test_srt_endpoint.py 18.6 KB
Newer Older
1
2
"""
python3 -m unittest test_srt_endpoint.TestSRTEndpoint.test_simple_decode
3
python3 -m unittest test_srt_endpoint.TestSRTEndpoint.test_logprob_with_chunked_prefill
4
5
"""

6
import json
7
import random
8
import time
9
import unittest
10
from concurrent.futures import ThreadPoolExecutor
11
from functools import partial
12
from typing import Optional
13

14
import numpy as np
15
16
import requests

17
from sglang.srt.sampling.custom_logit_processor import CustomLogitProcessor
18
from sglang.srt.utils import kill_process_tree
19
from sglang.test.test_utils import (
Lianmin Zheng's avatar
Lianmin Zheng committed
20
    DEFAULT_SMALL_MODEL_NAME_FOR_TEST,
21
22
    DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
    DEFAULT_URL_FOR_TEST,
23
    popen_launch_server,
24
    run_logprob_check,
25
)
26
27
28
29
30


class TestSRTEndpoint(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
Lianmin Zheng's avatar
Lianmin Zheng committed
31
        cls.model = DEFAULT_SMALL_MODEL_NAME_FOR_TEST
32
33
        cls.base_url = DEFAULT_URL_FOR_TEST
        cls.process = popen_launch_server(
34
35
36
            cls.model,
            cls.base_url,
            timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
Lianmin Zheng's avatar
Lianmin Zheng committed
37
38
39
            other_args=(
                "--enable-custom-logit-processor",
                "--mem-fraction-static",
40
41
42
                "0.7",
                "--cuda-graph-max-bs",
                "8",
Lianmin Zheng's avatar
Lianmin Zheng committed
43
            ),
44
        )
45
46
47

    @classmethod
    def tearDownClass(cls):
48
        kill_process_tree(cls.process.pid)
49
50

    def run_decode(
51
52
53
54
55
56
        self,
        return_logprob=False,
        top_logprobs_num=0,
        return_text=False,
        n=1,
        stream=False,
57
        batch=False,
58
    ):
59
60
61
62
63
        if batch:
            text = ["The capital of France is"]
        else:
            text = "The capital of France is"

64
65
66
        response = requests.post(
            self.base_url + "/generate",
            json={
67
                "text": text,
68
69
                "sampling_params": {
                    "temperature": 0 if n == 1 else 0.5,
70
                    "max_new_tokens": 16,
71
72
                    "n": n,
                },
73
                "stream": stream,
74
75
76
77
78
79
                "return_logprob": return_logprob,
                "top_logprobs_num": top_logprobs_num,
                "return_text_in_logprobs": return_text,
                "logprob_start_len": 0,
            },
        )
80
81
82
83
84
85
86
        if not stream:
            response_json = response.json()
        else:
            response_json = []
            for line in response.iter_lines():
                if line.startswith(b"data: ") and line[6:] != b"[DONE]":
                    response_json.append(json.loads(line[6:]))
87
88

        print(json.dumps(response_json, indent=2))
89
90
91
92
93
        print("=" * 100)

    def test_simple_decode(self):
        self.run_decode()

94
95
96
    def test_simple_decode_batch(self):
        self.run_decode(batch=True)

97
98
99
    def test_parallel_sample(self):
        self.run_decode(n=3)

100
101
102
    def test_parallel_sample_stream(self):
        self.run_decode(n=3, stream=True)

103
    def test_logprob(self):
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
        self.run_decode(
            return_logprob=True,
            top_logprobs_num=5,
            return_text=True,
        )

    def test_logprob_start_len(self):
        logprob_start_len = 4
        new_tokens = 4
        prompts = [
            "I have a very good idea on",
            "Today is a sunndy day and",
        ]

        response = requests.post(
            self.base_url + "/generate",
            json={
                "text": prompts,
                "sampling_params": {
                    "temperature": 0,
                    "max_new_tokens": new_tokens,
                },
                "return_logprob": True,
                "top_logprobs_num": 5,
                "return_text_in_logprobs": True,
                "logprob_start_len": logprob_start_len,
            },
        )
        response_json = response.json()
        print(json.dumps(response_json, indent=2))

        for i, res in enumerate(response_json):
136
137
            self.assertEqual(
                res["meta_info"]["prompt_tokens"],
138
                logprob_start_len + len(res["meta_info"]["input_token_logprobs"]),
139
140
141
142
143
            )
            assert prompts[i].endswith(
                "".join([x[-1] for x in res["meta_info"]["input_token_logprobs"]])
            )

