"vscode:/vscode.git/clone" did not exist on "03408f34374977dee2855b511226ff8c507a2401"
model_sampling.py 7.47 KB
Newer Older
1
2
import torch
from comfy.ldm.modules.diffusionmodules.util import make_beta_schedule
comfyanonymous's avatar
comfyanonymous committed
3
import math
4
5
6
7
8
9
10
11
12
13

class EPS:
    def calculate_input(self, sigma, noise):
        sigma = sigma.view(sigma.shape[:1] + (1,) * (noise.ndim - 1))
        return noise / (sigma ** 2 + self.sigma_data ** 2) ** 0.5

    def calculate_denoised(self, sigma, model_output, model_input):
        sigma = sigma.view(sigma.shape[:1] + (1,) * (model_output.ndim - 1))
        return model_input - model_output * sigma

14
15
16
17
18
    def noise_scaling(self, sigma, noise, latent_image, max_denoise=False):
        if max_denoise:
            noise = noise * torch.sqrt(1.0 + sigma ** 2.0)
        else:
            noise = noise * sigma
comfyanonymous's avatar
comfyanonymous committed
19
20

        noise += latent_image
21
        return noise
22
23
24
25
26
27

class V_PREDICTION(EPS):
    def calculate_denoised(self, sigma, model_output, model_input):
        sigma = sigma.view(sigma.shape[:1] + (1,) * (model_output.ndim - 1))
        return model_input * self.sigma_data ** 2 / (sigma ** 2 + self.sigma_data ** 2) - model_output * sigma * self.sigma_data / (sigma ** 2 + self.sigma_data ** 2) ** 0.5

28
29
30
31
32
class EDM(V_PREDICTION):
    def calculate_denoised(self, sigma, model_output, model_input):
        sigma = sigma.view(sigma.shape[:1] + (1,) * (model_output.ndim - 1))
        return model_input * self.sigma_data ** 2 / (sigma ** 2 + self.sigma_data ** 2) + model_output * sigma * self.sigma_data / (sigma ** 2 + self.sigma_data ** 2) ** 0.5

33
34
35
36

class ModelSamplingDiscrete(torch.nn.Module):
    def __init__(self, model_config=None):
        super().__init__()
37

38
        if model_config is not None:
39
40
41
42
43
44
45
46
47
            sampling_settings = model_config.sampling_settings
        else:
            sampling_settings = {}

        beta_schedule = sampling_settings.get("beta_schedule", "linear")
        linear_start = sampling_settings.get("linear_start", 0.00085)
        linear_end = sampling_settings.get("linear_end", 0.012)

        self._register_schedule(given_betas=None, beta_schedule=beta_schedule, timesteps=1000, linear_start=linear_start, linear_end=linear_end, cosine_s=8e-3)
48
49
50
51
52
53
54
55
56
        self.sigma_data = 1.0

    def _register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000,
                          linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
        if given_betas is not None:
            betas = given_betas
        else:
            betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s)
        alphas = 1. - betas
57
        alphas_cumprod = torch.cumprod(alphas, dim=0)
58
59
60
61
62
63
64
65
66
67
68

        timesteps, = betas.shape
        self.num_timesteps = int(timesteps)
        self.linear_start = linear_start
        self.linear_end = linear_end

        # self.register_buffer('betas', torch.tensor(betas, dtype=torch.float32))
        # self.register_buffer('alphas_cumprod', torch.tensor(alphas_cumprod, dtype=torch.float32))
        # self.register_buffer('alphas_cumprod_prev', torch.tensor(alphas_cumprod_prev, dtype=torch.float32))

        sigmas = ((1 - alphas_cumprod) / alphas_cumprod) ** 0.5
69
        self.set_sigmas(sigmas)
70

71
    def set_sigmas(self, sigmas):
72
73
        self.register_buffer('sigmas', sigmas.float())
        self.register_buffer('log_sigmas', sigmas.log().float())
74
75
76
77
78
79
80
81
82
83
84
85

    @property
    def sigma_min(self):
        return self.sigmas[0]

    @property
    def sigma_max(self):
        return self.sigmas[-1]

    def timestep(self, sigma):
        log_sigma = sigma.log()
        dists = log_sigma.to(self.log_sigmas.device) - self.log_sigmas[:, None]
86
        return dists.abs().argmin(dim=0).view(sigma.shape).to(sigma.device)
87
88

    def sigma(self, timestep):
89
        t = torch.clamp(timestep.float().to(self.log_sigmas.device), min=0, max=(len(self.sigmas) - 1))
90
91
92
93
        low_idx = t.floor().long()
        high_idx = t.ceil().long()
        w = t.frac()
        log_sigma = (1 - w) * self.log_sigmas[low_idx] + w * self.log_sigmas[high_idx]
94
        return log_sigma.exp().to(timestep.device)
95
96

