utils.py 15.2 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
import torch
comfyanonymous's avatar
comfyanonymous committed
2
import math
3
import struct
4
import comfy.checkpoint_pickle
5
import safetensors.torch
comfyanonymous's avatar
comfyanonymous committed
6

comfyanonymous's avatar
comfyanonymous committed
7
8
9
def load_torch_file(ckpt, safe_load=False, device=None):
    if device is None:
        device = torch.device("cpu")
10
    if ckpt.lower().endswith(".safetensors"):
comfyanonymous's avatar
comfyanonymous committed
11
        sd = safetensors.torch.load_file(ckpt, device=device.type)
12
    else:
13
14
15
16
        if safe_load:
            if not 'weights_only' in torch.load.__code__.co_varnames:
                print("Warning torch.load doesn't support weights_only on this pytorch version, loading unsafely.")
                safe_load = False
17
        if safe_load:
comfyanonymous's avatar
comfyanonymous committed
18
            pl_sd = torch.load(ckpt, map_location=device, weights_only=True)
19
        else:
comfyanonymous's avatar
comfyanonymous committed
20
            pl_sd = torch.load(ckpt, map_location=device, pickle_module=comfy.checkpoint_pickle)
21
22
23
24
25
26
27
28
        if "global_step" in pl_sd:
            print(f"Global Step: {pl_sd['global_step']}")
        if "state_dict" in pl_sd:
            sd = pl_sd["state_dict"]
        else:
            sd = pl_sd
    return sd

29
30
31
32
33
34
def save_torch_file(sd, ckpt, metadata=None):
    if metadata is not None:
        safetensors.torch.save_file(sd, ckpt, metadata=metadata)
    else:
        safetensors.torch.save_file(sd, ckpt)

35
def transformers_convert(sd, prefix_from, prefix_to, number):
comfyanonymous's avatar
comfyanonymous committed
36
    keys_to_replace = {
37
38
39
40
        "{}positional_embedding": "{}embeddings.position_embedding.weight",
        "{}token_embedding.weight": "{}embeddings.token_embedding.weight",
        "{}ln_final.weight": "{}final_layer_norm.weight",
        "{}ln_final.bias": "{}final_layer_norm.bias",
comfyanonymous's avatar
comfyanonymous committed
41
42
43
44
45
46
47
    }

    for k in keys_to_replace:
        x = k.format(prefix_from)
        if x in sd:
            sd[keys_to_replace[k].format(prefix_to)] = sd.pop(x)

48
49
50
51
52
53
54
55
56
57
58
    resblock_to_replace = {
        "ln_1": "layer_norm1",
        "ln_2": "layer_norm2",
        "mlp.c_fc": "mlp.fc1",
        "mlp.c_proj": "mlp.fc2",
        "attn.out_proj": "self_attn.out_proj",
    }

    for resblock in range(number):
        for x in resblock_to_replace:
            for y in ["weight", "bias"]:
59
60
                k = "{}transformer.resblocks.{}.{}.{}".format(prefix_from, resblock, x, y)
                k_to = "{}encoder.layers.{}.{}.{}".format(prefix_to, resblock, resblock_to_replace[x], y)
61
62
63
64
                if k in sd:
                    sd[k_to] = sd.pop(k)

        for y in ["weight", "bias"]:
65
            k_from = "{}transformer.resblocks.{}.attn.in_proj_{}".format(prefix_from, resblock, y)
66
67
68
69
70
            if k_from in sd:
                weights = sd.pop(k_from)
                shape_from = weights.shape[0] // 3
                for x in range(3):
                    p = ["self_attn.q_proj", "self_attn.k_proj", "self_attn.v_proj"]
71
                    k_to = "{}encoder.layers.{}.{}.{}".format(prefix_to, resblock, p[x], y)
72
73
74
                    sd[k_to] = weights[shape_from*x:shape_from*(x + 1)]
    return sd

75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
UNET_MAP_ATTENTIONS = {
    "proj_in.weight",
    "proj_in.bias",
    "proj_out.weight",
    "proj_out.bias",
    "norm.weight",
    "norm.bias",
}

