"vscode:/vscode.git/clone" did not exist on "c7f46bc99852cdd3ea75093eff125a155ebae48b"
nodes.py 27.3 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
2
3
4
5
import torch

import os
import sys
import json
6
import hashlib
comfyanonymous's avatar
comfyanonymous committed
7
import copy
comfyanonymous's avatar
comfyanonymous committed
8
9
10
11
12

from PIL import Image
from PIL.PngImagePlugin import PngInfo
import numpy as np

13
sys.path.insert(0, os.path.join(sys.path[0], "comfy"))
comfyanonymous's avatar
comfyanonymous committed
14
15
16
17


import comfy.samplers
import comfy.sd
comfyanonymous's avatar
comfyanonymous committed
18
19
import comfy.utils

20
import model_management
comfyanonymous's avatar
comfyanonymous committed
21

comfyanonymous's avatar
comfyanonymous committed
22
23
supported_ckpt_extensions = ['.ckpt', '.pth']
supported_pt_extensions = ['.ckpt', '.pt', '.bin', '.pth']
comfyanonymous's avatar
comfyanonymous committed
24
25
26
try:
    import safetensors.torch
    supported_ckpt_extensions += ['.safetensors']
comfyanonymous's avatar
comfyanonymous committed
27
    supported_pt_extensions += ['.safetensors']
comfyanonymous's avatar
comfyanonymous committed
28
29
30
except:
    print("Could not import safetensors, safetensors support disabled.")

31
32
33
34
def recursive_search(directory):  
    result = []
    for root, subdir, file in os.walk(directory, followlinks=True):
        for filepath in file:
35
36
            #we os.path,join directory with a blank string to generate a path separator at the end.
            result.append(os.path.join(root, filepath).replace(os.path.join(directory,''),'')) 
37
38
    return result

comfyanonymous's avatar
comfyanonymous committed
39
40
41
42
43
44
def filter_files_extensions(files, extensions):
    return sorted(list(filter(lambda a: os.path.splitext(a)[-1].lower() in extensions, files)))

class CLIPTextEncode:
    @classmethod
    def INPUT_TYPES(s):
45
        return {"required": {"text": ("STRING", {"multiline": True}), "clip": ("CLIP", )}}
comfyanonymous's avatar
comfyanonymous committed
46
47
48
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "encode"

49
50
    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
51
    def encode(self, clip, text):
comfyanonymous's avatar
comfyanonymous committed
52
53
54
55
56
57
58
59
60
        return ([[clip.encode(text), {}]], )

class ConditioningCombine:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning_1": ("CONDITIONING", ), "conditioning_2": ("CONDITIONING", )}}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "combine"

61
62
    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
    def combine(self, conditioning_1, conditioning_2):
        return (conditioning_1 + conditioning_2, )

class ConditioningSetArea:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
                              "width": ("INT", {"default": 64, "min": 64, "max": 4096, "step": 64}),
                              "height": ("INT", {"default": 64, "min": 64, "max": 4096, "step": 64}),
                              "x": ("INT", {"default": 0, "min": 0, "max": 4096, "step": 64}),
                              "y": ("INT", {"default": 0, "min": 0, "max": 4096, "step": 64}),
                              "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "append"

79
80
    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
81
    def append(self, conditioning, width, height, x, y, strength, min_sigma=0.0, max_sigma=99.0):
comfyanonymous's avatar
comfyanonymous committed
82
83
84
85
86
87
88
89
        c = []
        for t in conditioning:
            n = [t[0], t[1].copy()]
            n[1]['area'] = (height // 8, width // 8, y // 8, x // 8)
            n[1]['strength'] = strength
            n[1]['min_sigma'] = min_sigma
            n[1]['max_sigma'] = max_sigma
            c.append(n)
comfyanonymous's avatar
comfyanonymous committed
90
        return (c, )
comfyanonymous's avatar
comfyanonymous committed
91
92
93
94
95
96
97
98
99
100
101

class VAEDecode:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "decode"

102
103
    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
104
    def decode(self, vae, samples):
105
        return (vae.decode(samples["samples"]), )
comfyanonymous's avatar
comfyanonymous committed
106
107
108
109
110
111
112
113
114
115
116

class VAEEncode:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

117
118
    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
119
    def encode(self, vae, pixels):
120
121
122
123
        x = (pixels.shape[1] // 64) * 64
        y = (pixels.shape[2] // 64) * 64
        if pixels.shape[1] != x or pixels.shape[2] != y:
            pixels = pixels[:,:x,:y,:]
124
125
126
        t = vae.encode(pixels[:,:,:,:3])

        return ({"samples":t}, )
comfyanonymous's avatar
comfyanonymous committed
127

128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
class VAEEncodeForInpaint:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", ), "mask": ("MASK", )}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

