utils.py 22.4 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
import torch
comfyanonymous's avatar
comfyanonymous committed
2
import math
3
import struct
4
import comfy.checkpoint_pickle
5
import safetensors.torch
comfyanonymous's avatar
comfyanonymous committed
6
import numpy as np
7
from PIL import Image
8
import logging
comfyanonymous's avatar
comfyanonymous committed
9

comfyanonymous's avatar
comfyanonymous committed
10
11
12
def load_torch_file(ckpt, safe_load=False, device=None):
    if device is None:
        device = torch.device("cpu")
13
    if ckpt.lower().endswith(".safetensors"):
comfyanonymous's avatar
comfyanonymous committed
14
        sd = safetensors.torch.load_file(ckpt, device=device.type)
15
    else:
16
17
        if safe_load:
            if not 'weights_only' in torch.load.__code__.co_varnames:
18
                logging.warning("Warning torch.load doesn't support weights_only on this pytorch version, loading unsafely.")
19
                safe_load = False
20
        if safe_load:
comfyanonymous's avatar
comfyanonymous committed
21
            pl_sd = torch.load(ckpt, map_location=device, weights_only=True)
22
        else:
comfyanonymous's avatar
comfyanonymous committed
23
            pl_sd = torch.load(ckpt, map_location=device, pickle_module=comfy.checkpoint_pickle)
24
        if "global_step" in pl_sd:
comfyanonymous's avatar
comfyanonymous committed
25
            logging.debug(f"Global Step: {pl_sd['global_step']}")
26
27
28
29
30
31
        if "state_dict" in pl_sd:
            sd = pl_sd["state_dict"]
        else:
            sd = pl_sd
    return sd

32
33
34
35
36
37
def save_torch_file(sd, ckpt, metadata=None):
    if metadata is not None:
        safetensors.torch.save_file(sd, ckpt, metadata=metadata)
    else:
        safetensors.torch.save_file(sd, ckpt)

38
39
40
41
42
43
44
def calculate_parameters(sd, prefix=""):
    params = 0
    for k in sd.keys():
        if k.startswith(prefix):
            params += sd[k].nelement()
    return params

45
46
47
48
49
50
def state_dict_key_replace(state_dict, keys_to_replace):
    for x in keys_to_replace:
        if x in state_dict:
            state_dict[keys_to_replace[x]] = state_dict.pop(x)
    return state_dict

comfyanonymous's avatar
comfyanonymous committed
51
52
53
54
55
def state_dict_prefix_replace(state_dict, replace_prefix, filter_keys=False):
    if filter_keys:
        out = {}
    else:
        out = state_dict
56
57
58
    for rp in replace_prefix:
        replace = list(map(lambda a: (a, "{}{}".format(replace_prefix[rp], a[len(rp):])), filter(lambda a: a.startswith(rp), state_dict.keys())))
        for x in replace:
comfyanonymous's avatar
comfyanonymous committed
59
60
61
            w = state_dict.pop(x[0])
            out[x[1]] = w
    return out
62
63


64
def transformers_convert(sd, prefix_from, prefix_to, number):
comfyanonymous's avatar
comfyanonymous committed
65
    keys_to_replace = {
66
67
68
69
        "{}positional_embedding": "{}embeddings.position_embedding.weight",
        "{}token_embedding.weight": "{}embeddings.token_embedding.weight",
        "{}ln_final.weight": "{}final_layer_norm.weight",
        "{}ln_final.bias": "{}final_layer_norm.bias",
comfyanonymous's avatar
comfyanonymous committed
70
71
72
73
74
75
76
    }

    for k in keys_to_replace:
        x = k.format(prefix_from)
        if x in sd:
            sd[keys_to_replace[k].format(prefix_to)] = sd.pop(x)

