utils.py 23.1 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
import torch
comfyanonymous's avatar
comfyanonymous committed
2
import math
3
import struct
4
import comfy.checkpoint_pickle
5
import safetensors.torch
comfyanonymous's avatar
comfyanonymous committed
6
import numpy as np
7
from PIL import Image
8
import logging
comfyanonymous's avatar
comfyanonymous committed
9

comfyanonymous's avatar
comfyanonymous committed
10
11
12
def load_torch_file(ckpt, safe_load=False, device=None):
    if device is None:
        device = torch.device("cpu")
13
    if ckpt.lower().endswith(".safetensors"):
comfyanonymous's avatar
comfyanonymous committed
14
        sd = safetensors.torch.load_file(ckpt, device=device.type)
15
    else:
16
17
        if safe_load:
            if not 'weights_only' in torch.load.__code__.co_varnames:
18
                logging.warning("Warning torch.load doesn't support weights_only on this pytorch version, loading unsafely.")
19
                safe_load = False
20
        if safe_load:
comfyanonymous's avatar
comfyanonymous committed
21
            pl_sd = torch.load(ckpt, map_location=device, weights_only=True)
22
        else:
comfyanonymous's avatar
comfyanonymous committed
23
            pl_sd = torch.load(ckpt, map_location=device, pickle_module=comfy.checkpoint_pickle)
24
        if "global_step" in pl_sd:
comfyanonymous's avatar
comfyanonymous committed
25
            logging.debug(f"Global Step: {pl_sd['global_step']}")
26
27
28
29
30
31
        if "state_dict" in pl_sd:
            sd = pl_sd["state_dict"]
        else:
            sd = pl_sd
    return sd

32
33
34
35
36
37
def save_torch_file(sd, ckpt, metadata=None):
    if metadata is not None:
        safetensors.torch.save_file(sd, ckpt, metadata=metadata)
    else:
        safetensors.torch.save_file(sd, ckpt)

38
39
40
41
42
43
44
def calculate_parameters(sd, prefix=""):
    params = 0
    for k in sd.keys():
        if k.startswith(prefix):
            params += sd[k].nelement()
    return params

45
46
47
48
49
50
def state_dict_key_replace(state_dict, keys_to_replace):
    for x in keys_to_replace:
        if x in state_dict:
            state_dict[keys_to_replace[x]] = state_dict.pop(x)
    return state_dict

comfyanonymous's avatar
comfyanonymous committed
51
52
53
54
55
def state_dict_prefix_replace(state_dict, replace_prefix, filter_keys=False):
    if filter_keys:
        out = {}
    else:
        out = state_dict
56
57
58
    for rp in replace_prefix:
        replace = list(map(lambda a: (a, "{}{}".format(replace_prefix[rp], a[len(rp):])), filter(lambda a: a.startswith(rp), state_dict.keys())))
        for x in replace:
comfyanonymous's avatar
comfyanonymous committed
59
60
61
            w = state_dict.pop(x[0])
            out[x[1]] = w
    return out
62
63


64
def transformers_convert(sd, prefix_from, prefix_to, number):
comfyanonymous's avatar
comfyanonymous committed
65
    keys_to_replace = {
66
67
68
69
        "{}positional_embedding": "{}embeddings.position_embedding.weight",
        "{}token_embedding.weight": "{}embeddings.token_embedding.weight",
        "{}ln_final.weight": "{}final_layer_norm.weight",
        "{}ln_final.bias": "{}final_layer_norm.bias",
comfyanonymous's avatar
comfyanonymous committed
70
71
72
73
74
75
76
    }

    for k in keys_to_replace:
        x = k.format(prefix_from)
        if x in sd:
            sd[keys_to_replace[k].format(prefix_to)] = sd.pop(x)