TRANSFORMER_BLOCKS = {
    "norm1.weight",
    "norm1.bias",
    "norm2.weight",
    "norm2.bias",
    "norm3.weight",
    "norm3.bias",
    "attn1.to_q.weight",
    "attn1.to_k.weight",
    "attn1.to_v.weight",
    "attn1.to_out.0.weight",
    "attn1.to_out.0.bias",
    "attn2.to_q.weight",
    "attn2.to_k.weight",
    "attn2.to_v.weight",
    "attn2.to_out.0.weight",
    "attn2.to_out.0.bias",
    "ff.net.0.proj.weight",
    "ff.net.0.proj.bias",
    "ff.net.2.weight",
    "ff.net.2.bias",
}

UNET_MAP_RESNET = {
    "in_layers.2.weight": "conv1.weight",
    "in_layers.2.bias": "conv1.bias",
    "emb_layers.1.weight": "time_emb_proj.weight",
    "emb_layers.1.bias": "time_emb_proj.bias",
    "out_layers.3.weight": "conv2.weight",
    "out_layers.3.bias": "conv2.bias",
    "skip_connection.weight": "conv_shortcut.weight",
    "skip_connection.bias": "conv_shortcut.bias",
    "in_layers.0.weight": "norm1.weight",
    "in_layers.0.bias": "norm1.bias",
    "out_layers.0.weight": "norm2.weight",
    "out_layers.0.bias": "norm2.bias",
}

122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
UNET_MAP_BASIC = {
    "label_emb.0.0.weight": "class_embedding.linear_1.weight",
    "label_emb.0.0.bias": "class_embedding.linear_1.bias",
    "label_emb.0.2.weight": "class_embedding.linear_2.weight",
    "label_emb.0.2.bias": "class_embedding.linear_2.bias",
    "input_blocks.0.0.weight": "conv_in.weight",
    "input_blocks.0.0.bias": "conv_in.bias",
    "out.0.weight": "conv_norm_out.weight",
    "out.0.bias": "conv_norm_out.bias",
    "out.2.weight": "conv_out.weight",
    "out.2.bias": "conv_out.bias",
    "time_embed.0.weight": "time_embedding.linear_1.weight",
    "time_embed.0.bias": "time_embedding.linear_1.bias",
    "time_embed.2.weight": "time_embedding.linear_2.weight",
    "time_embed.2.bias": "time_embedding.linear_2.bias"
}

139
140
141
142
143
144
def unet_to_diffusers(unet_config):
    num_res_blocks = unet_config["num_res_blocks"]
    attention_resolutions = unet_config["attention_resolutions"]
    channel_mult = unet_config["channel_mult"]
    transformer_depth = unet_config["transformer_depth"]
    num_blocks = len(channel_mult)
145
    if isinstance(num_res_blocks, int):
146
        num_res_blocks = [num_res_blocks] * num_blocks
147
148
    if isinstance(transformer_depth, int):
        transformer_depth = [transformer_depth] * num_blocks
149
150
151
152
153
154
155
156
157
158

    transformers_per_layer = []
    res = 1
    for i in range(num_blocks):
        transformers = 0
        if res in attention_resolutions:
            transformers = transformer_depth[i]
        transformers_per_layer.append(transformers)
        res *= 2

159
    transformers_mid = unet_config.get("transformer_depth_middle", transformer_depth[-1])
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208

    diffusers_unet_map = {}
    for x in range(num_blocks):
        n = 1 + (num_res_blocks[x] + 1) * x
        for i in range(num_res_blocks[x]):
            for b in UNET_MAP_RESNET:
                diffusers_unet_map["down_blocks.{}.resnets.{}.{}".format(x, i, UNET_MAP_RESNET[b])] = "input_blocks.{}.0.{}".format(n, b)
            if transformers_per_layer[x] > 0:
                for b in UNET_MAP_ATTENTIONS:
                    diffusers_unet_map["down_blocks.{}.attentions.{}.{}".format(x, i, b)] = "input_blocks.{}.1.{}".format(n, b)
                for t in range(transformers_per_layer[x]):
                    for b in TRANSFORMER_BLOCKS:
                        diffusers_unet_map["down_blocks.{}.attentions.{}.transformer_blocks.{}.{}".format(x, i, t, b)] = "input_blocks.{}.1.transformer_blocks.{}.{}".format(n, t, b)
            n += 1
        for k in ["weight", "bias"]:
            diffusers_unet_map["down_blocks.{}.downsamplers.0.conv.{}".format(x, k)] = "input_blocks.{}.0.op.{}".format(n, k)

