test_srt_endpoint.py 18.5 KB
Newer Older
1
2
"""
python3 -m unittest test_srt_endpoint.TestSRTEndpoint.test_simple_decode
3
python3 -m unittest test_srt_endpoint.TestSRTEndpoint.test_logprob_with_chunked_prefill
4
5
"""

6
import json
7
import random
8
import time
9
import unittest
10
from concurrent.futures import ThreadPoolExecutor
11
from functools import partial
12
from typing import Optional
13

14
import numpy as np
15
16
import requests

17
from sglang.srt.sampling.custom_logit_processor import CustomLogitProcessor
18
from sglang.srt.utils import kill_process_tree
19
from sglang.test.test_utils import (
Lianmin Zheng's avatar
Lianmin Zheng committed
20
    DEFAULT_SMALL_MODEL_NAME_FOR_TEST,
21
22
    DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
    DEFAULT_URL_FOR_TEST,
23
    CustomTestCase,
24
    popen_launch_server,
25
    run_logprob_check,
26
)
27
28


29
class TestSRTEndpoint(CustomTestCase):
30
31
    @classmethod
    def setUpClass(cls):
Lianmin Zheng's avatar
Lianmin Zheng committed
32
        cls.model = DEFAULT_SMALL_MODEL_NAME_FOR_TEST
33
34
        cls.base_url = DEFAULT_URL_FOR_TEST
        cls.process = popen_launch_server(
35
36
37
            cls.model,
            cls.base_url,
            timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
Lianmin Zheng's avatar
Lianmin Zheng committed
38
39
40
            other_args=(
                "--enable-custom-logit-processor",
                "--mem-fraction-static",
41
42
43
                "0.7",
                "--cuda-graph-max-bs",
                "8",
Lianmin Zheng's avatar
Lianmin Zheng committed
44
            ),
45
        )
46
47
48

    @classmethod
    def tearDownClass(cls):
49
        kill_process_tree(cls.process.pid)
50
51

    def run_decode(
52
53
54
55
56
57
        self,
        return_logprob=False,
        top_logprobs_num=0,
        return_text=False,
        n=1,
        stream=False,
58
        batch=False,
59
    ):
60
61
62
63
64
        if batch:
            text = ["The capital of France is"]
        else:
            text = "The capital of France is"

65
66
67
        response = requests.post(
            self.base_url + "/generate",
            json={
68
                "text": text,
69
70
                "sampling_params": {
                    "temperature": 0 if n == 1 else 0.5,
71
                    "max_new_tokens": 16,
72
73
                    "n": n,
                },
74
                "stream": stream,
75
76
77
78
79
80
                "return_logprob": return_logprob,
                "top_logprobs_num": top_logprobs_num,
                "return_text_in_logprobs": return_text,
                "logprob_start_len": 0,
            },
        )
81
82
83
84
85
86
87
        if not stream:
            response_json = response.json()
        else:
            response_json = []
            for line in response.iter_lines():
                if line.startswith(b"data: ") and line[6:] != b"[DONE]":
                    response_json.append(json.loads(line[6:]))
88
89

        print(json.dumps(response_json, indent=2))
90
91
92
93
94
        print("=" * 100)

    def test_simple_decode(self):
        self.run_decode()

95
96
97
    def test_simple_decode_batch(self):
        self.run_decode(batch=True)

98
99
100
    def test_parallel_sample(self):
        self.run_decode(n=3)

101
102
103
    def test_parallel_sample_stream(self):
        self.run_decode(n=3, stream=True)

104
    def test_logprob(self):
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
        self.run_decode(
            return_logprob=True,
            top_logprobs_num=5,
            return_text=True,
        )

    def test_logprob_start_len(self):
        logprob_start_len = 4
        new_tokens = 4
        prompts = [
            "I have a very good idea on",
            "Today is a sunndy day and",
        ]

        response = requests.post(
            self.base_url + "/generate",
            json={
                "text": prompts,
                "sampling_params": {
                    "temperature": 0,
                    "max_new_tokens": new_tokens,
                },
                "return_logprob": True,
                "top_logprobs_num": 5,
                "return_text_in_logprobs": True,
                "logprob_start_len": logprob_start_len,
            },
        )
        response_json = response.json()
        print(json.dumps(response_json, indent=2))

        for i, res in enumerate(response_json):
137
138
            self.assertEqual(
                res["meta_info"]["prompt_tokens"],
139
                logprob_start_len + len(res["meta_info"]["input_token_logprobs"]),
140
141
142
143
144
            )
            assert prompts[i].endswith(
                "".join([x[-1] for x in res["meta_info"]["input_token_logprobs"]])
            )

