test_nightly_gsm8k_eval.py 6.23 KB
Newer Older
1
2
import json
import os
3
import unittest
4
import warnings
5
from datetime import datetime
6
7
from types import SimpleNamespace

8
from sglang.srt.utils import kill_process_tree
9
10
11
12
from sglang.test.run_eval import run_eval
from sglang.test.test_utils import (
    DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_FP8_TP1,
    DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_FP8_TP2,
13
    DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_QUANT_TP1,
14
15
16
17
    DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_TP1,
    DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_TP2,
    DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
    DEFAULT_URL_FOR_TEST,
18
    is_in_ci,
19
    popen_launch_server,
20
    write_github_step_summary,
21
22
)

23
MODEL_SCORE_THRESHOLDS = {
24
    "meta-llama/Llama-3.1-8B-Instruct": 0.82,
25
    "mistralai/Mistral-7B-Instruct-v0.3": 0.58,
26
    "deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct": 0.85,
27
    "google/gemma-2-27b-it": 0.92,
28
    "meta-llama/Llama-3.1-70B-Instruct": 0.95,
29
    "mistralai/Mixtral-8x7B-Instruct-v0.1": 0.63,
30
    "Qwen/Qwen2-57B-A14B-Instruct": 0.86,
31
    "neuralmagic/Meta-Llama-3.1-8B-Instruct-FP8": 0.83,
32
    "neuralmagic/Mistral-7B-Instruct-v0.3-FP8": 0.54,
33
    "neuralmagic/DeepSeek-Coder-V2-Lite-Instruct-FP8": 0.84,
34
    "neuralmagic/gemma-2-2b-it-FP8": 0.60,
35
36
37
    "neuralmagic/Meta-Llama-3.1-70B-Instruct-FP8": 0.94,
    "neuralmagic/Mixtral-8x7B-Instruct-v0.1-FP8": 0.62,
    "neuralmagic/Qwen2-72B-Instruct-FP8": 0.94,
38
39
    "neuralmagic/Qwen2-57B-A14B-Instruct-FP8": 0.82,
    "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4": 0.84,
40
    "hugging-quants/Meta-Llama-3.1-8B-Instruct-GPTQ-INT4": 0.83,
41
42
}

43
44
45
46
47

def parse_models(model_string):
    return [model.strip() for model in model_string.split(",") if model.strip()]


48
def popen_launch_server_wrapper(base_url, model, is_fp8, is_tp2):
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
    other_args = ["--log-level-http", "warning", "--trust-remote-code"]
    if is_fp8:
        if "Llama-3" in model or "gemma-2" in model:
            other_args.extend(["--kv-cache-dtype", "fp8_e5m2"])
        elif "Qwen2-72B-Instruct-FP8" in model:
            other_args.extend(["--quantization", "fp8"])
        else:
            other_args.extend(["--quantization", "fp8", "--kv-cache-dtype", "fp8_e5m2"])
    if is_tp2:
        other_args.extend(["--tp", "2"])
    if "DeepSeek" in model:
        other_args.extend(["--mem-frac", "0.85"])
    if "AWQ" in model:
        other_args.extend(["--quantization", "awq"])
    elif "GPTQ" in model:
        other_args.extend(["--quantization", "gptq"])

    process = popen_launch_server(
        model,
        base_url,
        timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
        other_args=other_args,
    )
    return process


75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
def write_results_to_json(model, metrics, mode="a"):
    result = {
        "timestamp": datetime.now().isoformat(),
        "model": model,
        "metrics": metrics,
        "score": metrics["score"],
    }

    existing_results = []
    if mode == "a" and os.path.exists("results.json"):
        try:
            with open("results.json", "r") as f:
                existing_results = json.load(f)
        except json.JSONDecodeError:
            existing_results = []

    if isinstance(existing_results, list):
        existing_results.append(result)
    else:
        existing_results = [result]

    with open("results.json", "w") as f:
        json.dump(existing_results, f, indent=2)


def check_model_scores(results):
    failed_models = []
102
103
104
    summary = " | model | score | threshold |\n"
    summary += "| ----- | ----- | --------- |\n"

105
106
107
108
109
110
111
112
113
114
115
116
    for model, score in results:
        threshold = MODEL_SCORE_THRESHOLDS.get(model)
        if threshold is None:
            print(f"Warning: No threshold defined for model {model}")
            continue

        if score < threshold:
            failed_models.append(
                f"\nScore Check Failed: {model}\n"
                f"Model {model} score ({score:.4f}) is below threshold ({threshold:.4f})"
            )

117
118
119
120
121
122
123
124
        line = f"| {model} | {score} | {threshold} |\n"
        summary += line

    print(summary)

    if is_in_ci():
        write_github_step_summary(f"### TestNightlyGsm8KEval\n{summary}")

125
126
127
128
    if failed_models:
        raise AssertionError("\n".join(failed_models))


129
class TestNightlyGsm8KEval(unittest.TestCase):
130
131
132
133
134
135
136
    @classmethod
    def setUpClass(cls):
        cls.model_groups = [
            (parse_models(DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_TP1), False, False),
            (parse_models(DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_TP2), False, True),
            (parse_models(DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_FP8_TP1), True, False),
            (parse_models(DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_FP8_TP2), True, True),
137
            (parse_models(DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_QUANT_TP1), False, False),
138
139
140
141
        ]
        cls.base_url = DEFAULT_URL_FOR_TEST

    def test_mgsm_en_all_models(self):
142
143
144
        warnings.filterwarnings(
            "ignore", category=ResourceWarning, message="unclosed.*socket"
        )
145
146
147
        is_first = True
        all_results = []

148
149
150
        for model_group, is_fp8, is_tp2 in self.model_groups:
            for model in model_group:
                with self.subTest(model=model):
151
152
153
                    process = popen_launch_server_wrapper(
                        self.base_url, model, is_fp8, is_tp2
                    )
154
155
156
157
158
159
160
161
162
163
164
165
166

                    args = SimpleNamespace(
                        base_url=self.base_url,
                        model=model,
                        eval_name="mgsm_en",
                        num_examples=None,
                        num_threads=1024,
                    )

                    metrics = run_eval(args)
                    print(
                        f"{'=' * 42}\n{model} - metrics={metrics} score={metrics['score']}\n{'=' * 42}\n"
                    )
167
168
169
170
171

                    write_results_to_json(model, metrics, "w" if is_first else "a")
                    is_first = False

                    all_results.append((model, metrics["score"]))
172
                    kill_process_tree(process.pid)
173

174
175
176
177
178
179
180
181
182
183
        try:
            with open("results.json", "r") as f:
                print("\nFinal Results from results.json:")
                print(json.dumps(json.load(f), indent=2))
        except Exception as e:
            print(f"Error reading results.json: {e}")

        # Check all scores after collecting all results
        check_model_scores(all_results)

184
185
186

if __name__ == "__main__":
    unittest.main()