    i = 0
    for b in UNET_MAP_ATTENTIONS:
        diffusers_unet_map["mid_block.attentions.{}.{}".format(i, b)] = "middle_block.1.{}".format(b)
    for t in range(transformers_mid):
        for b in TRANSFORMER_BLOCKS:
            diffusers_unet_map["mid_block.attentions.{}.transformer_blocks.{}.{}".format(i, t, b)] = "middle_block.1.transformer_blocks.{}.{}".format(t, b)

    for i, n in enumerate([0, 2]):
        for b in UNET_MAP_RESNET:
            diffusers_unet_map["mid_block.resnets.{}.{}".format(i, UNET_MAP_RESNET[b])] = "middle_block.{}.{}".format(n, b)

    num_res_blocks = list(reversed(num_res_blocks))
    transformers_per_layer = list(reversed(transformers_per_layer))
    for x in range(num_blocks):
        n = (num_res_blocks[x] + 1) * x
        l = num_res_blocks[x] + 1
        for i in range(l):
            c = 0
            for b in UNET_MAP_RESNET:
                diffusers_unet_map["up_blocks.{}.resnets.{}.{}".format(x, i, UNET_MAP_RESNET[b])] = "output_blocks.{}.0.{}".format(n, b)
            c += 1
            if transformers_per_layer[x] > 0:
                c += 1
                for b in UNET_MAP_ATTENTIONS:
                    diffusers_unet_map["up_blocks.{}.attentions.{}.{}".format(x, i, b)] = "output_blocks.{}.1.{}".format(n, b)
                for t in range(transformers_per_layer[x]):
                    for b in TRANSFORMER_BLOCKS:
                        diffusers_unet_map["up_blocks.{}.attentions.{}.transformer_blocks.{}.{}".format(x, i, t, b)] = "output_blocks.{}.1.transformer_blocks.{}.{}".format(n, t, b)
            if i == l - 1:
                for k in ["weight", "bias"]:
                    diffusers_unet_map["up_blocks.{}.upsamplers.0.conv.{}".format(x, k)] = "output_blocks.{}.{}.conv.{}".format(n, c, k)
            n += 1
209
210
211
212

    for k in UNET_MAP_BASIC:
        diffusers_unet_map[UNET_MAP_BASIC[k]] = k

213
214
    return diffusers_unet_map

215
216
217
218
219
220
def convert_sd_to(state_dict, dtype):
    keys = list(state_dict.keys())
    for k in keys:
        state_dict[k] = state_dict[k].to(dtype)
    return state_dict

221
222
223
224
225
226
227
228
def safetensors_header(safetensors_path, max_size=100*1024*1024):
    with open(safetensors_path, "rb") as f:
        header = f.read(8)
        length_of_header = struct.unpack('<Q', header)[0]
        if length_of_header > max_size:
            return None
        return f.read(length_of_header)

229
def bislerp(samples, width, height):
BlenderNeko's avatar
BlenderNeko committed
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
    def slerp(b1, b2, r):
        '''slerps batches b1, b2 according to ratio r, batches should be flat e.g. NxC'''
        
        c = b1.shape[-1]

        #norms
        b1_norms = torch.norm(b1, dim=-1, keepdim=True)
        b2_norms = torch.norm(b2, dim=-1, keepdim=True)

        #normalize
        b1_normalized = b1 / b1_norms
        b2_normalized = b2 / b2_norms

        #zero when norms are zero
        b1_normalized[b1_norms.expand(-1,c) == 0.0] = 0.0
        b2_normalized[b2_norms.expand(-1,c) == 0.0] = 0.0