144
145
146
147
148
            self.assertEqual(res["meta_info"]["completion_tokens"], new_tokens)
            self.assertEqual(len(res["meta_info"]["output_token_logprobs"]), new_tokens)
            self.assertEqual(
                res["text"],
                "".join([x[-1] for x in res["meta_info"]["output_token_logprobs"]]),
149
            )
150

151
    def test_logprob_with_chunked_prefill(self):
152
        """Test a long prompt that requests output logprobs will not hit OOM."""
153
154
155
156
157
158
159
160
161
162
163
164
165
        new_tokens = 4
        prompts = "I have a very good idea on this. " * 8000

        response = requests.post(
            self.base_url + "/generate",
            json={
                "text": prompts,
                "sampling_params": {
                    "temperature": 0,
                    "max_new_tokens": new_tokens,
                },
                "return_logprob": True,
                "logprob_start_len": -1,
Lianmin Zheng's avatar
Lianmin Zheng committed
166
                "top_logprobs_num": 5,
167
168
169
            },
        )
        response_json = response.json()
Lianmin Zheng's avatar
Lianmin Zheng committed
170
        # print(json.dumps(response_json, indent=2))
171
172
173

        res = response_json
        self.assertEqual(res["meta_info"]["completion_tokens"], new_tokens)
Lianmin Zheng's avatar
Lianmin Zheng committed
174
175

        # Test the number of tokens are correct
176
        self.assertEqual(len(res["meta_info"]["output_token_logprobs"]), new_tokens)
Lianmin Zheng's avatar
Lianmin Zheng committed
177
178
179
180
181
182
183
184
185
        self.assertEqual(len(res["meta_info"]["output_top_logprobs"]), new_tokens)

        # Test the top-1 tokens are the same as output tokens (because temp = 0.0)
        for i in range(new_tokens):
            self.assertListEqual(
                res["meta_info"]["output_token_logprobs"][i],
                res["meta_info"]["output_top_logprobs"][i][0],
            )
            self.assertEqual(len(res["meta_info"]["output_top_logprobs"][i]), 5)
186

187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
    def test_logprob_match(self):
        """Test the output logprobs are close to the input logprobs if we run a prefill again."""

        def run_generate(
            prompt, return_logprob=False, max_new_tokens=512, logprob_start_len=-1
        ):

            if isinstance(prompt, str):
                prompt_kwargs = {"text": prompt}
            else:
                prompt_kwargs = {"input_ids": prompt}

            response = requests.post(
                self.base_url + "/generate",
                json={
                    **prompt_kwargs,
                    "sampling_params": {
                        "temperature": 1.0,
                        "max_new_tokens": max_new_tokens,
                        "ignore_eos": True,
                    },
                    "return_logprob": return_logprob,
                    "return_text_in_logprobs": True,
                    "logprob_start_len": logprob_start_len,
                },
            )
            return response.json()

        prompt = "I have a very good idea on how to"

        gen = run_generate(prompt, return_logprob=True, logprob_start_len=0)
        output_logprobs = np.array(
            [x[0] for x in gen["meta_info"]["output_token_logprobs"]]
        )
        num_prompts_tokens = gen["meta_info"]["prompt_tokens"]

        input_tokens = [x[1] for x in gen["meta_info"]["input_token_logprobs"]]
        output_tokens = [x[1] for x in gen["meta_info"]["output_token_logprobs"]]

        new_prompt = input_tokens + output_tokens
        score = run_generate(
            new_prompt, return_logprob=True, logprob_start_len=0, max_new_tokens=0
        )
        output_logprobs_score = np.array(
            [
                x[0]
                for x in score["meta_info"]["input_token_logprobs"][num_prompts_tokens:]
            ]
        )

        print(f"{output_logprobs[-10:]=}")
        print(f"{output_logprobs_score[-10:]=}")

        diff = np.abs(output_logprobs - output_logprobs_score)
        max_diff = np.max(diff)
242
        self.assertLess(max_diff, 0.35)
Lianmin Zheng's avatar
Lianmin Zheng committed
243
244
245
246
247

    def test_logprob_mixed(self):
        args = []
        temperature = 0
        # input_len, output_len, temperature, logprob_start_len, return_logprob, top_logprobs_num
248
        for input_len in [1000, 5000, 10000, 50000]:
Lianmin Zheng's avatar
Lianmin Zheng committed
249
            for output_len in [4, 8]:
250
                for logprob_start_len in [0, 500, 2500, 5000, 25000]:
Lianmin Zheng's avatar
Lianmin Zheng committed
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
                    for return_logprob in [True, False]:
                        for top_logprobs_num in [0, 5]:

                            if logprob_start_len >= input_len:
                                continue

                            args.append(
                                (
                                    input_len,
                                    output_len,
                                    temperature,
                                    logprob_start_len,
                                    return_logprob,
                                    top_logprobs_num,
                                )
                            )

        random.shuffle(args)

270
        func = partial(run_logprob_check, self)
Lianmin Zheng's avatar
Lianmin Zheng committed
271
        with ThreadPoolExecutor(8) as executor:
272
            list(executor.map(func, args))
Lianmin Zheng's avatar
Lianmin Zheng committed
273

274
275
276
277
278
279
280
281
282
283
284
285
286
287
    def test_logprob_grammar(self):
        prompts = "Question: Is Paris the Capital of France? Answer:"
        allowed_tokens = [" Yes", " No"]

        response = requests.post(
            self.base_url + "/generate",
            json={
                "text": prompts,
                "sampling_params": {
                    "temperature": 1.0,
                    "max_new_tokens": 1,
                    "regex": "( Yes| No)",
                },
                "return_logprob": True,
288
                "top_logprobs_num": 5,  # The grammar constraint allows all prefix tokens so we need to use a larger top_k.
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
                "return_text_in_logprobs": True,
            },
        )
        response_json = response.json()
        output_top_logprobs = response_json["meta_info"]["output_top_logprobs"][0]
        print(f"{output_top_logprobs=}")

        # Parse results
        # This is becaues the grammar constraint allows all prefix tokens
        logprobs = [None] * 2
        for i in range(len(output_top_logprobs)):
            try:
                idx = allowed_tokens.index(output_top_logprobs[i][2])
            except ValueError:
                # Not found
                continue
            logprobs[idx] = output_top_logprobs[i][0]

        self.assertTrue(all(x is not None for x in logprobs))

309
310
311
312
313
    def run_custom_logit_processor(self, target_token_id: Optional[int] = None):
        """Test custom logit processor with custom params.

        If target_token_id is None, the custom logit processor won't be passed in.
        """
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343

        custom_params = {"token_id": target_token_id}

        class DeterministicLogitProcessor(CustomLogitProcessor):
            """A dummy logit processor that changes the logits to always
            sample the given token id.
            """

            def __call__(self, logits, custom_param_list):
                assert logits.shape[0] == len(custom_param_list)
                key = "token_id"

                for i, param_dict in enumerate(custom_param_list):
                    # Mask all other tokens
                    logits[i, :] = -float("inf")
                    # Assign highest probability to the specified token
                    logits[i, param_dict[key]] = 0.0
                return logits

        prompts = "Question: Is Paris the Capital of France? Answer:"

        # Base case json data to be posted to the server.
        base_json = {
            "text": prompts,
            "sampling_params": {"temperature": 0.0},
            "return_logprob": True,
        }

        # Custom json data with custom logit processor and params.
        custom_json = base_json.copy()
344
345
346
347
348
349
        # Only set the custom logit processor if target_token_id is not None.
        if target_token_id is not None:
            custom_json["custom_logit_processor"] = (
                DeterministicLogitProcessor().to_str()
            )
            custom_json["sampling_params"]["custom_params"] = custom_params
350
351
352
353
354
355
356
357
358
359

        custom_response = requests.post(
            self.base_url + "/generate",
            json=custom_json,
        ).json()

        output_token_logprobs = custom_response["meta_info"]["output_token_logprobs"]
        sampled_tokens = [x[1] for x in output_token_logprobs]

        # The logit processor should always sample the given token as the logits is deterministic.
360
361
362
363
364
365
        if target_token_id is not None:
            self.assertTrue(
                all(x == custom_params["token_id"] for x in sampled_tokens),
                # Print the detailed test case info if the test fails.
                f"{target_token_id=}\n{sampled_tokens=}\n{custom_response=}",
            )
366

367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
    def run_stateful_custom_logit_processor(
        self, first_token_id: int | None, delay: int = 2
    ):
        """Test custom logit processor with custom params and state.

        Should sample the first `delay` tokens normally, then output first_token_id and consecutive tokens after that.
        If first_token_id is None, the custom logit processor won't be passed in.
        """

        custom_params = {"token_id": first_token_id, "delay": 2}

        class DeterministicStatefulLogitProcessor(CustomLogitProcessor):
            """A dummy logit processor that changes the logits to always
            sample the given token id.
            """

            def __call__(self, logits, custom_param_list):
                assert logits.shape[0] == len(custom_param_list)

                for i, param_dict in enumerate(custom_param_list):
                    if param_dict["delay"] > 0:
                        param_dict["delay"] -= 1
                        continue
                    if param_dict["delay"] == 0:
                        param_dict["delay"] -= 1
                        force_token = param_dict["token_id"]
                    else:
                        output_ids = param_dict["__req__"].output_ids
                        force_token = output_ids[-1] + 1
                    # Mask all other tokens
                    logits[i, :] = -float("inf")
                    # Assign highest probability to the specified token
                    logits[i, force_token] = 0.0
                return logits

        prompts = "Question: Is Paris the Capital of France? Answer:"