    CATEGORY = "latent/inpaint"

    def encode(self, vae, pixels, mask):
        x = (pixels.shape[1] // 64) * 64
        y = (pixels.shape[2] // 64) * 64
        if pixels.shape[1] != x or pixels.shape[2] != y:
            pixels = pixels[:,:x,:y,:]
            mask = mask[:x,:y]

        #shave off a few pixels to keep things seamless
        kernel_tensor = torch.ones((1, 1, 6, 6))
        mask_erosion = torch.clamp(torch.nn.functional.conv2d((1.0 - mask.round())[None], kernel_tensor, padding=3), 0, 1)
        for i in range(3):
            pixels[:,:,:,i] -= 0.5
            pixels[:,:,:,i] *= mask_erosion[0][:x,:y].round()
            pixels[:,:,:,i] += 0.5
        t = vae.encode(pixels)

        return ({"samples":t, "noise_mask": mask}, )

comfyanonymous's avatar
comfyanonymous committed
158
159
160
161
class CheckpointLoader:
    models_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "models")
    config_dir = os.path.join(models_dir, "configs")
    ckpt_dir = os.path.join(models_dir, "checkpoints")
162
    embedding_directory = os.path.join(models_dir, "embeddings")
comfyanonymous's avatar
comfyanonymous committed
163
164
165

    @classmethod
    def INPUT_TYPES(s):
166
167
        return {"required": { "config_name": (filter_files_extensions(recursive_search(s.config_dir), '.yaml'), ),
                              "ckpt_name": (filter_files_extensions(recursive_search(s.ckpt_dir), supported_ckpt_extensions), )}}
comfyanonymous's avatar
comfyanonymous committed
168
169
170
    RETURN_TYPES = ("MODEL", "CLIP", "VAE")
    FUNCTION = "load_checkpoint"

171
172
    CATEGORY = "loaders"

comfyanonymous's avatar
comfyanonymous committed
173
174
175
    def load_checkpoint(self, config_name, ckpt_name, output_vae=True, output_clip=True):
        config_path = os.path.join(self.config_dir, config_name)
        ckpt_path = os.path.join(self.ckpt_dir, ckpt_name)
176
        return comfy.sd.load_checkpoint(config_path, ckpt_path, output_vae=True, output_clip=True, embedding_directory=self.embedding_directory)
comfyanonymous's avatar
comfyanonymous committed
177

178
179
180
181
182
183
184
class LoraLoader:
    models_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "models")
    lora_dir = os.path.join(models_dir, "loras")
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
                              "clip": ("CLIP", ),
185
                              "lora_name": (filter_files_extensions(recursive_search(s.lora_dir), supported_pt_extensions), ),
186
187
188
189
190
191
192
193
194
195
196
197
198
                              "strength_model": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
                              "strength_clip": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
                              }}
    RETURN_TYPES = ("MODEL", "CLIP")
    FUNCTION = "load_lora"

    CATEGORY = "loaders"

    def load_lora(self, model, clip, lora_name, strength_model, strength_clip):
        lora_path = os.path.join(self.lora_dir, lora_name)
        model_lora, clip_lora = comfy.sd.load_lora_for_models(model, clip, lora_path, strength_model, strength_clip)
        return (model_lora, clip_lora)

comfyanonymous's avatar
comfyanonymous committed
199
200
201
202
203
class VAELoader:
    models_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "models")
    vae_dir = os.path.join(models_dir, "vae")
    @classmethod
    def INPUT_TYPES(s):
204
        return {"required": { "vae_name": (filter_files_extensions(recursive_search(s.vae_dir), supported_pt_extensions), )}}
comfyanonymous's avatar
comfyanonymous committed
205
206
207
    RETURN_TYPES = ("VAE",)
    FUNCTION = "load_vae"