77
78
79
80
81
82
83
84
85
86
87
    resblock_to_replace = {
        "ln_1": "layer_norm1",
        "ln_2": "layer_norm2",
        "mlp.c_fc": "mlp.fc1",
        "mlp.c_proj": "mlp.fc2",
        "attn.out_proj": "self_attn.out_proj",
    }

    for resblock in range(number):
        for x in resblock_to_replace:
            for y in ["weight", "bias"]:
88
89
                k = "{}transformer.resblocks.{}.{}.{}".format(prefix_from, resblock, x, y)
                k_to = "{}encoder.layers.{}.{}.{}".format(prefix_to, resblock, resblock_to_replace[x], y)
90
91
92
93
                if k in sd:
                    sd[k_to] = sd.pop(k)

        for y in ["weight", "bias"]:
94
            k_from = "{}transformer.resblocks.{}.attn.in_proj_{}".format(prefix_from, resblock, y)
95
96
97
98
99
            if k_from in sd:
                weights = sd.pop(k_from)
                shape_from = weights.shape[0] // 3
                for x in range(3):
                    p = ["self_attn.q_proj", "self_attn.k_proj", "self_attn.v_proj"]
100
                    k_to = "{}encoder.layers.{}.{}.{}".format(prefix_to, resblock, p[x], y)
101
                    sd[k_to] = weights[shape_from*x:shape_from*(x + 1)]
102
103
104
105
106
107
108
109
110
111
112
113

    return sd

def clip_text_transformers_convert(sd, prefix_from, prefix_to):
    sd = transformers_convert(sd, prefix_from, "{}text_model.".format(prefix_to), 32)

    tp = "{}text_projection.weight".format(prefix_from)
    if tp in sd:
        sd["{}text_projection.weight".format(prefix_to)] = sd.pop(tp)

    tp = "{}text_projection".format(prefix_from)
    if tp in sd:
114
        sd["{}text_projection.weight".format(prefix_to)] = sd.pop(tp).transpose(0, 1).contiguous()
115
116
    return sd

117

118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
UNET_MAP_ATTENTIONS = {
    "proj_in.weight",
    "proj_in.bias",
    "proj_out.weight",
    "proj_out.bias",
    "norm.weight",
    "norm.bias",
}

TRANSFORMER_BLOCKS = {
    "norm1.weight",
    "norm1.bias",
    "norm2.weight",
    "norm2.bias",
    "norm3.weight",
    "norm3.bias",
    "attn1.to_q.weight",
    "attn1.to_k.weight",
    "attn1.to_v.weight",
    "attn1.to_out.0.weight",
    "attn1.to_out.0.bias",
    "attn2.to_q.weight",
    "attn2.to_k.weight",
    "attn2.to_v.weight",
    "attn2.to_out.0.weight",
    "attn2.to_out.0.bias",
    "ff.net.0.proj.weight",
    "ff.net.0.proj.bias",
    "ff.net.2.weight",
    "ff.net.2.bias",
}

UNET_MAP_RESNET = {
    "in_layers.2.weight": "conv1.weight",
    "in_layers.2.bias": "conv1.bias",
    "emb_layers.1.weight": "time_emb_proj.weight",
    "emb_layers.1.bias": "time_emb_proj.bias",
    "out_layers.3.weight": "conv2.weight",
    "out_layers.3.bias": "conv2.bias",
    "skip_connection.weight": "conv_shortcut.weight",
    "skip_connection.bias": "conv_shortcut.bias",
    "in_layers.0.weight": "norm1.weight",
    "in_layers.0.bias": "norm1.bias",
    "out_layers.0.weight": "norm2.weight",
    "out_layers.0.bias": "norm2.bias",
}

165
UNET_MAP_BASIC = {
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
    ("label_emb.0.0.weight", "class_embedding.linear_1.weight"),
    ("label_emb.0.0.bias", "class_embedding.linear_1.bias"),
    ("label_emb.0.2.weight", "class_embedding.linear_2.weight"),
    ("label_emb.0.2.bias", "class_embedding.linear_2.bias"),
    ("label_emb.0.0.weight", "add_embedding.linear_1.weight"),
    ("label_emb.0.0.bias", "add_embedding.linear_1.bias"),
    ("label_emb.0.2.weight", "add_embedding.linear_2.weight"),
    ("label_emb.0.2.bias", "add_embedding.linear_2.bias"),
    ("input_blocks.0.0.weight", "conv_in.weight"),
    ("input_blocks.0.0.bias", "conv_in.bias"),
    ("out.0.weight", "conv_norm_out.weight"),
    ("out.0.bias", "conv_norm_out.bias"),
    ("out.2.weight", "conv_out.weight"),
    ("out.2.bias", "conv_out.bias"),
    ("time_embed.0.weight", "time_embedding.linear_1.weight"),
    ("time_embed.0.bias", "time_embedding.linear_1.bias"),
    ("time_embed.2.weight", "time_embedding.linear_2.weight"),
    ("time_embed.2.bias", "time_embedding.linear_2.bias")
184
185
}