77
78
79
80
81
82
83
84
85
86
87
    resblock_to_replace = {
        "ln_1": "layer_norm1",
        "ln_2": "layer_norm2",
        "mlp.c_fc": "mlp.fc1",
        "mlp.c_proj": "mlp.fc2",
        "attn.out_proj": "self_attn.out_proj",
    }

    for resblock in range(number):
        for x in resblock_to_replace:
            for y in ["weight", "bias"]:
88
89
                k = "{}transformer.resblocks.{}.{}.{}".format(prefix_from, resblock, x, y)
                k_to = "{}encoder.layers.{}.{}.{}".format(prefix_to, resblock, resblock_to_replace[x], y)
90
91
92
93
                if k in sd:
                    sd[k_to] = sd.pop(k)

        for y in ["weight", "bias"]:
94
            k_from = "{}transformer.resblocks.{}.attn.in_proj_{}".format(prefix_from, resblock, y)
95
96
97
98
99
            if k_from in sd:
                weights = sd.pop(k_from)
                shape_from = weights.shape[0] // 3
                for x in range(3):
                    p = ["self_attn.q_proj", "self_attn.k_proj", "self_attn.v_proj"]
100
                    k_to = "{}encoder.layers.{}.{}.{}".format(prefix_to, resblock, p[x], y)
101
                    sd[k_to] = weights[shape_from*x:shape_from*(x + 1)]
102
103
104
105
106
107
108
109
110
111
112
113

    return sd

def clip_text_transformers_convert(sd, prefix_from, prefix_to):
    sd = transformers_convert(sd, prefix_from, "{}text_model.".format(prefix_to), 32)

    tp = "{}text_projection.weight".format(prefix_from)
    if tp in sd:
        sd["{}text_projection.weight".format(prefix_to)] = sd.pop(tp)

    tp = "{}text_projection".format(prefix_from)
    if tp in sd:
114
        sd["{}text_projection.weight".format(prefix_to)] = sd.pop(tp).transpose(0, 1).contiguous()
115
116
    return sd

117

118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
UNET_MAP_ATTENTIONS = {
    "proj_in.weight",
    "proj_in.bias",
    "proj_out.weight",
    "proj_out.bias",
    "norm.weight",
    "norm.bias",
}

TRANSFORMER_BLOCKS = {
    "norm1.weight",
    "norm1.bias",
    "norm2.weight",
    "norm2.bias",
    "norm3.weight",
    "norm3.bias",
    "attn1.to_q.weight",
    "attn1.to_k.weight",
    "attn1.to_v.weight",
    "attn1.to_out.0.weight",
    "attn1.to_out.0.bias",
    "attn2.to_q.weight",
    "attn2.to_k.weight",
    "attn2.to_v.weight",
    "attn2.to_out.0.weight",
    "attn2.to_out.0.bias",
    "ff.net.0.proj.weight",
    "ff.net.0.proj.bias",
    "ff.net.2.weight",
    "ff.net.2.bias",
}

UNET_MAP_RESNET = {
    "in_layers.2.weight": "conv1.weight",
    "in_layers.2.bias": "conv1.bias",
    "emb_layers.1.weight": "time_emb_proj.weight",
    "emb_layers.1.bias": "time_emb_proj.bias",
    "out_layers.3.weight": "conv2.weight",
    "out_layers.3.bias": "conv2.bias",
    "skip_connection.weight": "conv_shortcut.weight",
    "skip_connection.bias": "conv_shortcut.bias",
    "in_layers.0.weight": "norm1.weight",
    "in_layers.0.bias": "norm1.bias",
    "out_layers.0.weight": "norm2.weight",
    "out_layers.0.bias": "norm2.bias",
}