208
209
    CATEGORY = "loaders"

comfyanonymous's avatar
comfyanonymous committed
210
211
212
213
214
215
    #TODO: scale factor?
    def load_vae(self, vae_name):
        vae_path = os.path.join(self.vae_dir, vae_name)
        vae = comfy.sd.VAE(ckpt_path=vae_path)
        return (vae,)

comfyanonymous's avatar
comfyanonymous committed
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
class ControlNetLoader:
    models_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "models")
    controlnet_dir = os.path.join(models_dir, "controlnet")
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "control_net_name": (filter_files_extensions(recursive_search(s.controlnet_dir), supported_pt_extensions), )}}

    RETURN_TYPES = ("CONTROL_NET",)
    FUNCTION = "load_controlnet"

    CATEGORY = "loaders"

    def load_controlnet(self, control_net_name):
        controlnet_path = os.path.join(self.controlnet_dir, control_net_name)
        controlnet = comfy.sd.load_controlnet(controlnet_path)
        return (controlnet,)


class ControlNetApply:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ), "control_net": ("CONTROL_NET", ), "image": ("IMAGE", )}}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "apply_controlnet"

    CATEGORY = "conditioning"

    def apply_controlnet(self, conditioning, control_net, image):
        c = []
        control_hint = image.movedim(-1,1)
        print(control_hint.shape)
        for t in conditioning:
            n = [t[0], t[1].copy()]
            n[1]['control'] = control_net.copy().set_cond_hint(control_hint)
            c.append(n)
        return (c, )


254
255
256
257
258
class CLIPLoader:
    models_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "models")
    clip_dir = os.path.join(models_dir, "clip")
    @classmethod
    def INPUT_TYPES(s):
259
        return {"required": { "clip_name": (filter_files_extensions(recursive_search(s.clip_dir), supported_pt_extensions), ),
260
261
262
263
264
265
266
267
268
269
270
271
272
                              "stop_at_clip_layer": ("INT", {"default": -1, "min": -24, "max": -1, "step": 1}),
                             }}
    RETURN_TYPES = ("CLIP",)
    FUNCTION = "load_clip"

    CATEGORY = "loaders"

    def load_clip(self, clip_name, stop_at_clip_layer):
        clip_path = os.path.join(self.clip_dir, clip_name)
        clip = comfy.sd.load_clip(ckpt_path=clip_path, embedding_directory=CheckpointLoader.embedding_directory)
        clip.clip_layer(stop_at_clip_layer)
        return (clip,)

comfyanonymous's avatar
comfyanonymous committed
273
274
275
276
277
278
279
280
281
282
283
284
class EmptyLatentImage:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "width": ("INT", {"default": 512, "min": 64, "max": 4096, "step": 64}),
                              "height": ("INT", {"default": 512, "min": 64, "max": 4096, "step": 64}),
                              "batch_size": ("INT", {"default": 1, "min": 1, "max": 64})}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "generate"

285
286
    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
287
288
    def generate(self, width, height, batch_size=1):
        latent = torch.zeros([batch_size, 4, height // 8, width // 8])
289
        return ({"samples":latent}, )
comfyanonymous's avatar
comfyanonymous committed
290

comfyanonymous's avatar
comfyanonymous committed
291

comfyanonymous's avatar
comfyanonymous committed
292

comfyanonymous's avatar
comfyanonymous committed
293
294
class LatentUpscale:
    upscale_methods = ["nearest-exact", "bilinear", "area"]
295
    crop_methods = ["disabled", "center"]
comfyanonymous's avatar
comfyanonymous committed
296
297
298
299
300

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",), "upscale_method": (s.upscale_methods,),
                              "width": ("INT", {"default": 512, "min": 64, "max": 4096, "step": 64}),
301
302
                              "height": ("INT", {"default": 512, "min": 64, "max": 4096, "step": 64}),
                              "crop": (s.crop_methods,)}}
comfyanonymous's avatar
comfyanonymous committed
303
304
305
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "upscale"

306
307
    CATEGORY = "latent"

308
    def upscale(self, samples, upscale_method, width, height, crop):
309
        s = samples.copy()
comfyanonymous's avatar
comfyanonymous committed
310
        s["samples"] = comfy.utils.common_upscale(samples["samples"], width // 8, height // 8, upscale_method, crop)
comfyanonymous's avatar
comfyanonymous committed
311
312
        return (s,)

comfyanonymous's avatar
comfyanonymous committed
313
314
315
316
317
318
319
320
321
322
323
324
class LatentRotate:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "rotation": (["none", "90 degrees", "180 degrees", "270 degrees"],),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "rotate"