186
def unet_to_diffusers(unet_config):
comfyanonymous's avatar
comfyanonymous committed
187
188
    if "num_res_blocks" not in unet_config:
        return {}
189
190
    num_res_blocks = unet_config["num_res_blocks"]
    channel_mult = unet_config["channel_mult"]
191
192
    transformer_depth = unet_config["transformer_depth"][:]
    transformer_depth_output = unet_config["transformer_depth_output"][:]
193
    num_blocks = len(channel_mult)
194
195

    transformers_mid = unet_config.get("transformer_depth_middle", None)
196
197
198
199
200
201
202

    diffusers_unet_map = {}
    for x in range(num_blocks):
        n = 1 + (num_res_blocks[x] + 1) * x
        for i in range(num_res_blocks[x]):
            for b in UNET_MAP_RESNET:
                diffusers_unet_map["down_blocks.{}.resnets.{}.{}".format(x, i, UNET_MAP_RESNET[b])] = "input_blocks.{}.0.{}".format(n, b)
203
204
            num_transformers = transformer_depth.pop(0)
            if num_transformers > 0:
205
206
                for b in UNET_MAP_ATTENTIONS:
                    diffusers_unet_map["down_blocks.{}.attentions.{}.{}".format(x, i, b)] = "input_blocks.{}.1.{}".format(n, b)
207
                for t in range(num_transformers):
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
                    for b in TRANSFORMER_BLOCKS:
                        diffusers_unet_map["down_blocks.{}.attentions.{}.transformer_blocks.{}.{}".format(x, i, t, b)] = "input_blocks.{}.1.transformer_blocks.{}.{}".format(n, t, b)
            n += 1
        for k in ["weight", "bias"]:
            diffusers_unet_map["down_blocks.{}.downsamplers.0.conv.{}".format(x, k)] = "input_blocks.{}.0.op.{}".format(n, k)

    i = 0
    for b in UNET_MAP_ATTENTIONS:
        diffusers_unet_map["mid_block.attentions.{}.{}".format(i, b)] = "middle_block.1.{}".format(b)
    for t in range(transformers_mid):
        for b in TRANSFORMER_BLOCKS:
            diffusers_unet_map["mid_block.attentions.{}.transformer_blocks.{}.{}".format(i, t, b)] = "middle_block.1.transformer_blocks.{}.{}".format(t, b)

    for i, n in enumerate([0, 2]):
        for b in UNET_MAP_RESNET:
            diffusers_unet_map["mid_block.resnets.{}.{}".format(i, UNET_MAP_RESNET[b])] = "middle_block.{}.{}".format(n, b)

    num_res_blocks = list(reversed(num_res_blocks))
    for x in range(num_blocks):
        n = (num_res_blocks[x] + 1) * x
        l = num_res_blocks[x] + 1
        for i in range(l):
            c = 0
            for b in UNET_MAP_RESNET:
                diffusers_unet_map["up_blocks.{}.resnets.{}.{}".format(x, i, UNET_MAP_RESNET[b])] = "output_blocks.{}.0.{}".format(n, b)
            c += 1
234
235
            num_transformers = transformer_depth_output.pop()
            if num_transformers > 0:
236
237
238
                c += 1
                for b in UNET_MAP_ATTENTIONS:
                    diffusers_unet_map["up_blocks.{}.attentions.{}.{}".format(x, i, b)] = "output_blocks.{}.1.{}".format(n, b)
239
                for t in range(num_transformers):
240
241
242
243
244
245
                    for b in TRANSFORMER_BLOCKS:
                        diffusers_unet_map["up_blocks.{}.attentions.{}.transformer_blocks.{}.{}".format(x, i, t, b)] = "output_blocks.{}.1.transformer_blocks.{}.{}".format(n, t, b)
            if i == l - 1:
                for k in ["weight", "bias"]:
                    diffusers_unet_map["up_blocks.{}.upsamplers.0.conv.{}".format(x, k)] = "output_blocks.{}.{}.conv.{}".format(n, c, k)
            n += 1
246
247