165
UNET_MAP_BASIC = {
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
    ("label_emb.0.0.weight", "class_embedding.linear_1.weight"),
    ("label_emb.0.0.bias", "class_embedding.linear_1.bias"),
    ("label_emb.0.2.weight", "class_embedding.linear_2.weight"),
    ("label_emb.0.2.bias", "class_embedding.linear_2.bias"),
    ("label_emb.0.0.weight", "add_embedding.linear_1.weight"),
    ("label_emb.0.0.bias", "add_embedding.linear_1.bias"),
    ("label_emb.0.2.weight", "add_embedding.linear_2.weight"),
    ("label_emb.0.2.bias", "add_embedding.linear_2.bias"),
    ("input_blocks.0.0.weight", "conv_in.weight"),
    ("input_blocks.0.0.bias", "conv_in.bias"),
    ("out.0.weight", "conv_norm_out.weight"),
    ("out.0.bias", "conv_norm_out.bias"),
    ("out.2.weight", "conv_out.weight"),
    ("out.2.bias", "conv_out.bias"),
    ("time_embed.0.weight", "time_embedding.linear_1.weight"),
    ("time_embed.0.bias", "time_embedding.linear_1.bias"),
    ("time_embed.2.weight", "time_embedding.linear_2.weight"),
    ("time_embed.2.bias", "time_embedding.linear_2.bias")
184
185
}

186
def unet_to_diffusers(unet_config):
comfyanonymous's avatar
comfyanonymous committed
187
188
    if "num_res_blocks" not in unet_config:
        return {}
189
190
    num_res_blocks = unet_config["num_res_blocks"]
    channel_mult = unet_config["channel_mult"]
191
192
    transformer_depth = unet_config["transformer_depth"][:]
    transformer_depth_output = unet_config["transformer_depth_output"][:]
193
    num_blocks = len(channel_mult)
194
195

    transformers_mid = unet_config.get("transformer_depth_middle", None)
196
197
198
199
200
201
202

    diffusers_unet_map = {}
    for x in range(num_blocks):
        n = 1 + (num_res_blocks[x] + 1) * x
        for i in range(num_res_blocks[x]):
            for b in UNET_MAP_RESNET:
                diffusers_unet_map["down_blocks.{}.resnets.{}.{}".format(x, i, UNET_MAP_RESNET[b])] = "input_blocks.{}.0.{}".format(n, b)
203
204
            num_transformers = transformer_depth.pop(0)
            if num_transformers > 0:
205
206
                for b in UNET_MAP_ATTENTIONS:
                    diffusers_unet_map["down_blocks.{}.attentions.{}.{}".format(x, i, b)] = "input_blocks.{}.1.{}".format(n, b)
207
                for t in range(num_transformers):
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
                    for b in TRANSFORMER_BLOCKS:
                        diffusers_unet_map["down_blocks.{}.attentions.{}.transformer_blocks.{}.{}".format(x, i, t, b)] = "input_blocks.{}.1.transformer_blocks.{}.{}".format(n, t, b)
            n += 1
        for k in ["weight", "bias"]:
            diffusers_unet_map["down_blocks.{}.downsamplers.0.conv.{}".format(x, k)] = "input_blocks.{}.0.op.{}".format(n, k)

    i = 0
    for b in UNET_MAP_ATTENTIONS:
        diffusers_unet_map["mid_block.attentions.{}.{}".format(i, b)] = "middle_block.1.{}".format(b)
    for t in range(transformers_mid):
        for b in TRANSFORMER_BLOCKS:
            diffusers_unet_map["mid_block.attentions.{}.transformer_blocks.{}.{}".format(i, t, b)] = "middle_block.1.transformer_blocks.{}.{}".format(t, b)

    for i, n in enumerate([0, 2]):
        for b in UNET_MAP_RESNET:
            diffusers_unet_map["mid_block.resnets.{}.{}".format(i, UNET_MAP_RESNET[b])] = "middle_block.{}.{}".format(n, b)

