model_management.py 7.88 KB
Newer Older
1

2
3
4
5
CPU = 0
NO_VRAM = 1
LOW_VRAM = 2
NORMAL_VRAM = 3
6
HIGH_VRAM = 4
Yurii Mazurevich's avatar
Yurii Mazurevich committed
7
MPS = 5
8
9
10
11

accelerate_enabled = False
vram_state = NORMAL_VRAM

12
total_vram = 0
13
14
total_vram_available_mb = -1

15
import sys
16
import psutil
17
18
19

set_vram_to = NORMAL_VRAM

20
21
22
try:
    import torch
    total_vram = torch.cuda.mem_get_info(torch.cuda.current_device())[1] / (1024 * 1024)
23
24
25
26
27
28
    total_ram = psutil.virtual_memory().total / (1024 * 1024)
    forced_normal_vram = "--normalvram" in sys.argv
    if not forced_normal_vram:
        if total_vram <= 4096:
            print("Trying to enable lowvram mode because your GPU seems to have 4GB or less. If you don't want this use: --normalvram")
            set_vram_to = LOW_VRAM
comfyanonymous's avatar
comfyanonymous committed
29
        elif total_vram > total_ram * 1.1 and total_vram > 14336:
30
31
            print("Enabling highvram mode because your GPU has more vram than your computer has ram. If you don't want this use: --normalvram")
            vram_state = HIGH_VRAM
32
33
34
except:
    pass

35
36
37
38
39
try:
    OOM_EXCEPTION = torch.cuda.OutOfMemoryError
except:
    OOM_EXCEPTION = Exception

40
41
if "--disable-xformers" in sys.argv:
    XFORMERS_IS_AVAILBLE = False
42
43
44
45
46
47
48
49
else:
    try:
        import xformers
        import xformers.ops
        XFORMERS_IS_AVAILBLE = True
    except:
        XFORMERS_IS_AVAILBLE = False

50
51
52
53
54
55
56
57
ENABLE_PYTORCH_ATTENTION = False
if "--use-pytorch-cross-attention" in sys.argv:
    torch.backends.cuda.enable_math_sdp(True)
    torch.backends.cuda.enable_flash_sdp(True)
    torch.backends.cuda.enable_mem_efficient_sdp(True)
    ENABLE_PYTORCH_ATTENTION = True
    XFORMERS_IS_AVAILBLE = False

58

59
60
61
62
if "--lowvram" in sys.argv:
    set_vram_to = LOW_VRAM
if "--novram" in sys.argv:
    set_vram_to = NO_VRAM
63
64
if "--highvram" in sys.argv:
    vram_state = HIGH_VRAM
65

66

67
if set_vram_to == LOW_VRAM or set_vram_to == NO_VRAM:
68
69
70
71
72
73
74
75
    try:
        import accelerate
        accelerate_enabled = True
        vram_state = set_vram_to
    except Exception as e:
        import traceback
        print(traceback.format_exc())
        print("ERROR: COULD NOT ENABLE LOW VRAM MODE.")
76
77

    total_vram_available_mb = (total_vram - 1024) // 2
78
    total_vram_available_mb = int(max(256, total_vram_available_mb))
79

80
81
82
83
84
85
try:
    if torch.backends.mps.is_available():
        vram_state = MPS
except:
    pass

86
87
if "--cpu" in sys.argv:
    vram_state = CPU
88

Yurii Mazurevich's avatar
Yurii Mazurevich committed
89
print("Set vram state to:", ["CPU", "NO VRAM", "LOW VRAM", "NORMAL VRAM", "HIGH VRAM", "MPS"][vram_state])
90

91
92

current_loaded_model = None
comfyanonymous's avatar
comfyanonymous committed
93
current_gpu_controlnets = []
94

95
96
97
model_accelerated = False


98
99
def unload_model():
    global current_loaded_model
100
    global model_accelerated
comfyanonymous's avatar
comfyanonymous committed
101
    global current_gpu_controlnets
102
103
    global vram_state

104
    if current_loaded_model is not None:
105
106
107
108
        if model_accelerated:
            accelerate.hooks.remove_hook_from_submodules(current_loaded_model.model)
            model_accelerated = False

109
110
111
        #never unload models from GPU on high vram
        if vram_state != HIGH_VRAM:
            current_loaded_model.model.cpu()
112
113
        current_loaded_model.unpatch_model()
        current_loaded_model = None
114
115
116
117
118
119

    if vram_state != HIGH_VRAM:
        if len(current_gpu_controlnets) > 0:
            for n in current_gpu_controlnets:
                n.cpu()
            current_gpu_controlnets = []
120
121
122
123


def load_model_gpu(model):
    global current_loaded_model
124
125
126
    global vram_state
    global model_accelerated

127
128
129
130
131
132
133
134
135
    if model is current_loaded_model:
        return
    unload_model()
    try:
        real_model = model.patch_model()
    except Exception as e:
        model.unpatch_model()
        raise e
    current_loaded_model = model
136
137
    if vram_state == CPU:
        pass
Yurii Mazurevich's avatar
Yurii Mazurevich committed
138
139
140
141
    elif vram_state == MPS:
        mps_device = torch.device("mps")
        real_model.to(mps_device)
        pass
142
    elif vram_state == NORMAL_VRAM or vram_state == HIGH_VRAM:
143
144
145
146
147
148
        model_accelerated = False
        real_model.cuda()
    else:
        if vram_state == NO_VRAM:
            device_map = accelerate.infer_auto_device_map(real_model, max_memory={0: "256MiB", "cpu": "16GiB"})
        elif vram_state == LOW_VRAM:
149
            device_map = accelerate.infer_auto_device_map(real_model, max_memory={0: "{}MiB".format(total_vram_available_mb), "cpu": "16GiB"})
comfyanonymous's avatar
comfyanonymous committed
150