    for k in UNET_MAP_BASIC:
248
        diffusers_unet_map[k[1]] = k[0]
249

250
251
    return diffusers_unet_map

comfyanonymous's avatar
comfyanonymous committed
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
MMDIT_MAP_BASIC = {
    ("context_embedder.bias", "context_embedder.bias"),
    ("context_embedder.weight", "context_embedder.weight"),
    ("t_embedder.mlp.0.bias", "time_text_embed.timestep_embedder.linear_1.bias"),
    ("t_embedder.mlp.0.weight", "time_text_embed.timestep_embedder.linear_1.weight"),
    ("t_embedder.mlp.2.bias", "time_text_embed.timestep_embedder.linear_2.bias"),
    ("t_embedder.mlp.2.weight", "time_text_embed.timestep_embedder.linear_2.weight"),
    ("x_embedder.proj.bias", "pos_embed.proj.bias"),
    ("x_embedder.proj.weight", "pos_embed.proj.weight"),
    ("y_embedder.mlp.0.bias", "time_text_embed.text_embedder.linear_1.bias"),
    ("y_embedder.mlp.0.weight", "time_text_embed.text_embedder.linear_1.weight"),
    ("y_embedder.mlp.2.bias", "time_text_embed.text_embedder.linear_2.bias"),
    ("y_embedder.mlp.2.weight", "time_text_embed.text_embedder.linear_2.weight"),
    ("pos_embed", "pos_embed.pos_embed"),
    ("final_layer.adaLN_modulation.1.bias", "norm_out.linear.bias"),
    ("final_layer.adaLN_modulation.1.weight", "norm_out.linear.weight"),
    ("final_layer.linear.bias", "proj_out.bias"),
    ("final_layer.linear.weight", "proj_out.weight"),
}

MMDIT_MAP_BLOCK = {
    ("context_block.adaLN_modulation.1.bias", "norm1_context.linear.bias"),
    ("context_block.adaLN_modulation.1.weight", "norm1_context.linear.weight"),
    ("context_block.attn.proj.bias", "attn.to_add_out.bias"),
    ("context_block.attn.proj.weight", "attn.to_add_out.weight"),
    ("context_block.mlp.fc1.bias", "ff_context.net.0.proj.bias"),
    ("context_block.mlp.fc1.weight", "ff_context.net.0.proj.weight"),
    ("context_block.mlp.fc2.bias", "ff_context.net.2.bias"),
    ("context_block.mlp.fc2.weight", "ff_context.net.2.weight"),
    ("x_block.adaLN_modulation.1.bias", "norm1.linear.bias"),
    ("x_block.adaLN_modulation.1.weight", "norm1.linear.weight"),
    ("x_block.attn.proj.bias", "attn.to_out.0.bias"),
    ("x_block.attn.proj.weight", "attn.to_out.0.weight"),
    ("x_block.mlp.fc1.bias", "ff.net.0.proj.bias"),
    ("x_block.mlp.fc1.weight", "ff.net.0.proj.weight"),
    ("x_block.mlp.fc2.bias", "ff.net.2.bias"),
    ("x_block.mlp.fc2.weight", "ff.net.2.weight"),
}

def mmdit_to_diffusers(mmdit_config, output_prefix=""):
    key_map = {}

    depth = mmdit_config.get("depth", 0)
    for i in range(depth):
        block_from = "transformer_blocks.{}".format(i)
        block_to = "{}joint_blocks.{}".format(output_prefix, i)

        offset = depth * 64

        for end in ("weight", "bias"):
            k = "{}.attn.".format(block_from)
            qkv = "{}.x_block.attn.qkv.{}".format(block_to, end)
            key_map["{}to_q.{}".format(k, end)] = (qkv, (0, 0, offset))
            key_map["{}to_k.{}".format(k, end)] = (qkv, (0, offset, offset))
            key_map["{}to_v.{}".format(k, end)] = (qkv, (0, offset * 2, offset))

            qkv = "{}.context_block.attn.qkv.{}".format(block_to, end)
            key_map["{}add_q_proj.{}".format(k, end)] = (qkv, (0, 0, offset))
            key_map["{}add_k_proj.{}".format(k, end)] = (qkv, (0, offset, offset))
            key_map["{}add_v_proj.{}".format(k, end)] = (qkv, (0, offset * 2, offset))

        for k in MMDIT_MAP_BLOCK:
            key_map["{}.{}".format(block_from, k[1])] = "{}.{}".format(block_to, k[0])

    for k in MMDIT_MAP_BASIC:
        key_map[k[1]] = "{}{}".format(output_prefix, k[0])

    return key_map

321
322
323
324
325
def repeat_to_batch_size(tensor, batch_size, dim=0):
    if tensor.shape[dim] > batch_size:
        return tensor.narrow(dim, 0, batch_size)
    elif tensor.shape[dim] < batch_size:
        return tensor.repeat(dim * [1] + [math.ceil(batch_size / tensor.shape[dim])] + [1] * (len(tensor.shape) - 1 - dim)).narrow(dim, 0, batch_size)
326
327
    return tensor