    CATEGORY = "latent"

    def rotate(self, samples, rotation):
325
        s = samples.copy()
comfyanonymous's avatar
comfyanonymous committed
326
327
328
329
330
331
332
333
        rotate_by = 0
        if rotation.startswith("90"):
            rotate_by = 1
        elif rotation.startswith("180"):
            rotate_by = 2
        elif rotation.startswith("270"):
            rotate_by = 3

334
        s["samples"] = torch.rot90(samples["samples"], k=rotate_by, dims=[3, 2])
comfyanonymous's avatar
comfyanonymous committed
335
        return (s,)
comfyanonymous's avatar
comfyanonymous committed
336
337
338
339
340
341
342
343
344
345
346
347
348

class LatentFlip:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "flip_method": (["x-axis: vertically", "y-axis: horizontally"],),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "flip"

    CATEGORY = "latent"

    def flip(self, samples, flip_method):
349
        s = samples.copy()
comfyanonymous's avatar
comfyanonymous committed
350
        if flip_method.startswith("x"):
351
            s["samples"] = torch.flip(samples["samples"], dims=[2])
comfyanonymous's avatar
comfyanonymous committed
352
        elif flip_method.startswith("y"):
353
            s["samples"] = torch.flip(samples["samples"], dims=[3])
comfyanonymous's avatar
comfyanonymous committed
354
355

        return (s,)
comfyanonymous's avatar
comfyanonymous committed
356
357
358
359
360
361
362
363

class LatentComposite:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples_to": ("LATENT",),
                              "samples_from": ("LATENT",),
                              "x": ("INT", {"default": 0, "min": 0, "max": 4096, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": 4096, "step": 8}),
364
                              "feather": ("INT", {"default": 0, "min": 0, "max": 4096, "step": 8}),
comfyanonymous's avatar
comfyanonymous committed
365
366
367
368
369
370
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "composite"

    CATEGORY = "latent"

371
    def composite(self, samples_to, samples_from, x, y, composite_method="normal", feather=0):
comfyanonymous's avatar
comfyanonymous committed
372
373
        x =  x // 8
        y = y // 8
374
        feather = feather // 8
375
376
377
378
        samples_out = samples_to.copy()
        s = samples_to["samples"].clone()
        samples_to = samples_to["samples"]
        samples_from = samples_from["samples"]
379
380
381
        if feather == 0:
            s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x]
        else:
382
383
            samples_from = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x]
            mask = torch.ones_like(samples_from)
384
385
386
387
388
389
390
391
392
393
394
395
            for t in range(feather):
                if y != 0:
                    mask[:,:,t:1+t,:] *= ((1.0/feather) * (t + 1))

                if y + samples_from.shape[2] < samples_to.shape[2]:
                    mask[:,:,mask.shape[2] -1 -t: mask.shape[2]-t,:] *= ((1.0/feather) * (t + 1))
                if x != 0:
                    mask[:,:,:,t:1+t] *= ((1.0/feather) * (t + 1))
                if x + samples_from.shape[3] < samples_to.shape[3]:
                    mask[:,:,:,mask.shape[3]- 1 - t: mask.shape[3]- t] *= ((1.0/feather) * (t + 1))
            rev_mask = torch.ones_like(mask) - mask
            s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x] * mask + s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] * rev_mask
396
397
        samples_out["samples"] = s
        return (samples_out,)
comfyanonymous's avatar
comfyanonymous committed
398

comfyanonymous's avatar
comfyanonymous committed
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
class LatentCrop:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "width": ("INT", {"default": 512, "min": 64, "max": 4096, "step": 64}),
                              "height": ("INT", {"default": 512, "min": 64, "max": 4096, "step": 64}),
                              "x": ("INT", {"default": 0, "min": 0, "max": 4096, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": 4096, "step": 8}),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "crop"

    CATEGORY = "latent"

    def crop(self, samples, width, height, x, y):
414
415
        s = samples.copy()
        samples = samples['samples']
comfyanonymous's avatar
comfyanonymous committed
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
        x =  x // 8
        y = y // 8

        #enfonce minimum size of 64
        if x > (samples.shape[3] - 8):
            x = samples.shape[3] - 8
        if y > (samples.shape[2] - 8):
            y = samples.shape[2] - 8

        new_height = height // 8
        new_width = width // 8
        to_x = new_width + x
        to_y = new_height + y
        def enforce_image_dim(d, to_d, max_d):
            if to_d > max_d:
                leftover = (to_d - max_d) % 8
                to_d = max_d
                d -= leftover
            return (d, to_d)