    def percent_to_sigma(self, percent):
97
        if percent <= 0.0:
98
            return 999999999.9
99
        if percent >= 1.0:
100
            return 0.0
101
        percent = 1.0 - percent
102
        return self.sigma(torch.tensor(percent * 999.0)).item()
103

comfyanonymous's avatar
comfyanonymous committed
104
105
106
107
108
109
110
111
112
113
114

class ModelSamplingContinuousEDM(torch.nn.Module):
    def __init__(self, model_config=None):
        super().__init__()
        if model_config is not None:
            sampling_settings = model_config.sampling_settings
        else:
            sampling_settings = {}

        sigma_min = sampling_settings.get("sigma_min", 0.002)
        sigma_max = sampling_settings.get("sigma_max", 120.0)
115
116
        sigma_data = sampling_settings.get("sigma_data", 1.0)
        self.set_parameters(sigma_min, sigma_max, sigma_data)
comfyanonymous's avatar
comfyanonymous committed
117

118
119
    def set_parameters(self, sigma_min, sigma_max, sigma_data):
        self.sigma_data = sigma_data
comfyanonymous's avatar
comfyanonymous committed
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
        sigmas = torch.linspace(math.log(sigma_min), math.log(sigma_max), 1000).exp()

        self.register_buffer('sigmas', sigmas) #for compatibility with some schedulers
        self.register_buffer('log_sigmas', sigmas.log())

    @property
    def sigma_min(self):
        return self.sigmas[0]

    @property
    def sigma_max(self):
        return self.sigmas[-1]

    def timestep(self, sigma):
        return 0.25 * sigma.log()

    def sigma(self, timestep):
        return (timestep / 0.25).exp()

    def percent_to_sigma(self, percent):
        if percent <= 0.0:
            return 999999999.9
        if percent >= 1.0:
            return 0.0
        percent = 1.0 - percent

        log_sigma_min = math.log(self.sigma_min)
        return math.exp((math.log(self.sigma_max) - log_sigma_min) * percent + log_sigma_min)
comfyanonymous's avatar
comfyanonymous committed
148
149
150
151

class StableCascadeSampling(ModelSamplingDiscrete):
    def __init__(self, model_config=None):
        super().__init__()
152
153
154
155
156
157

        if model_config is not None:
            sampling_settings = model_config.sampling_settings
        else:
            sampling_settings = {}

158
159
160
161
        self.set_parameters(sampling_settings.get("shift", 1.0))

    def set_parameters(self, shift=1.0, cosine_s=8e-3):
        self.shift = shift
162
        self.cosine_s = torch.tensor(cosine_s)
comfyanonymous's avatar
comfyanonymous committed
163
        self._init_alpha_cumprod = torch.cos(self.cosine_s / (1 + self.cosine_s) * torch.pi * 0.5) ** 2
164
165

        #This part is just for compatibility with some schedulers in the codebase
166
        self.num_timesteps = 10000
167
        sigmas = torch.empty((self.num_timesteps), dtype=torch.float32)
comfyanonymous's avatar
comfyanonymous committed
168
        for x in range(self.num_timesteps):
169
            t = (x + 1) / self.num_timesteps
comfyanonymous's avatar
comfyanonymous committed
170
171
172
173
174
            sigmas[x] = self.sigma(t)

        self.set_sigmas(sigmas)

    def sigma(self, timestep):
175
176
177
178
179
180
181
182
183
        alpha_cumprod = (torch.cos((timestep + self.cosine_s) / (1 + self.cosine_s) * torch.pi * 0.5) ** 2 / self._init_alpha_cumprod)

        if self.shift != 1.0:
            var = alpha_cumprod
            logSNR = (var/(1-var)).log()
            logSNR += 2 * torch.log(1.0 / torch.tensor(self.shift))
            alpha_cumprod = logSNR.sigmoid()

        alpha_cumprod = alpha_cumprod.clamp(0.0001, 0.9999)
comfyanonymous's avatar
comfyanonymous committed
184
185
186
        return ((1 - alpha_cumprod) / alpha_cumprod) ** 0.5

    def timestep(self, sigma):
187
188
189
190
191
        var = 1 / ((sigma * sigma) + 1)
        var = var.clamp(0, 1.0)
        s, min_var = self.cosine_s.to(var.device), self._init_alpha_cumprod.to(var.device)
        t = (((var * min_var) ** 0.5).acos() / (torch.pi * 0.5)) * (1 + s) - s
        return t
comfyanonymous's avatar
comfyanonymous committed
192
193
194
195
196
197
198
199
200

    def percent_to_sigma(self, percent):
        if percent <= 0.0:
            return 999999999.9
        if percent >= 1.0:
            return 0.0

        percent = 1.0 - percent
        return self.sigma(torch.tensor(percent))