        #slerp
        dot = (b1_normalized*b2_normalized).sum(1)
        omega = torch.acos(dot)
250
        so = torch.sin(omega)
BlenderNeko's avatar
BlenderNeko committed
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275

        #technically not mathematically correct, but more pleasing?
        res = (torch.sin((1.0-r.squeeze(1))*omega)/so).unsqueeze(1)*b1_normalized + (torch.sin(r.squeeze(1)*omega)/so).unsqueeze(1) * b2_normalized
        res *= (b1_norms * (1.0-r) + b2_norms * r).expand(-1,c)

        #edge cases for same or polar opposites
        res[dot > 1 - 1e-5] = b1[dot > 1 - 1e-5] 
        res[dot < 1e-5 - 1] = (b1 * (1.0-r) + b2 * r)[dot < 1e-5 - 1]
        return res
    
    def generate_bilinear_data(length_old, length_new):
        coords_1 = torch.arange(length_old).reshape((1,1,1,-1)).to(torch.float32)
        coords_1 = torch.nn.functional.interpolate(coords_1, size=(1, length_new), mode="bilinear")
        ratios = coords_1 - coords_1.floor()
        coords_1 = coords_1.to(torch.int64)
        
        coords_2 = torch.arange(length_old).reshape((1,1,1,-1)).to(torch.float32) + 1
        coords_2[:,:,:,-1] -= 1
        coords_2 = torch.nn.functional.interpolate(coords_2, size=(1, length_new), mode="bilinear")
        coords_2 = coords_2.to(torch.int64)
        return ratios, coords_1, coords_2
    
    n,c,h,w = samples.shape
    h_new, w_new = (height, width)
    
276
277
278
279
280
    #linear w
    ratios, coords_1, coords_2 = generate_bilinear_data(w, w_new)
    coords_1 = coords_1.expand((n, c, h, -1))
    coords_2 = coords_2.expand((n, c, h, -1))
    ratios = ratios.expand((n, 1, h, -1))
BlenderNeko's avatar
BlenderNeko committed
281

comfyanonymous's avatar
comfyanonymous committed
282
283
284
    pass_1 = samples.gather(-1,coords_1).movedim(1, -1).reshape((-1,c))
    pass_2 = samples.gather(-1,coords_2).movedim(1, -1).reshape((-1,c))
    ratios = ratios.movedim(1, -1).reshape((-1,1))
BlenderNeko's avatar
BlenderNeko committed
285
286

    result = slerp(pass_1, pass_2, ratios)
comfyanonymous's avatar
comfyanonymous committed
287
    result = result.reshape(n, h, w_new, c).movedim(-1, 1)
BlenderNeko's avatar
BlenderNeko committed
288

289
290
291
292
293
    #linear h
    ratios, coords_1, coords_2 = generate_bilinear_data(h, h_new)
    coords_1 = coords_1.reshape((1,1,-1,1)).expand((n, c, -1, w_new))
    coords_2 = coords_2.reshape((1,1,-1,1)).expand((n, c, -1, w_new))
    ratios = ratios.reshape((1,1,-1,1)).expand((n, 1, -1, w_new))
BlenderNeko's avatar
BlenderNeko committed
294

comfyanonymous's avatar
comfyanonymous committed
295
296
297
    pass_1 = result.gather(-2,coords_1).movedim(1, -1).reshape((-1,c))
    pass_2 = result.gather(-2,coords_2).movedim(1, -1).reshape((-1,c))
    ratios = ratios.movedim(1, -1).reshape((-1,1))
BlenderNeko's avatar
BlenderNeko committed
298
299

    result = slerp(pass_1, pass_2, ratios)
comfyanonymous's avatar
comfyanonymous committed
300
    result = result.reshape(n, h_new, w_new, c).movedim(-1, 1)
BlenderNeko's avatar
BlenderNeko committed
301
    return result
302