        #make sure size is always multiple of 64
        x, to_x = enforce_image_dim(x, to_x, samples.shape[3])
        y, to_y = enforce_image_dim(y, to_y, samples.shape[2])
439
        s['samples'] = samples[:,:,y:to_y, x:to_x]
comfyanonymous's avatar
comfyanonymous committed
440
441
        return (s,)

442
443
444
445
446
447
448
449
450
class SetLatentNoiseMask:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "mask": ("MASK",),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "set_mask"

451
    CATEGORY = "latent/inpaint"
452
453
454
455
456
457
458
459
460
461
462

    def set_mask(self, samples, mask):
        s = samples.copy()
        s["noise_mask"] = mask
        return (s,)


def common_ksampler(device, model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent, denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False):
    latent_image = latent["samples"]
    noise_mask = None

comfyanonymous's avatar
comfyanonymous committed
463
464
465
466
467
    if disable_noise:
        noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu")
    else:
        noise = torch.randn(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, generator=torch.manual_seed(seed), device="cpu")

468
469
470
    if "noise_mask" in latent:
        noise_mask = latent['noise_mask']
        noise_mask = torch.nn.functional.interpolate(noise_mask[None,None,], size=(noise.shape[2], noise.shape[3]), mode="bilinear")
471
        noise_mask = noise_mask.round()
472
473
474
475
        noise_mask = torch.cat([noise_mask] * noise.shape[1], dim=1)
        noise_mask = torch.cat([noise_mask] * noise.shape[0])
        noise_mask = noise_mask.to(device)

476
    real_model = None
477
478
479
480
481
    if device != "cpu":
        model_management.load_model_gpu(model)
        real_model = model.model
    else:
        #TODO: cpu support
482
        real_model = model.patch_model()
483
484
485
486
487
488
    noise = noise.to(device)
    latent_image = latent_image.to(device)

    positive_copy = []
    negative_copy = []

comfyanonymous's avatar
comfyanonymous committed
489
    control_nets = []
490
491
492
493
494
    for p in positive:
        t = p[0]
        if t.shape[0] < noise.shape[0]:
            t = torch.cat([t] * noise.shape[0])
        t = t.to(device)
comfyanonymous's avatar
comfyanonymous committed
495
496
        if 'control' in p[1]:
            control_nets += [p[1]['control']]
497
498
499
500
501
502
        positive_copy += [[t] + p[1:]]
    for n in negative:
        t = n[0]
        if t.shape[0] < noise.shape[0]:
            t = torch.cat([t] * noise.shape[0])
        t = t.to(device)
comfyanonymous's avatar
comfyanonymous committed
503
504
        if 'control' in p[1]:
            control_nets += [p[1]['control']]
505
506
        negative_copy += [[t] + n[1:]]

comfyanonymous's avatar
comfyanonymous committed
507
508
    model_management.load_controlnet_gpu(list(map(lambda a: a.control_model, control_nets)))

509
510
511
512
513
514
    if sampler_name in comfy.samplers.KSampler.SAMPLERS:
        sampler = comfy.samplers.KSampler(real_model, steps=steps, device=device, sampler=sampler_name, scheduler=scheduler, denoise=denoise)
    else:
        #other samplers
        pass

515
    samples = sampler.sample(noise, positive_copy, negative_copy, cfg=cfg, latent_image=latent_image, start_step=start_step, last_step=last_step, force_full_denoise=force_full_denoise, denoise_mask=noise_mask)
516
    samples = samples.cpu()
comfyanonymous's avatar
comfyanonymous committed
517
518
519
    for c in control_nets:
        c.cleanup()

520
521
522
    out = latent.copy()
    out["samples"] = samples
    return (out, )
comfyanonymous's avatar
comfyanonymous committed
523

comfyanonymous's avatar
comfyanonymous committed
524
525
526
527
528
529
class KSampler:
    def __init__(self, device="cuda"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
comfyanonymous's avatar
comfyanonymous committed
530
        return {"required":
comfyanonymous's avatar
comfyanonymous committed
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
                    {"model": ("MODEL",),
                    "seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                    "steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
                    "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
                    "sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
                    "scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
                    "positive": ("CONDITIONING", ),
                    "negative": ("CONDITIONING", ),
                    "latent_image": ("LATENT", ),
                    "denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
                    }}

