reference_hf.py 5.77 KB
Newer Older
1
2
3
4
5
"""
Usage:
python3 reference_hf.py --model TinyLlama/TinyLlama-1.1B-Chat-v0.4

Reference output:
6
7
8
========== Prompt 0 ==========
prefill logits (final) tensor([-8.3125, -7.1172,  3.3398,  ..., -4.9531, -4.1328, -3.4141],
       device='cuda:0')
9
10
<s> The capital of France is Paris.
The capital of the United States is Washington, D.C.
11
12
13

========== Prompt 1 ==========
prefill logits (final) tensor([-8.9062, -9.0156,  4.1484,  ..., -4.9922, -4.4961, -4.0742],
14
15
16
       device='cuda:0')
<s> The capital of the United Kindom is London.
The capital of the United Kingdom is London.
17
18
19
20
The capital of

========== Prompt 2 ==========
prefill logits (final) tensor([-9.6328, -9.0547,  4.0234,  ..., -5.3047, -4.7148, -4.4609],
21
22
       device='cuda:0')
<s> Today is a sunny day and I like to go for a walk in the park.
23
I'm going to the
24
25
"""

Lianmin Zheng's avatar
Lianmin Zheng committed
26
27
import argparse

28
29
30
import requests
from PIL import Image

Lianmin Zheng's avatar
Lianmin Zheng committed
31
import torch
32
33
34
from transformers import (
    AutoModelForCausalLM, AutoProcessor, AutoModelForImageTextToText
)
35
36

from sglang.srt.hf_transformers_utils import get_tokenizer
Lianmin Zheng's avatar
Lianmin Zheng committed
37
38


39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
@torch.no_grad()
def vlm_text_with_image(args):
    # Load the processor and model for ImageTextToText tasks
    processor = AutoProcessor.from_pretrained(
        args.model_path, trust_remote_code=True)
    model = AutoModelForImageTextToText.from_pretrained(
        args.model_path,
        torch_dtype=args.dtype,
        low_cpu_mem_usage=True,
        device_map="auto",
        trust_remote_code=True,
    )

    torch.cuda.set_device(0)

    # List of image URLs to process
    image_urls = [
        "https://github.com/haotian-liu/LLaVA/blob/1a91fc274d7c35a9b50b3cb29c4247ae5837ce39/images/llava_v1_5_radar.jpg?raw=true"
    ]

    # Conversation template for the processor
    conversation = [
        {
            "role": "user",
            "content": [
                {
                    "type": "image",
                },
                {
                    "type": "text",
                    "text": "Describe this image."
                }
            ]
        }
    ]

    max_new_tokens = args.max_new_tokens

    for i, url in enumerate(image_urls):
        # Load the image from the URL
        image = Image.open(requests.get(url, stream=True).raw)

        # Apply the chat template to the text prompt
        # Notice that not all processors support chat templates.
        # LLaVA and QWen are two processors that support chat templates.
        if not hasattr(processor, "apply_chat_template"):
            raise ValueError("The processor does not support chat templates.")
        text_prompt = processor.apply_chat_template(
            conversation, add_generation_prompt=True)

        # Prepare inputs for the model
        inputs = processor(text=[text_prompt], images=[image],
                           return_tensors="pt").to("cuda:0")

        # Generate output from the model
        output_ids = model.generate(
            **inputs, do_sample=False, max_new_tokens=max_new_tokens
        )
        output_str = processor.decode(output_ids[0])

        # Get the logits from the model's forward pass
        outputs = model.forward(**inputs)
        logits = outputs.logits[0, -1, :]

        print(f"\n========== Image {i} ==========")
        print("prefill logits (final)", logits)
        # TODO(gaocegege): The output contains numerous <|image_pad|> tokens,
        # making it cluttered and difficult to read.
        # These tokens should be removed or cleaned up for better readability.
        print(output_str)


111
@torch.no_grad()
Lianmin Zheng's avatar
Lianmin Zheng committed
112
def normal_text(args):
113
    t = get_tokenizer(args.model_path, trust_remote_code=True)
Lianmin Zheng's avatar
Lianmin Zheng committed
114
    m = AutoModelForCausalLM.from_pretrained(
zhyncs's avatar
zhyncs committed
115
        args.model_path,
116
        torch_dtype=args.dtype,
zhyncs's avatar
zhyncs committed
117
        low_cpu_mem_usage=True,
118
        device_map="auto",
zhyncs's avatar
zhyncs committed
119
        trust_remote_code=True,
Lianmin Zheng's avatar
Lianmin Zheng committed
120
121
122
123
124
125
126
    )

    prompts = [
        "The capital of France is",
        "The capital of the United Kindom is",
        "Today is a sunny day and I like",
    ]
127
    max_new_tokens = args.max_new_tokens
128
129

    torch.cuda.set_device(0)
Lianmin Zheng's avatar
Lianmin Zheng committed
130

131
    for i, p in enumerate(prompts):
Lianmin Zheng's avatar
Lianmin Zheng committed
132
        if isinstance(p, str):
133
            input_ids = t.encode(p, return_tensors="pt").to("cuda:0")
Lianmin Zheng's avatar
Lianmin Zheng committed
134
        else:
135
            input_ids = torch.tensor([p], device="cuda:0")
Lianmin Zheng's avatar
Lianmin Zheng committed
136
137
138
139
140
141
142

        output_ids = m.generate(
            input_ids, do_sample=False, max_new_tokens=max_new_tokens
        )
        output_str = t.decode(output_ids[0])

        prefill_logits = m.forward(input_ids).logits[0][-1]
143

144
145
        print(f"\n========== Prompt {i} ==========")
        print("prefill logits (final)", prefill_logits)
146
        print(output_str)
Lianmin Zheng's avatar
Lianmin Zheng committed
147
148


149
@torch.no_grad()
Lianmin Zheng's avatar
Lianmin Zheng committed
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
def synthetic_tokens(args):
    m = AutoModelForCausalLM.from_pretrained(
        args.model_path, torch_dtype=torch.float16, low_cpu_mem_usage=True
    )
    m.cuda()
    print(m)

    input_len = 256
    output_len = 8
    prompts = [list(range(5, 5 + input_len))]

    for p in prompts:
        input_ids = p
        for i in range(output_len + 1):
            prefill_logits = m.forward(torch.tensor([input_ids], device="cuda")).logits[
                0
            ][-1]

            if i == 0:
                print("prefill logits", prefill_logits)
            else:
                print("decode", i - 1, prefill_logits)

            input_ids.append(torch.argmax(prefill_logits).item())


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--model-path",
        type=str,
        default="TinyLlama/TinyLlama-1.1B-Chat-v0.4",
        # default="meta-llama/Llama-2-7b-chat-hf",
    )
Chayenne's avatar
Chayenne committed
184
    parser.add_argument("--max-new-tokens", type=int, default=16)
185

Chayenne's avatar
Chayenne committed
186
    parser.add_argument("--dtype", type=str, default="float16")
187

188
189
    parser.add_argument("--model-type", type=str, default="text")

Lianmin Zheng's avatar
Lianmin Zheng committed
190
191
    args = parser.parse_args()

192
193
194
195
    if args.model_type == "vlm":
        vlm_text_with_image(args)
    else:
        normal_text(args)