    num_res_blocks = list(reversed(num_res_blocks))
    for x in range(num_blocks):
        n = (num_res_blocks[x] + 1) * x
        l = num_res_blocks[x] + 1
        for i in range(l):
            c = 0
            for b in UNET_MAP_RESNET:
                diffusers_unet_map["up_blocks.{}.resnets.{}.{}".format(x, i, UNET_MAP_RESNET[b])] = "output_blocks.{}.0.{}".format(n, b)
            c += 1
234
235
            num_transformers = transformer_depth_output.pop()
            if num_transformers > 0:
236
237
238
                c += 1
                for b in UNET_MAP_ATTENTIONS:
                    diffusers_unet_map["up_blocks.{}.attentions.{}.{}".format(x, i, b)] = "output_blocks.{}.1.{}".format(n, b)
239
                for t in range(num_transformers):
240
241
242
243
244
245
                    for b in TRANSFORMER_BLOCKS:
                        diffusers_unet_map["up_blocks.{}.attentions.{}.transformer_blocks.{}.{}".format(x, i, t, b)] = "output_blocks.{}.1.transformer_blocks.{}.{}".format(n, t, b)
            if i == l - 1:
                for k in ["weight", "bias"]:
                    diffusers_unet_map["up_blocks.{}.upsamplers.0.conv.{}".format(x, k)] = "output_blocks.{}.{}.conv.{}".format(n, c, k)
            n += 1
246
247

    for k in UNET_MAP_BASIC:
248
        diffusers_unet_map[k[1]] = k[0]
249

250
251
    return diffusers_unet_map

252
253
254
255
256
def swap_scale_shift(weight):
    shift, scale = weight.chunk(2, dim=0)
    new_weight = torch.cat([scale, shift], dim=0)
    return new_weight

comfyanonymous's avatar
comfyanonymous committed
257
258
259
260
261
262
263
264
265
266
267
268
269
270
MMDIT_MAP_BASIC = {
    ("context_embedder.bias", "context_embedder.bias"),
    ("context_embedder.weight", "context_embedder.weight"),
    ("t_embedder.mlp.0.bias", "time_text_embed.timestep_embedder.linear_1.bias"),
    ("t_embedder.mlp.0.weight", "time_text_embed.timestep_embedder.linear_1.weight"),
    ("t_embedder.mlp.2.bias", "time_text_embed.timestep_embedder.linear_2.bias"),
    ("t_embedder.mlp.2.weight", "time_text_embed.timestep_embedder.linear_2.weight"),
    ("x_embedder.proj.bias", "pos_embed.proj.bias"),
    ("x_embedder.proj.weight", "pos_embed.proj.weight"),
    ("y_embedder.mlp.0.bias", "time_text_embed.text_embedder.linear_1.bias"),
    ("y_embedder.mlp.0.weight", "time_text_embed.text_embedder.linear_1.weight"),
    ("y_embedder.mlp.2.bias", "time_text_embed.text_embedder.linear_2.bias"),
    ("y_embedder.mlp.2.weight", "time_text_embed.text_embedder.linear_2.weight"),
    ("pos_embed", "pos_embed.pos_embed"),
271
272
    ("final_layer.adaLN_modulation.1.bias", "norm_out.linear.bias", swap_scale_shift),
    ("final_layer.adaLN_modulation.1.weight", "norm_out.linear.weight", swap_scale_shift),
comfyanonymous's avatar
comfyanonymous committed
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
    ("final_layer.linear.bias", "proj_out.bias"),
    ("final_layer.linear.weight", "proj_out.weight"),
}

MMDIT_MAP_BLOCK = {
    ("context_block.adaLN_modulation.1.bias", "norm1_context.linear.bias"),
    ("context_block.adaLN_modulation.1.weight", "norm1_context.linear.weight"),
    ("context_block.attn.proj.bias", "attn.to_add_out.bias"),
    ("context_block.attn.proj.weight", "attn.to_add_out.weight"),
    ("context_block.mlp.fc1.bias", "ff_context.net.0.proj.bias"),
    ("context_block.mlp.fc1.weight", "ff_context.net.0.proj.weight"),
    ("context_block.mlp.fc2.bias", "ff_context.net.2.bias"),
    ("context_block.mlp.fc2.weight", "ff_context.net.2.weight"),
    ("x_block.adaLN_modulation.1.bias", "norm1.linear.bias"),
    ("x_block.adaLN_modulation.1.weight", "norm1.linear.weight"),
    ("x_block.attn.proj.bias", "attn.to_out.0.bias"),
    ("x_block.attn.proj.weight", "attn.to_out.0.weight"),
    ("x_block.mlp.fc1.bias", "ff.net.0.proj.bias"),
    ("x_block.mlp.fc1.weight", "ff.net.0.proj.weight"),
    ("x_block.mlp.fc2.bias", "ff.net.2.bias"),
    ("x_block.mlp.fc2.weight", "ff.net.2.weight"),
}