    RETURN_TYPES = ("LATENT",)
    FUNCTION = "sample"

546
547
    CATEGORY = "sampling"

comfyanonymous's avatar
comfyanonymous committed
548
    def sample(self, model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=1.0):
comfyanonymous's avatar
comfyanonymous committed
549
        return common_ksampler(self.device, model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise)
comfyanonymous's avatar
comfyanonymous committed
550

comfyanonymous's avatar
comfyanonymous committed
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
class KSamplerAdvanced:
    def __init__(self, device="cuda"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"model": ("MODEL",),
                    "add_noise": (["enable", "disable"], ),
                    "noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                    "steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
                    "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
                    "sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
                    "scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
                    "positive": ("CONDITIONING", ),
                    "negative": ("CONDITIONING", ),
                    "latent_image": ("LATENT", ),
                    "start_at_step": ("INT", {"default": 0, "min": 0, "max": 10000}),
                    "end_at_step": ("INT", {"default": 10000, "min": 0, "max": 10000}),
                    "return_with_leftover_noise": (["disable", "enable"], ),
                    }}

    RETURN_TYPES = ("LATENT",)
    FUNCTION = "sample"

    CATEGORY = "sampling"
comfyanonymous's avatar
comfyanonymous committed
577

comfyanonymous's avatar
comfyanonymous committed
578
579
580
581
582
583
584
585
    def sample(self, model, add_noise, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, start_at_step, end_at_step, return_with_leftover_noise, denoise=1.0):
        force_full_denoise = True
        if return_with_leftover_noise == "enable":
            force_full_denoise = False
        disable_noise = False
        if add_noise == "disable":
            disable_noise = True
        return common_ksampler(self.device, model, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise, disable_noise=disable_noise, start_step=start_at_step, last_step=end_at_step, force_full_denoise=force_full_denoise)
comfyanonymous's avatar
comfyanonymous committed
586
587
588
589
590
591
592
593

class SaveImage:
    def __init__(self):
        self.output_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "output")

    @classmethod
    def INPUT_TYPES(s):
        return {"required": 
594
595
                    {"images": ("IMAGE", ),
                     "filename_prefix": ("STRING", {"default": "ComfyUI"})},
comfyanonymous's avatar
comfyanonymous committed
596
597
598
599
600
601
602
603
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
                }

    RETURN_TYPES = ()
    FUNCTION = "save_images"

    OUTPUT_NODE = True

604
605
    CATEGORY = "image"

606
607
608
609
610
611
612
613
614
615
616
617
618
    def save_images(self, images, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None):
        def map_filename(filename):
            prefix_len = len(filename_prefix)
            prefix = filename[:prefix_len + 1]
            try:
                digits = int(filename[prefix_len + 1:].split('_')[0])
            except:
                digits = 0
            return (digits, prefix)
        try:
            counter = max(filter(lambda a: a[1][:-1] == filename_prefix and a[1][-1] == "_", map(map_filename, os.listdir(self.output_dir))))[0] + 1
        except ValueError:
            counter = 1
619
620
621
        except FileNotFoundError:
            os.mkdir(self.output_dir)
            counter = 1
comfyanonymous's avatar
comfyanonymous committed
622
623
624
625
626
627
628
629
630
        for image in images:
            i = 255. * image.cpu().numpy()
            img = Image.fromarray(i.astype(np.uint8))
            metadata = PngInfo()
            if prompt is not None:
                metadata.add_text("prompt", json.dumps(prompt))
            if extra_pnginfo is not None:
                for x in extra_pnginfo:
                    metadata.add_text(x, json.dumps(extra_pnginfo[x]))
631
            img.save(os.path.join(self.output_dir, f"{filename_prefix}_{counter:05}_.png"), pnginfo=metadata, optimize=True)
632
            counter += 1
comfyanonymous's avatar
comfyanonymous committed
633

634
635
636
637
638
639
640
class LoadImage:
    input_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "input")
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"image": (os.listdir(s.input_dir), )},
                }
641
642

    CATEGORY = "image"
643
644
645
646
647

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "load_image"
    def load_image(self, image):
        image_path = os.path.join(self.input_dir, image)
648
649
        i = Image.open(image_path)
        image = i.convert("RGB")
650
        image = np.array(image).astype(np.float32) / 255.0
651
652
        image = torch.from_numpy(image)[None,]
        return (image,)
653