145
146
147
148
149
            self.assertEqual(res["meta_info"]["completion_tokens"], new_tokens)
            self.assertEqual(len(res["meta_info"]["output_token_logprobs"]), new_tokens)
            self.assertEqual(
                res["text"],
                "".join([x[-1] for x in res["meta_info"]["output_token_logprobs"]]),
150
            )
151

152
    def test_logprob_with_chunked_prefill(self):
153
        """Test a long prompt that requests output logprobs will not hit OOM."""
154
155
156
157
158
159
160
161
162
163
164
165
166
        new_tokens = 4
        prompts = "I have a very good idea on this. " * 8000

        response = requests.post(
            self.base_url + "/generate",
            json={
                "text": prompts,
                "sampling_params": {
                    "temperature": 0,
                    "max_new_tokens": new_tokens,
                },
                "return_logprob": True,
                "logprob_start_len": -1,
Lianmin Zheng's avatar
Lianmin Zheng committed
167
                "top_logprobs_num": 5,
168
169
170
            },
        )
        response_json = response.json()
Lianmin Zheng's avatar
Lianmin Zheng committed
171
        # print(json.dumps(response_json, indent=2))
172
173
174

        res = response_json
        self.assertEqual(res["meta_info"]["completion_tokens"], new_tokens)
Lianmin Zheng's avatar
Lianmin Zheng committed
175
176

        # Test the number of tokens are correct
177
        self.assertEqual(len(res["meta_info"]["output_token_logprobs"]), new_tokens)
Lianmin Zheng's avatar
Lianmin Zheng committed
178
179
180
181
182
183
184
185
186
        self.assertEqual(len(res["meta_info"]["output_top_logprobs"]), new_tokens)

        # Test the top-1 tokens are the same as output tokens (because temp = 0.0)
        for i in range(new_tokens):
            self.assertListEqual(
                res["meta_info"]["output_token_logprobs"][i],
                res["meta_info"]["output_top_logprobs"][i][0],
            )
            self.assertEqual(len(res["meta_info"]["output_top_logprobs"][i]), 5)
187

188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
    def test_logprob_match(self):
        """Test the output logprobs are close to the input logprobs if we run a prefill again."""

        def run_generate(
            prompt, return_logprob=False, max_new_tokens=512, logprob_start_len=-1
        ):

            if isinstance(prompt, str):
                prompt_kwargs = {"text": prompt}
            else:
                prompt_kwargs = {"input_ids": prompt}

            response = requests.post(
                self.base_url + "/generate",
                json={
                    **prompt_kwargs,
                    "sampling_params": {
                        "temperature": 1.0,
                        "max_new_tokens": max_new_tokens,
                        "ignore_eos": True,
                    },
                    "return_logprob": return_logprob,
                    "return_text_in_logprobs": True,
                    "logprob_start_len": logprob_start_len,
                },
            )
            return response.json()

        prompt = "I have a very good idea on how to"

        gen = run_generate(prompt, return_logprob=True, logprob_start_len=0)
        output_logprobs = np.array(
            [x[0] for x in gen["meta_info"]["output_token_logprobs"]]
        )
        num_prompts_tokens = gen["meta_info"]["prompt_tokens"]

        input_tokens = [x[1] for x in gen["meta_info"]["input_token_logprobs"]]
        output_tokens = [x[1] for x in gen["meta_info"]["output_token_logprobs"]]

        new_prompt = input_tokens + output_tokens
        score = run_generate(
            new_prompt, return_logprob=True, logprob_start_len=0, max_new_tokens=0
        )
        output_logprobs_score = np.array(
            [
                x[0]
                for x in score["meta_info"]["input_token_logprobs"][num_prompts_tokens:]
            ]
        )

        print(f"{output_logprobs[-10:]=}")
        print(f"{output_logprobs_score[-10:]=}")

        diff = np.abs(output_logprobs - output_logprobs_score)
        max_diff = np.max(diff)
243
        self.assertLess(max_diff, 0.35)
Lianmin Zheng's avatar
Lianmin Zheng committed
244
245
246
247
248

    def test_logprob_mixed(self):
        args = []
        temperature = 0
        # input_len, output_len, temperature, logprob_start_len, return_logprob, top_logprobs_num
249
        for input_len in [1000, 5000, 10000, 50000]:
Lianmin Zheng's avatar
Lianmin Zheng committed
250
            for output_len in [4, 8]:
251
                for logprob_start_len in [0, 500, 2500, 5000, 25000]:
Lianmin Zheng's avatar
Lianmin Zheng committed
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
                    for return_logprob in [True, False]:
                        for top_logprobs_num in [0, 5]:

                            if logprob_start_len >= input_len:
                                continue

                            args.append(
                                (
                                    input_len,
                                    output_len,
                                    temperature,
                                    logprob_start_len,
                                    return_logprob,
                                    top_logprobs_num,
                                )
                            )

        random.shuffle(args)

271
        func = partial(run_logprob_check, self)
Lianmin Zheng's avatar
Lianmin Zheng committed
272
        with ThreadPoolExecutor(8) as executor:
273
            list(executor.map(func, args))
Lianmin Zheng's avatar
Lianmin Zheng committed
274

275
276
277
278
279
280
281
282
283
284
285
286
287
288
    def test_logprob_grammar(self):
        prompts = "Question: Is Paris the Capital of France? Answer:"
        allowed_tokens = [" Yes", " No"]

        response = requests.post(
            self.base_url + "/generate",
            json={
                "text": prompts,
                "sampling_params": {
                    "temperature": 1.0,
                    "max_new_tokens": 1,
                    "regex": "( Yes| No)",
                },
                "return_logprob": True,
289
                "top_logprobs_num": 5,  # The grammar constraint allows all prefix tokens so we need to use a larger top_k.
290
291
292
293
294
295
296
297
                "return_text_in_logprobs": True,
            },
        )
        response_json = response.json()
        output_top_logprobs = response_json["meta_info"]["output_top_logprobs"][0]
        print(f"{output_top_logprobs=}")

        # Parse results
298
        # This is because the grammar constraint allows all prefix tokens
299
300
301
302
303
304
305
306
307
308
309
        logprobs = [None] * 2
        for i in range(len(output_top_logprobs)):
            try:
                idx = allowed_tokens.index(output_top_logprobs[i][2])
            except ValueError:
                # Not found
                continue
            logprobs[idx] = output_top_logprobs[i][0]

        self.assertTrue(all(x is not None for x in logprobs))

310
311
312
313
314
    def run_custom_logit_processor(self, target_token_id: Optional[int] = None):
        """Test custom logit processor with custom params.

        If target_token_id is None, the custom logit processor won't be passed in.
        """
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344

        custom_params = {"token_id": target_token_id}

        class DeterministicLogitProcessor(CustomLogitProcessor):
            """A dummy logit processor that changes the logits to always
            sample the given token id.
            """

            def __call__(self, logits, custom_param_list):
                assert logits.shape[0] == len(custom_param_list)
                key = "token_id"

                for i, param_dict in enumerate(custom_param_list):
                    # Mask all other tokens
                    logits[i, :] = -float("inf")
                    # Assign highest probability to the specified token
                    logits[i, param_dict[key]] = 0.0
                return logits

        prompts = "Question: Is Paris the Capital of France? Answer:"

        # Base case json data to be posted to the server.
        base_json = {
            "text": prompts,
            "sampling_params": {"temperature": 0.0},
            "return_logprob": True,
        }

        # Custom json data with custom logit processor and params.
        custom_json = base_json.copy()
345
346
347
348
349
350
        # Only set the custom logit processor if target_token_id is not None.
        if target_token_id is not None:
            custom_json["custom_logit_processor"] = (
                DeterministicLogitProcessor().to_str()
            )
            custom_json["sampling_params"]["custom_params"] = custom_params
351
352
353
354
355
356
357
358
359
360

        custom_response = requests.post(
            self.base_url + "/generate",
            json=custom_json,
        ).json()

        output_token_logprobs = custom_response["meta_info"]["output_token_logprobs"]
        sampled_tokens = [x[1] for x in output_token_logprobs]

        # The logit processor should always sample the given token as the logits is deterministic.
361
362
363
364
365
366
        if target_token_id is not None:
            self.assertTrue(
                all(x == custom_params["token_id"] for x in sampled_tokens),
                # Print the detailed test case info if the test fails.
                f"{target_token_id=}\n{sampled_tokens=}\n{custom_response=}",
            )
367

368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
    def run_stateful_custom_logit_processor(
        self, first_token_id: int | None, delay: int = 2
    ):
        """Test custom logit processor with custom params and state.