328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
def resize_to_batch_size(tensor, batch_size):
    in_batch_size = tensor.shape[0]
    if in_batch_size == batch_size:
        return tensor

    if batch_size <= 1:
        return tensor[:batch_size]

    output = torch.empty([batch_size] + list(tensor.shape)[1:], dtype=tensor.dtype, device=tensor.device)
    if batch_size < in_batch_size:
        scale = (in_batch_size - 1) / (batch_size - 1)
        for i in range(batch_size):
            output[i] = tensor[min(round(i * scale), in_batch_size - 1)]
    else:
        scale = in_batch_size / batch_size
        for i in range(batch_size):
            output[i] = tensor[min(math.floor((i + 0.5) * scale), in_batch_size - 1)]

    return output

348
349
350
351
352
353
def convert_sd_to(state_dict, dtype):
    keys = list(state_dict.keys())
    for k in keys:
        state_dict[k] = state_dict[k].to(dtype)
    return state_dict

354
355
356
357
358
359
360
361
def safetensors_header(safetensors_path, max_size=100*1024*1024):
    with open(safetensors_path, "rb") as f:
        header = f.read(8)
        length_of_header = struct.unpack('<Q', header)[0]
        if length_of_header > max_size:
            return None
        return f.read(length_of_header)

362
363
364
365
366
def set_attr(obj, attr, value):
    attrs = attr.split(".")
    for name in attrs[:-1]:
        obj = getattr(obj, name)
    prev = getattr(obj, attrs[-1])
367
368
369
370
371
    setattr(obj, attrs[-1], value)
    return prev

def set_attr_param(obj, attr, value):
    return set_attr(obj, attr, torch.nn.Parameter(value, requires_grad=False))
372

373
374
375
376
377
378
379
380
def copy_to_param(obj, attr, value):
    # inplace update tensor instead of replacing it
    attrs = attr.split(".")
    for name in attrs[:-1]:
        obj = getattr(obj, name)
    prev = getattr(obj, attrs[-1])
    prev.data.copy_(value)

381
382
383
384
385
386
def get_attr(obj, attr):
    attrs = attr.split(".")
    for name in attrs:
        obj = getattr(obj, name)
    return obj

387
def bislerp(samples, width, height):
BlenderNeko's avatar
BlenderNeko committed
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
    def slerp(b1, b2, r):
        '''slerps batches b1, b2 according to ratio r, batches should be flat e.g. NxC'''
        
        c = b1.shape[-1]

        #norms
        b1_norms = torch.norm(b1, dim=-1, keepdim=True)
        b2_norms = torch.norm(b2, dim=-1, keepdim=True)

        #normalize
        b1_normalized = b1 / b1_norms
        b2_normalized = b2 / b2_norms

        #zero when norms are zero
        b1_normalized[b1_norms.expand(-1,c) == 0.0] = 0.0
        b2_normalized[b2_norms.expand(-1,c) == 0.0] = 0.0

        #slerp
        dot = (b1_normalized*b2_normalized).sum(1)
        omega = torch.acos(dot)
408
        so = torch.sin(omega)
BlenderNeko's avatar
BlenderNeko committed
409
410
411
412
413
414
415
416
417
418

        #technically not mathematically correct, but more pleasing?
        res = (torch.sin((1.0-r.squeeze(1))*omega)/so).unsqueeze(1)*b1_normalized + (torch.sin(r.squeeze(1)*omega)/so).unsqueeze(1) * b2_normalized
        res *= (b1_norms * (1.0-r) + b2_norms * r).expand(-1,c)