654
655
656
657
658
659
660
661
    @classmethod
    def IS_CHANGED(s, image):
        image_path = os.path.join(s.input_dir, image)
        m = hashlib.sha256()
        with open(image_path, 'rb') as f:
            m.update(f.read())
        return m.digest().hex()

662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
class LoadImageMask:
    input_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "input")
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"image": (os.listdir(s.input_dir), ),
                    "channel": (["alpha", "red", "green", "blue"], ),}
                }

    CATEGORY = "image"

    RETURN_TYPES = ("MASK",)
    FUNCTION = "load_image"
    def load_image(self, image, channel):
        image_path = os.path.join(self.input_dir, image)
        i = Image.open(image_path)
        mask = None
        c = channel[0].upper()
        if c in i.getbands():
            mask = np.array(i.getchannel(c)).astype(np.float32) / 255.0
            mask = torch.from_numpy(mask)
            if c == 'A':
                mask = 1. - mask
        else:
            mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
        return (mask,)

    @classmethod
    def IS_CHANGED(s, image, channel):
        image_path = os.path.join(s.input_dir, image)
        m = hashlib.sha256()
        with open(image_path, 'rb') as f:
            m.update(f.read())
        return m.digest().hex()

comfyanonymous's avatar
comfyanonymous committed
697
698
699
700
701
702
703
704
705
706
707
708
709
710
class ImageScale:
    upscale_methods = ["nearest-exact", "bilinear", "area"]
    crop_methods = ["disabled", "center"]

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "image": ("IMAGE",), "upscale_method": (s.upscale_methods,),
                              "width": ("INT", {"default": 512, "min": 1, "max": 4096, "step": 1}),
                              "height": ("INT", {"default": 512, "min": 1, "max": 4096, "step": 1}),
                              "crop": (s.crop_methods,)}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "upscale"

    CATEGORY = "image"
711

comfyanonymous's avatar
comfyanonymous committed
712
713
    def upscale(self, image, upscale_method, width, height, crop):
        samples = image.movedim(-1,1)
comfyanonymous's avatar
comfyanonymous committed
714
        s = comfy.utils.common_upscale(samples, width, height, upscale_method, crop)
comfyanonymous's avatar
comfyanonymous committed
715
716
        s = s.movedim(1,-1)
        return (s,)
comfyanonymous's avatar
comfyanonymous committed
717
718
719
720
721
722
723

NODE_CLASS_MAPPINGS = {
    "KSampler": KSampler,
    "CheckpointLoader": CheckpointLoader,
    "CLIPTextEncode": CLIPTextEncode,
    "VAEDecode": VAEDecode,
    "VAEEncode": VAEEncode,
724
    "VAEEncodeForInpaint": VAEEncodeForInpaint,
comfyanonymous's avatar
comfyanonymous committed
725
726
727
728
    "VAELoader": VAELoader,
    "EmptyLatentImage": EmptyLatentImage,
    "LatentUpscale": LatentUpscale,
    "SaveImage": SaveImage,
comfyanonymous's avatar
comfyanonymous committed
729
    "LoadImage": LoadImage,
730
    "LoadImageMask": LoadImageMask,
comfyanonymous's avatar
comfyanonymous committed
731
    "ImageScale": ImageScale,
comfyanonymous's avatar
comfyanonymous committed
732
733
    "ConditioningCombine": ConditioningCombine,
    "ConditioningSetArea": ConditioningSetArea,
comfyanonymous's avatar
comfyanonymous committed
734
    "KSamplerAdvanced": KSamplerAdvanced,
735
    "SetLatentNoiseMask": SetLatentNoiseMask,
comfyanonymous's avatar
comfyanonymous committed
736
    "LatentComposite": LatentComposite,
comfyanonymous's avatar
comfyanonymous committed
737
    "LatentRotate": LatentRotate,
comfyanonymous's avatar
comfyanonymous committed
738
    "LatentFlip": LatentFlip,
comfyanonymous's avatar
comfyanonymous committed
739
    "LatentCrop": LatentCrop,
740
    "LoraLoader": LoraLoader,
741
    "CLIPLoader": CLIPLoader,
comfyanonymous's avatar
comfyanonymous committed
742
743
    "ControlNetApply": ControlNetApply,
    "ControlNetLoader": ControlNetLoader,
comfyanonymous's avatar
comfyanonymous committed
744
745
746
}