def mmdit_to_diffusers(mmdit_config, output_prefix=""):
    key_map = {}

    depth = mmdit_config.get("depth", 0)
    for i in range(depth):
        block_from = "transformer_blocks.{}".format(i)
        block_to = "{}joint_blocks.{}".format(output_prefix, i)

        offset = depth * 64

        for end in ("weight", "bias"):
            k = "{}.attn.".format(block_from)
            qkv = "{}.x_block.attn.qkv.{}".format(block_to, end)
            key_map["{}to_q.{}".format(k, end)] = (qkv, (0, 0, offset))
            key_map["{}to_k.{}".format(k, end)] = (qkv, (0, offset, offset))
            key_map["{}to_v.{}".format(k, end)] = (qkv, (0, offset * 2, offset))

            qkv = "{}.context_block.attn.qkv.{}".format(block_to, end)
            key_map["{}add_q_proj.{}".format(k, end)] = (qkv, (0, 0, offset))
            key_map["{}add_k_proj.{}".format(k, end)] = (qkv, (0, offset, offset))
            key_map["{}add_v_proj.{}".format(k, end)] = (qkv, (0, offset * 2, offset))

        for k in MMDIT_MAP_BLOCK:
            key_map["{}.{}".format(block_from, k[1])] = "{}.{}".format(block_to, k[0])

321
322
323
324
325
326
327
328
329
    map_basic = MMDIT_MAP_BASIC.copy()
    map_basic.add(("joint_blocks.{}.context_block.adaLN_modulation.1.bias".format(depth - 1), "transformer_blocks.{}.norm1_context.linear.bias".format(depth - 1), swap_scale_shift))
    map_basic.add(("joint_blocks.{}.context_block.adaLN_modulation.1.weight".format(depth - 1), "transformer_blocks.{}.norm1_context.linear.weight".format(depth - 1), swap_scale_shift))

    for k in map_basic:
        if len(k) > 2:
            key_map[k[1]] = ("{}{}".format(output_prefix, k[0]), None, k[2])
        else:
            key_map[k[1]] = "{}{}".format(output_prefix, k[0])
comfyanonymous's avatar
comfyanonymous committed
330
331
332

    return key_map

333
334
335
336
337
def repeat_to_batch_size(tensor, batch_size, dim=0):
    if tensor.shape[dim] > batch_size:
        return tensor.narrow(dim, 0, batch_size)
    elif tensor.shape[dim] < batch_size:
        return tensor.repeat(dim * [1] + [math.ceil(batch_size / tensor.shape[dim])] + [1] * (len(tensor.shape) - 1 - dim)).narrow(dim, 0, batch_size)
338
339
    return tensor

340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
def resize_to_batch_size(tensor, batch_size):
    in_batch_size = tensor.shape[0]
    if in_batch_size == batch_size:
        return tensor

    if batch_size <= 1:
        return tensor[:batch_size]

    output = torch.empty([batch_size] + list(tensor.shape)[1:], dtype=tensor.dtype, device=tensor.device)
    if batch_size < in_batch_size:
        scale = (in_batch_size - 1) / (batch_size - 1)
        for i in range(batch_size):
            output[i] = tensor[min(round(i * scale), in_batch_size - 1)]
    else:
        scale = in_batch_size / batch_size
        for i in range(batch_size):
            output[i] = tensor[min(math.floor((i + 0.5) * scale), in_batch_size - 1)]

    return output

360
361
362
363
364
365
def convert_sd_to(state_dict, dtype):
    keys = list(state_dict.keys())
    for k in keys:
        state_dict[k] = state_dict[k].to(dtype)
    return state_dict