151
152
        accelerate.dispatch_model(real_model, device_map=device_map, main_device="cuda")
        model_accelerated = True
153
    return current_loaded_model
154

comfyanonymous's avatar
comfyanonymous committed
155
156
def load_controlnet_gpu(models):
    global current_gpu_controlnets
157
    global vram_state
158
159
    if vram_state == CPU:
        return
160
161
162
163
164

    if vram_state == LOW_VRAM or vram_state == NO_VRAM:
        #don't load controlnets like this if low vram because they will be loaded right before running and unloaded right after
        return

comfyanonymous's avatar
comfyanonymous committed
165
166
167
168
    for m in current_gpu_controlnets:
        if m not in models:
            m.cpu()

169
    device = get_torch_device()
comfyanonymous's avatar
comfyanonymous committed
170
171
    current_gpu_controlnets = []
    for m in models:
172
        current_gpu_controlnets.append(m.to(device))
comfyanonymous's avatar
comfyanonymous committed
173

174

175
176
177
178
179
180
181
182
183
184
185
186
def load_if_low_vram(model):
    global vram_state
    if vram_state == LOW_VRAM or vram_state == NO_VRAM:
        return model.cuda()
    return model

def unload_if_low_vram(model):
    global vram_state
    if vram_state == LOW_VRAM or vram_state == NO_VRAM:
        return model.cpu()
    return model

187
def get_torch_device():
Yurii Mazurevich's avatar
Yurii Mazurevich committed
188
189
    if vram_state == MPS:
        return torch.device("mps")
190
191
192
193
194
195
196
197
198
    if vram_state == CPU:
        return torch.device("cpu")
    else:
        return torch.cuda.current_device()

def get_autocast_device(dev):
    if hasattr(dev, 'type'):
        return dev.type
    return "cuda"
199

200
201
202
203
204
def xformers_enabled():
    if vram_state == CPU:
        return False
    return XFORMERS_IS_AVAILBLE

205
206
207
def pytorch_attention_enabled():
    return ENABLE_PYTORCH_ATTENTION

208
209
def get_free_memory(dev=None, torch_free_too=False):
    if dev is None:
210
        dev = get_torch_device()
211

Yurii Mazurevich's avatar
Yurii Mazurevich committed
212
    if hasattr(dev, 'type') and (dev.type == 'cpu' or dev.type == 'mps'):
213
214
215
216
217
218
219
220
221
222
223
224
225
226
        mem_free_total = psutil.virtual_memory().available
        mem_free_torch = mem_free_total
    else:
        stats = torch.cuda.memory_stats(dev)
        mem_active = stats['active_bytes.all.current']
        mem_reserved = stats['reserved_bytes.all.current']
        mem_free_cuda, _ = torch.cuda.mem_get_info(dev)
        mem_free_torch = mem_reserved - mem_active
        mem_free_total = mem_free_cuda + mem_free_torch

    if torch_free_too:
        return (mem_free_total, mem_free_torch)
    else:
        return mem_free_total
227
228
229
230
231
232
233
234
235

def maximum_batch_area():
    global vram_state
    if vram_state == NO_VRAM:
        return 0

    memory_free = get_free_memory() / (1024 * 1024)
    area = ((memory_free - 1024) * 0.9) / (0.6)
    return int(max(area, 0))
236
237
238
239
240

def cpu_mode():
    global vram_state
    return vram_state == CPU

Yurii Mazurevich's avatar
Yurii Mazurevich committed
241
242
243
244
def mps_mode():
    global vram_state
    return vram_state == MPS

245
def should_use_fp16():
Yurii Mazurevich's avatar
Yurii Mazurevich committed
246
    if cpu_mode() or mps_mode():
247
248
249
250
251
        return False #TODO ?

    if torch.cuda.is_bf16_supported():
        return True

comfyanonymous's avatar
comfyanonymous committed
252
    props = torch.cuda.get_device_properties("cuda")
253
254
255
256
    if props.major < 7:
        return False

    #FP32 is faster on those cards?
257
    nvidia_16_series = ["1660", "1650", "1630", "T500", "T550", "T600"]
258
259
260
261
262
263
    for x in nvidia_16_series:
        if x in props.name:
            return False

    return True

264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
#TODO: might be cleaner to put this somewhere else
import threading

class InterruptProcessingException(Exception):
    pass

interrupt_processing_mutex = threading.RLock()

interrupt_processing = False
def interrupt_current_processing(value=True):
    global interrupt_processing
    global interrupt_processing_mutex
    with interrupt_processing_mutex:
        interrupt_processing = value

def processing_interrupted():
    global interrupt_processing
    global interrupt_processing_mutex
    with interrupt_processing_mutex:
        return interrupt_processing

def throw_exception_if_processing_interrupted():
    global interrupt_processing
    global interrupt_processing_mutex
    with interrupt_processing_mutex:
        if interrupt_processing:
            interrupt_processing = False
            raise InterruptProcessingException()