        Should sample the first `delay` tokens normally, then output first_token_id and consecutive tokens after that.
        If first_token_id is None, the custom logit processor won't be passed in.
        """

        custom_params = {"token_id": first_token_id, "delay": 2}

        class DeterministicStatefulLogitProcessor(CustomLogitProcessor):
            """A dummy logit processor that changes the logits to always
            sample the given token id.
            """

            def __call__(self, logits, custom_param_list):
                assert logits.shape[0] == len(custom_param_list)

                for i, param_dict in enumerate(custom_param_list):
                    if param_dict["delay"] > 0:
                        param_dict["delay"] -= 1
                        continue
                    if param_dict["delay"] == 0:
                        param_dict["delay"] -= 1
                        force_token = param_dict["token_id"]
                    else:
                        output_ids = param_dict["__req__"].output_ids
                        force_token = output_ids[-1] + 1
                    # Mask all other tokens
                    logits[i, :] = -float("inf")
                    # Assign highest probability to the specified token
                    logits[i, force_token] = 0.0
                return logits

        prompts = "Question: Is Paris the Capital of France? Answer:"

        # Base case json data to be posted to the server.
        base_json = {
            "text": prompts,
            "sampling_params": {"temperature": 0.0},
            "return_logprob": True,
        }

        # Custom json data with custom logit processor and params.
        custom_json = base_json.copy()
        # Only set the custom logit processor if target_token_id is not None.
        if first_token_id is not None:
            custom_json["custom_logit_processor"] = (
                DeterministicStatefulLogitProcessor().to_str()
            )
            custom_json["sampling_params"]["custom_params"] = custom_params

        custom_response = requests.post(
            self.base_url + "/generate",
            json=custom_json,
        ).json()

        output_token_logprobs = custom_response["meta_info"]["output_token_logprobs"]
        sampled_tokens = [x[1] for x in output_token_logprobs]
        # The logit processor should always sample the given token as the logits is deterministic.
        if first_token_id is not None:
            self.assertTrue(
                all(
                    x == custom_params["token_id"] + k
                    for k, x in enumerate(sampled_tokens[custom_params["delay"] :])
                ),
                # Print the detailed test case info if the test fails.
                f"{first_token_id=}\n{sampled_tokens=}\n{custom_response=}",
            )

439
440
441
442
    def test_custom_logit_processor(self):
        """Test custom logit processor with a single request."""
        self.run_custom_logit_processor(target_token_id=5)

443
444
445
446
447
448
449
    def test_custom_logit_processor_batch_mixed(self):
        """Test a batch of requests mixed of requests with and without custom logit processor."""
        target_token_ids = list(range(32)) + [None] * 16
        random.shuffle(target_token_ids)
        with ThreadPoolExecutor(len(target_token_ids)) as executor:
            list(executor.map(self.run_custom_logit_processor, target_token_ids))

450
451
452
453
454
455
456
457
458
459
460
461
462
    def test_stateful_custom_logit_processor(self):
        """Test custom logit processor with a single request."""
        self.run_stateful_custom_logit_processor(first_token_id=5)

    def test_stateful_custom_logit_processor_batch_mixed(self):
        """Test a batch of requests mixed of requests with and without custom logit processor."""
        target_token_ids = list(range(32)) + [None] * 16
        random.shuffle(target_token_ids)
        with ThreadPoolExecutor(len(target_token_ids)) as executor:
            list(
                executor.map(self.run_stateful_custom_logit_processor, target_token_ids)
            )

463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
    def test_cache_tokens(self):
        for _ in range(2):
            time.sleep(1)
            response = requests.post(self.base_url + "/flush_cache")
            assert response.status_code == 200

        def send_and_check_cached_tokens(input_ids):
            response = requests.post(
                self.base_url + "/generate",
                json={
                    "input_ids": list(input_ids),
                    "sampling_params": {
                        "max_new_tokens": 1,
                    },
                },
            )
            response_json = response.json()
            return response_json["meta_info"]["cached_tokens"]

        self.assertEqual(send_and_check_cached_tokens(range(0, 100)), 0)
        self.assertEqual(send_and_check_cached_tokens(range(0, 10000)), 100)
        self.assertEqual(send_and_check_cached_tokens(range(0, 10000)), 9999)
        self.assertEqual(send_and_check_cached_tokens(range(0, 1000)), 999)
        self.assertEqual(send_and_check_cached_tokens(range(0, 11000)), 10000)

488
489
490
491
492
493
494
    def test_get_server_info(self):
        response = requests.get(self.base_url + "/get_server_info")
        response_json = response.json()

        max_total_num_tokens = response_json["max_total_num_tokens"]
        self.assertIsInstance(max_total_num_tokens, int)

495
496
497
        version = response_json["version"]
        self.assertIsInstance(version, str)

498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
    def test_get_server_info_concurrent(self):
        """Make sure the concurrent get_server_info doesn't crash the server."""
        tp = ThreadPoolExecutor(max_workers=30)

        def s():
            server_info = requests.get(self.base_url + "/get_server_info")
            server_info.json()

        futures = []
        for _ in range(4):
            futures.append(tp.submit(s))

        for f in futures:
            f.result()

513
514

if __name__ == "__main__":
Lianmin Zheng's avatar
Lianmin Zheng committed
515
    unittest.main()