        #edge cases for same or polar opposites
        res[dot > 1 - 1e-5] = b1[dot > 1 - 1e-5] 
        res[dot < 1e-5 - 1] = (b1 * (1.0-r) + b2 * r)[dot < 1e-5 - 1]
        return res
    
comfyanonymous's avatar
comfyanonymous committed
419
420
    def generate_bilinear_data(length_old, length_new, device):
        coords_1 = torch.arange(length_old, dtype=torch.float32, device=device).reshape((1,1,1,-1))
BlenderNeko's avatar
BlenderNeko committed
421
422
423
424
        coords_1 = torch.nn.functional.interpolate(coords_1, size=(1, length_new), mode="bilinear")
        ratios = coords_1 - coords_1.floor()
        coords_1 = coords_1.to(torch.int64)
        
comfyanonymous's avatar
comfyanonymous committed
425
        coords_2 = torch.arange(length_old, dtype=torch.float32, device=device).reshape((1,1,1,-1)) + 1
BlenderNeko's avatar
BlenderNeko committed
426
427
428
429
        coords_2[:,:,:,-1] -= 1
        coords_2 = torch.nn.functional.interpolate(coords_2, size=(1, length_new), mode="bilinear")
        coords_2 = coords_2.to(torch.int64)
        return ratios, coords_1, coords_2
430
431
432

    orig_dtype = samples.dtype
    samples = samples.float()
BlenderNeko's avatar
BlenderNeko committed
433
434
435
    n,c,h,w = samples.shape
    h_new, w_new = (height, width)
    
436
    #linear w
comfyanonymous's avatar
comfyanonymous committed
437
    ratios, coords_1, coords_2 = generate_bilinear_data(w, w_new, samples.device)
438
439
440
    coords_1 = coords_1.expand((n, c, h, -1))
    coords_2 = coords_2.expand((n, c, h, -1))
    ratios = ratios.expand((n, 1, h, -1))
BlenderNeko's avatar
BlenderNeko committed
441

comfyanonymous's avatar
comfyanonymous committed
442
443
444
    pass_1 = samples.gather(-1,coords_1).movedim(1, -1).reshape((-1,c))
    pass_2 = samples.gather(-1,coords_2).movedim(1, -1).reshape((-1,c))
    ratios = ratios.movedim(1, -1).reshape((-1,1))
BlenderNeko's avatar
BlenderNeko committed
445
446

    result = slerp(pass_1, pass_2, ratios)
comfyanonymous's avatar
comfyanonymous committed
447
    result = result.reshape(n, h, w_new, c).movedim(-1, 1)
BlenderNeko's avatar
BlenderNeko committed
448

449
    #linear h
comfyanonymous's avatar
comfyanonymous committed
450
    ratios, coords_1, coords_2 = generate_bilinear_data(h, h_new, samples.device)
451
452
453
    coords_1 = coords_1.reshape((1,1,-1,1)).expand((n, c, -1, w_new))
    coords_2 = coords_2.reshape((1,1,-1,1)).expand((n, c, -1, w_new))
    ratios = ratios.reshape((1,1,-1,1)).expand((n, 1, -1, w_new))
BlenderNeko's avatar
BlenderNeko committed
454

comfyanonymous's avatar
comfyanonymous committed
455
456
457
    pass_1 = result.gather(-2,coords_1).movedim(1, -1).reshape((-1,c))
    pass_2 = result.gather(-2,coords_2).movedim(1, -1).reshape((-1,c))
    ratios = ratios.movedim(1, -1).reshape((-1,1))
BlenderNeko's avatar
BlenderNeko committed
458
459

    result = slerp(pass_1, pass_2, ratios)
comfyanonymous's avatar
comfyanonymous committed
460
    result = result.reshape(n, h_new, w_new, c).movedim(-1, 1)
461
    return result.to(orig_dtype)
462

463
def lanczos(samples, width, height):
comfyanonymous's avatar
comfyanonymous committed
464
    images = [Image.fromarray(np.clip(255. * image.movedim(0, -1).cpu().numpy(), 0, 255).astype(np.uint8)) for image in samples]
465
    images = [image.resize((width, height), resample=Image.Resampling.LANCZOS) for image in images]
comfyanonymous's avatar
comfyanonymous committed
466
    images = [torch.from_numpy(np.array(image).astype(np.float32) / 255.0).movedim(-1, 0) for image in images]
467
    result = torch.stack(images)
468
    return result.to(samples.device, samples.dtype)
469