comfyanonymous's avatar
comfyanonymous committed
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
def common_upscale(samples, width, height, upscale_method, crop):
        if crop == "center":
            old_width = samples.shape[3]
            old_height = samples.shape[2]
            old_aspect = old_width / old_height
            new_aspect = width / height
            x = 0
            y = 0
            if old_aspect > new_aspect:
                x = round((old_width - old_width * (new_aspect / old_aspect)) / 2)
            elif old_aspect < new_aspect:
                y = round((old_height - old_height * (old_aspect / new_aspect)) / 2)
            s = samples[:,:,y:old_height-y,x:old_width-x]
        else:
            s = samples
318
319
320
321
322

        if upscale_method == "bislerp":
            return bislerp(s, width, height)
        else:
            return torch.nn.functional.interpolate(s, size=(height, width), mode=upscale_method)
323

pythongosssss's avatar
pythongosssss committed
324
def get_tiled_scale_steps(width, height, tile_x, tile_y, overlap):
comfyanonymous's avatar
comfyanonymous committed
325
    return math.ceil((height / (tile_y - overlap))) * math.ceil((width / (tile_x - overlap)))
pythongosssss's avatar
pythongosssss committed
326

327
@torch.inference_mode()
328
def tiled_scale(samples, function, tile_x=64, tile_y=64, overlap = 8, upscale_amount = 4, out_channels = 3, pbar = None):
329
    output = torch.empty((samples.shape[0], out_channels, round(samples.shape[2] * upscale_amount), round(samples.shape[3] * upscale_amount)), device="cpu")
330
331
    for b in range(samples.shape[0]):
        s = samples[b:b+1]
332
333
        out = torch.zeros((s.shape[0], out_channels, round(s.shape[2] * upscale_amount), round(s.shape[3] * upscale_amount)), device="cpu")
        out_div = torch.zeros((s.shape[0], out_channels, round(s.shape[2] * upscale_amount), round(s.shape[3] * upscale_amount)), device="cpu")
334
335
336
337
338
339
        for y in range(0, s.shape[2], tile_y - overlap):
            for x in range(0, s.shape[3], tile_x - overlap):
                s_in = s[:,:,y:y+tile_y,x:x+tile_x]

                ps = function(s_in).cpu()
                mask = torch.ones_like(ps)
340
                feather = round(overlap * upscale_amount)
341
342
343
344
345
                for t in range(feather):
                        mask[:,:,t:1+t,:] *= ((1.0/feather) * (t + 1))
                        mask[:,:,mask.shape[2] -1 -t: mask.shape[2]-t,:] *= ((1.0/feather) * (t + 1))
                        mask[:,:,:,t:1+t] *= ((1.0/feather) * (t + 1))
                        mask[:,:,:,mask.shape[3]- 1 - t: mask.shape[3]- t] *= ((1.0/feather) * (t + 1))
346
347
                out[:,:,round(y*upscale_amount):round((y+tile_y)*upscale_amount),round(x*upscale_amount):round((x+tile_x)*upscale_amount)] += ps * mask
                out_div[:,:,round(y*upscale_amount):round((y+tile_y)*upscale_amount),round(x*upscale_amount):round((x+tile_x)*upscale_amount)] += mask
348
349
                if pbar is not None:
                    pbar.update(1)
350
351
352

        output[b:b+1] = out/out_div
    return output
353
354
355
356
357
358
359
360
361
362
363
364
365
366


PROGRESS_BAR_HOOK = None
def set_progress_bar_global_hook(function):
    global PROGRESS_BAR_HOOK
    PROGRESS_BAR_HOOK = function

class ProgressBar:
    def __init__(self, total):
        global PROGRESS_BAR_HOOK
        self.total = total
        self.current = 0
        self.hook = PROGRESS_BAR_HOOK

space-nuko's avatar
space-nuko committed
367
    def update_absolute(self, value, total=None, preview=None):
368
369
        if total is not None:
            self.total = total
370
371
372
373
        if value > self.total:
            value = self.total
        self.current = value
        if self.hook is not None:
space-nuko's avatar
space-nuko committed
374
            self.hook(self.current, self.total, preview)
375
376
377

    def update(self, value):
        self.update_absolute(self.current + value)