        # Base case json data to be posted to the server.
        base_json = {
            "text": prompts,
            "sampling_params": {"temperature": 0.0},
            "return_logprob": True,
        }

        # Custom json data with custom logit processor and params.
        custom_json = base_json.copy()
        # Only set the custom logit processor if target_token_id is not None.
        if first_token_id is not None:
            custom_json["custom_logit_processor"] = (
                DeterministicStatefulLogitProcessor().to_str()
            )
            custom_json["sampling_params"]["custom_params"] = custom_params

        custom_response = requests.post(
            self.base_url + "/generate",
            json=custom_json,
        ).json()

        output_token_logprobs = custom_response["meta_info"]["output_token_logprobs"]
        sampled_tokens = [x[1] for x in output_token_logprobs]
        # The logit processor should always sample the given token as the logits is deterministic.
        if first_token_id is not None:
            self.assertTrue(
                all(
                    x == custom_params["token_id"] + k
                    for k, x in enumerate(sampled_tokens[custom_params["delay"] :])
                ),
                # Print the detailed test case info if the test fails.
                f"{first_token_id=}\n{sampled_tokens=}\n{custom_response=}",
            )

438
439
440
441
    def test_custom_logit_processor(self):
        """Test custom logit processor with a single request."""
        self.run_custom_logit_processor(target_token_id=5)

442
443
444
445
446
447
448
    def test_custom_logit_processor_batch_mixed(self):
        """Test a batch of requests mixed of requests with and without custom logit processor."""
        target_token_ids = list(range(32)) + [None] * 16
        random.shuffle(target_token_ids)
        with ThreadPoolExecutor(len(target_token_ids)) as executor:
            list(executor.map(self.run_custom_logit_processor, target_token_ids))

449
450
451
452
453
454
455
456
457
458
459
460
461
    def test_stateful_custom_logit_processor(self):
        """Test custom logit processor with a single request."""
        self.run_stateful_custom_logit_processor(first_token_id=5)

    def test_stateful_custom_logit_processor_batch_mixed(self):
        """Test a batch of requests mixed of requests with and without custom logit processor."""
        target_token_ids = list(range(32)) + [None] * 16
        random.shuffle(target_token_ids)
        with ThreadPoolExecutor(len(target_token_ids)) as executor:
            list(
                executor.map(self.run_stateful_custom_logit_processor, target_token_ids)
            )

462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
    def test_cache_tokens(self):
        for _ in range(2):
            time.sleep(1)
            response = requests.post(self.base_url + "/flush_cache")
            assert response.status_code == 200

        def send_and_check_cached_tokens(input_ids):
            response = requests.post(
                self.base_url + "/generate",
                json={
                    "input_ids": list(input_ids),
                    "sampling_params": {
                        "max_new_tokens": 1,
                    },
                },
            )
            response_json = response.json()
            return response_json["meta_info"]["cached_tokens"]

        self.assertEqual(send_and_check_cached_tokens(range(0, 100)), 0)
        self.assertEqual(send_and_check_cached_tokens(range(0, 10000)), 100)
        self.assertEqual(send_and_check_cached_tokens(range(0, 10000)), 9999)
        self.assertEqual(send_and_check_cached_tokens(range(0, 1000)), 999)
        self.assertEqual(send_and_check_cached_tokens(range(0, 11000)), 10000)

487
488
489
490
491
492
493
494
495
    def test_get_server_info(self):
        response = requests.get(self.base_url + "/get_server_info")
        response_json = response.json()

        max_total_num_tokens = response_json["max_total_num_tokens"]
        self.assertIsInstance(max_total_num_tokens, int)

        attention_backend = response_json["attention_backend"]
        self.assertIsInstance(attention_backend, str)
496

497
498
499
        version = response_json["version"]
        self.assertIsInstance(version, str)

500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
    def test_get_server_info_concurrent(self):
        """Make sure the concurrent get_server_info doesn't crash the server."""
        tp = ThreadPoolExecutor(max_workers=30)

        def s():
            server_info = requests.get(self.base_url + "/get_server_info")
            server_info.json()

        futures = []
        for _ in range(4):
            futures.append(tp.submit(s))

        for f in futures:
            f.result()

515
516

if __name__ == "__main__":
Lianmin Zheng's avatar
Lianmin Zheng committed
517
    unittest.main()