comfyanonymous's avatar
comfyanonymous committed
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
def common_upscale(samples, width, height, upscale_method, crop):
        if crop == "center":
            old_width = samples.shape[3]
            old_height = samples.shape[2]
            old_aspect = old_width / old_height
            new_aspect = width / height
            x = 0
            y = 0
            if old_aspect > new_aspect:
                x = round((old_width - old_width * (new_aspect / old_aspect)) / 2)
            elif old_aspect < new_aspect:
                y = round((old_height - old_height * (old_aspect / new_aspect)) / 2)
            s = samples[:,:,y:old_height-y,x:old_width-x]
        else:
            s = samples
485
486
487

        if upscale_method == "bislerp":
            return bislerp(s, width, height)
488
489
        elif upscale_method == "lanczos":
            return lanczos(s, width, height)
490
491
        else:
            return torch.nn.functional.interpolate(s, size=(height, width), mode=upscale_method)
492

pythongosssss's avatar
pythongosssss committed
493
def get_tiled_scale_steps(width, height, tile_x, tile_y, overlap):
comfyanonymous's avatar
comfyanonymous committed
494
    return math.ceil((height / (tile_y - overlap))) * math.ceil((width / (tile_x - overlap)))
pythongosssss's avatar
pythongosssss committed
495

496
@torch.inference_mode()
497
498
def tiled_scale(samples, function, tile_x=64, tile_y=64, overlap = 8, upscale_amount = 4, out_channels = 3, output_device="cpu", pbar = None):
    output = torch.empty((samples.shape[0], out_channels, round(samples.shape[2] * upscale_amount), round(samples.shape[3] * upscale_amount)), device=output_device)
499
500
    for b in range(samples.shape[0]):
        s = samples[b:b+1]
501
502
        out = torch.zeros((s.shape[0], out_channels, round(s.shape[2] * upscale_amount), round(s.shape[3] * upscale_amount)), device=output_device)
        out_div = torch.zeros((s.shape[0], out_channels, round(s.shape[2] * upscale_amount), round(s.shape[3] * upscale_amount)), device=output_device)
503
504
        for y in range(0, s.shape[2], tile_y - overlap):
            for x in range(0, s.shape[3], tile_x - overlap):
505
506
                x = max(0, min(s.shape[-1] - overlap, x))
                y = max(0, min(s.shape[-2] - overlap, y))
507
508
                s_in = s[:,:,y:y+tile_y,x:x+tile_x]

509
                ps = function(s_in).to(output_device)
510
                mask = torch.ones_like(ps)
511
                feather = round(overlap * upscale_amount)
512
513
514
515
516
                for t in range(feather):
                        mask[:,:,t:1+t,:] *= ((1.0/feather) * (t + 1))
                        mask[:,:,mask.shape[2] -1 -t: mask.shape[2]-t,:] *= ((1.0/feather) * (t + 1))
                        mask[:,:,:,t:1+t] *= ((1.0/feather) * (t + 1))
                        mask[:,:,:,mask.shape[3]- 1 - t: mask.shape[3]- t] *= ((1.0/feather) * (t + 1))
517
518
                out[:,:,round(y*upscale_amount):round((y+tile_y)*upscale_amount),round(x*upscale_amount):round((x+tile_x)*upscale_amount)] += ps * mask
                out_div[:,:,round(y*upscale_amount):round((y+tile_y)*upscale_amount),round(x*upscale_amount):round((x+tile_x)*upscale_amount)] += mask
519
520
                if pbar is not None:
                    pbar.update(1)
521
522
523

        output[b:b+1] = out/out_div
    return output
524

525
526
527
528
PROGRESS_BAR_ENABLED = True
def set_progress_bar_enabled(enabled):
    global PROGRESS_BAR_ENABLED
    PROGRESS_BAR_ENABLED = enabled
529
530
531
532
533
534
535
536
537
538
539
540
541

PROGRESS_BAR_HOOK = None
def set_progress_bar_global_hook(function):
    global PROGRESS_BAR_HOOK
    PROGRESS_BAR_HOOK = function

class ProgressBar:
    def __init__(self, total):
        global PROGRESS_BAR_HOOK
        self.total = total
        self.current = 0
        self.hook = PROGRESS_BAR_HOOK

space-nuko's avatar
space-nuko committed
542
    def update_absolute(self, value, total=None, preview=None):
543
544
        if total is not None:
            self.total = total
545
546
547
548
        if value > self.total:
            value = self.total
        self.current = value
        if self.hook is not None:
space-nuko's avatar
space-nuko committed
549
            self.hook(self.current, self.total, preview)
550
551
552

    def update(self, value):
        self.update_absolute(self.current + value)