharpened.permute(0, 2, 3, 1)

        result = torch.clamp(sharpened, 0, 1)

        return (result,)

NODE_CLASS_MAPPINGS = {
213
214
215
216
    "ImageBlend": Blend,
    "ImageBlur": Blur,
    "ImageQuantize": Quantize,
    "ImageSharpen": Sharpen,
comfyanonymous's avatar
comfyanonymous committed
217
}