366
367
368
369
370
371
372
373
def safetensors_header(safetensors_path, max_size=100*1024*1024):
    with open(safetensors_path, "rb") as f:
        header = f.read(8)
        length_of_header = struct.unpack('<Q', header)[0]
        if length_of_header > max_size:
            return None
        return f.read(length_of_header)

374
375
376
377
378
def set_attr(obj, attr, value):
    attrs = attr.split(".")
    for name in attrs[:-1]:
        obj = getattr(obj, name)
    prev = getattr(obj, attrs[-1])
379
380
381
382
383
    setattr(obj, attrs[-1], value)
    return prev

def set_attr_param(obj, attr, value):
    return set_attr(obj, attr, torch.nn.Parameter(value, requires_grad=False))
384

385
386
387
388
389
390
391
392
def copy_to_param(obj, attr, value):
    # inplace update tensor instead of replacing it
    attrs = attr.split(".")
    for name in attrs[:-1]:
        obj = getattr(obj, name)
    prev = getattr(obj, attrs[-1])
    prev.data.copy_(value)

393
394
395
396
397
398
def get_attr(obj, attr):
    attrs = attr.split(".")
    for name in attrs:
        obj = getattr(obj, name)
    return obj

399
def bislerp(samples, width, height):
BlenderNeko's avatar
BlenderNeko committed
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
    def slerp(b1, b2, r):
        '''slerps batches b1, b2 according to ratio r, batches should be flat e.g. NxC'''
        
        c = b1.shape[-1]

        #norms
        b1_norms = torch.norm(b1, dim=-1, keepdim=True)
        b2_norms = torch.norm(b2, dim=-1, keepdim=True)

        #normalize
        b1_normalized = b1 / b1_norms
        b2_normalized = b2 / b2_norms

        #zero when norms are zero
        b1_normalized[b1_norms.expand(-1,c) == 0.0] = 0.0
        b2_normalized[b2_norms.expand(-1,c) == 0.0] = 0.0

        #slerp
        dot = (b1_normalized*b2_normalized).sum(1)
        omega = torch.acos(dot)
420
        so = torch.sin(omega)
BlenderNeko's avatar
BlenderNeko committed
421
422
423
424
425
426
427
428
429
430

        #technically not mathematically correct, but more pleasing?
        res = (torch.sin((1.0-r.squeeze(1))*omega)/so).unsqueeze(1)*b1_normalized + (torch.sin(r.squeeze(1)*omega)/so).unsqueeze(1) * b2_normalized
        res *= (b1_norms * (1.0-r) + b2_norms * r).expand(-1,c)

        #edge cases for same or polar opposites
        res[dot > 1 - 1e-5] = b1[dot > 1 - 1e-5] 
        res[dot < 1e-5 - 1] = (b1 * (1.0-r) + b2 * r)[dot < 1e-5 - 1]
        return res
    
comfyanonymous's avatar
comfyanonymous committed
431
432
    def generate_bilinear_data(length_old, length_new, device):
        coords_1 = torch.arange(length_old, dtype=torch.float32, device=device).reshape((1,1,1,-1))
BlenderNeko's avatar
BlenderNeko committed
433
434
435
436
        coords_1 = torch.nn.functional.interpolate(coords_1, size=(1, length_new), mode="bilinear")
        ratios = coords_1 - coords_1.floor()
        coords_1 = coords_1.to(torch.int64)
        
comfyanonymous's avatar
comfyanonymous committed
437
        coords_2 = torch.arange(length_old, dtype=torch.float32, device=device).reshape((1,1,1,-1)) + 1
BlenderNeko's avatar
BlenderNeko committed
438
439
440
441
        coords_2[:,:,:,-1] -= 1
        coords_2 = torch.nn.functional.interpolate(coords_2, size=(1, length_new), mode="bilinear")
        coords_2 = coords_2.to(torch.int64)
        return ratios, coords_1, coords_2
442
443
444

    orig_dtype = samples.dtype
    samples = samples.float()
BlenderNeko's avatar
BlenderNeko committed
445
446
447
    n,c,h,w = samples.shape
    h_new, w_new = (height, width)
    
448
    #linear w
comfyanonymous's avatar
comfyanonymous committed
449
    ratios, coords_1, coords_2 = generate_bilinear_data(w, w_new, samples.device)
450
451
452
    coords_1 = coords_1.expand((n, c, h, -1))
    coords_2 = coords_2.expand((n, c, h, -1))
    ratios = ratios.expand((n, 1, h, -1))
BlenderNeko's avatar
BlenderNeko committed
453

comfyanonymous's avatar
comfyanonymous committed
454
455
456
    pass_1 = samples.gather(-1,coords_1).movedim(1, -1).reshape((-1,c))
    pass_2 = samples.gather(-1,coords_2).movedim(1, -1).reshape((-1,c))
    ratios = ratios.movedim(1, -1).reshape((-1,1))
BlenderNeko's avatar
BlenderNeko committed
457
458

    result = slerp(pass_1, pass_2, ratios)
comfyanonymous's avatar
comfyanonymous committed
459
    result = result.reshape(n, h, w_new, c).movedim(-1, 1)
BlenderNeko's avatar
BlenderNeko committed
460

461
    #linear h
comfyanonymous's avatar
comfyanonymous committed
462
    ratios, coords_1, coords_2 = generate_bilinear_data(h, h_new, samples.device)
463
464
465
    coords_1 = coords_1.reshape((1,1,-1,1)).expand((n, c, -1, w_new))
    coords_2 = coords_2.reshape((1,1,-1,1)).expand((n, c, -1, w_new))
    ratios = ratios.reshape((1,1,-1,1)).expand((n, 1, -1, w_new))
BlenderNeko's avatar
BlenderNeko committed
466

comfyanonymous's avatar
comfyanonymous committed
467
468
469
    pass_1 = result.gather(-2,coords_1).movedim(1, -1).reshape((-1,c))
    pass_2 = result.gather(-2,coords_2).movedim(1, -1).reshape((-1,c))
    ratios = ratios.movedim(1, -1).reshape((-1,1))
BlenderNeko's avatar
BlenderNeko committed
470
471

    result = slerp(pass_1, pass_2, ratios)
comfyanonymous's avatar
comfyanonymous committed
472
    result = result.reshape(n, h_new, w_new, c).movedim(-1, 1)
473
    return result.to(orig_dtype)
474

475
def lanczos(samples, width, height):
comfyanonymous's avatar
comfyanonymous committed
476
    images = [Image.fromarray(np.clip(255. * image.movedim(0, -1).cpu().numpy(), 0, 255).astype(np.uint8)) for image in samples]
477
    images = [image.resize((width, height), resample=Image.Resampling.LANCZOS) for image in images]
comfyanonymous's avatar
comfyanonymous committed
478
    images = [torch.from_numpy(np.array(image).astype(np.float32) / 255.0).movedim(-1, 0) for image in images]
479
    result = torch.stack(images)
480
    return result.to(samples.device, samples.dtype)
481

comfyanonymous's avatar
comfyanonymous committed
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
def common_upscale(samples, width, height, upscale_method, crop):
        if crop == "center":
            old_width = samples.shape[3]
            old_height = samples.shape[2]
            old_aspect = old_width / old_height
            new_aspect = width / height
            x = 0
            y = 0
            if old_aspect > new_aspect:
                x = round((old_width - old_width * (new_aspect / old_aspect)) / 2)
            elif old_aspect < new_aspect:
                y = round((old_height - old_height * (old_aspect / new_aspect)) / 2)
            s = samples[:,:,y:old_height-y,x:old_width-x]
        else:
            s = samples
497
498
499

        if upscale_method == "bislerp":
            return bislerp(s, width, height)
500
501
        elif upscale_method == "lanczos":
            return lanczos(s, width, height)
502
503
        else:
            return torch.nn.functional.interpolate(s, size=(height, width), mode=upscale_method)
504

pythongosssss's avatar
pythongosssss committed
505
def get_tiled_scale_steps(width, height, tile_x, tile_y, overlap):
comfyanonymous's avatar
comfyanonymous committed
506
    return math.ceil((height / (tile_y - overlap))) * math.ceil((width / (tile_x - overlap)))
pythongosssss's avatar
pythongosssss committed
507

508
@torch.inference_mode()
509
510
def tiled_scale(samples, function, tile_x=64, tile_y=64, overlap = 8, upscale_amount = 4, out_channels = 3, output_device="cpu", pbar = None):
    output = torch.empty((samples.shape[0], out_channels, round(samples.shape[2] * upscale_amount), round(samples.shape[3] * upscale_amount)), device=output_device)
511
512
    for b in range(samples.shape[0]):
        s = samples[b:b+1]
513
514
        out = torch.zeros((s.shape[0], out_channels, round(s.shape[2] * upscale_amount), round(s.shape[3] * upscale_amount)), device=output_device)
        out_div = torch.zeros((s.shape[0], out_channels, round(s.shape[2] * upscale_amount), round(s.shape[3] * upscale_amount)), device=output_device)
515
516
        for y in range(0, s.shape[2], tile_y - overlap):
            for x in range(0, s.shape[3], tile_x - overlap):
517
518
                x = max(0, min(s.shape[-1] - overlap, x))
                y = max(0, min(s.shape[-2] - overlap, y))
519
520
                s_in = s[:,:,y:y+tile_y,x:x+tile_x]

521
                ps = function(s_in).to(output_device)
522
                mask = torch.ones_like(ps)
523
                feather = round(overlap * upscale_amount)
524
525
526
527
528
                for t in range(feather):
                        mask[:,:,t:1+t,:] *= ((1.0/feather) * (t + 1))
                        mask[:,:,mask.shape[2] -1 -t: mask.shape[2]-t,:] *= ((1.0/feather) * (t + 1))
                        mask[:,:,:,t:1+t] *= ((1.0/feather) * (t + 1))
                        mask[:,:,:,mask.shape[3]- 1 - t: mask.shape[3]- t] *= ((1.0/feather) * (t + 1))
529
530
                out[:,:,round(y*upscale_amount):round((y+tile_y)*upscale_amount),round(x*upscale_amount):round((x+tile_x)*upscale_amount)] += ps * mask
                out_div[:,:,round(y*upscale_amount):round((y+tile_y)*upscale_amount),round(x*upscale_amount):round((x+tile_x)*upscale_amount)] += mask
531
532
                if pbar is not None:
                    pbar.update(1)
533
534
535

        output[b:b+1] = out/out_div
    return output
536

537
538
539
540
PROGRESS_BAR_ENABLED = True
def set_progress_bar_enabled(enabled):
    global PROGRESS_BAR_ENABLED
    PROGRESS_BAR_ENABLED = enabled
541
542
543
544
545
546
547
548
549
550
551
552
553

PROGRESS_BAR_HOOK = None
def set_progress_bar_global_hook(function):
    global PROGRESS_BAR_HOOK
    PROGRESS_BAR_HOOK = function

class ProgressBar:
    def __init__(self, total):
        global PROGRESS_BAR_HOOK
        self.total = total
        self.current = 0
        self.hook = PROGRESS_BAR_HOOK

space-nuko's avatar
space-nuko committed
554
    def update_absolute(self, value, total=None, preview=None):
555
556
        if total is not None:
            self.total = total
557
558
559
560
        if value > self.total:
            value = self.total
        self.current = value
        if self.hook is not None:
space-nuko's avatar
space-nuko committed
561
            self.hook(self.current, self.total, preview)
562
563
564

    def update(self, value):
        self.update_absolute(self.current + value)