reference_hf.py 2.97 KB
Newer Older
1
2
3
4
5
"""
Usage:
python3 reference_hf.py --model TinyLlama/TinyLlama-1.1B-Chat-v0.4

Reference output:
6
7
8
========== Prompt 0 ==========
prefill logits (final) tensor([-8.3125, -7.1172,  3.3398,  ..., -4.9531, -4.1328, -3.4141],
       device='cuda:0')
9
10
<s> The capital of France is Paris.
The capital of the United States is Washington, D.C.
11
12
13

========== Prompt 1 ==========
prefill logits (final) tensor([-8.9062, -9.0156,  4.1484,  ..., -4.9922, -4.4961, -4.0742],
14
15
16
       device='cuda:0')
<s> The capital of the United Kindom is London.
The capital of the United Kingdom is London.
17
18
19
20
The capital of

========== Prompt 2 ==========
prefill logits (final) tensor([-9.6328, -9.0547,  4.0234,  ..., -5.3047, -4.7148, -4.4609],
21
22
       device='cuda:0')
<s> Today is a sunny day and I like to go for a walk in the park.
23
I'm going to the
24
25
"""

Lianmin Zheng's avatar
Lianmin Zheng committed
26
27
28
29
30
31
32
33
import argparse

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer


@torch.inference_mode()
def normal_text(args):
zhyncs's avatar
zhyncs committed
34
    t = AutoTokenizer.from_pretrained(args.model_path, trust_remote_code=True)
Lianmin Zheng's avatar
Lianmin Zheng committed
35
    m = AutoModelForCausalLM.from_pretrained(
zhyncs's avatar
zhyncs committed
36
37
38
        args.model_path,
        torch_dtype=torch.float16,
        low_cpu_mem_usage=True,
39
        device_map="auto",
zhyncs's avatar
zhyncs committed
40
        trust_remote_code=True,
Lianmin Zheng's avatar
Lianmin Zheng committed
41
42
43
44
45
46
47
48
    )
    m.cuda()

    prompts = [
        "The capital of France is",
        "The capital of the United Kindom is",
        "Today is a sunny day and I like",
    ]
49
    max_new_tokens = 16
Lianmin Zheng's avatar
Lianmin Zheng committed
50

51
    for i, p in enumerate(prompts):
Lianmin Zheng's avatar
Lianmin Zheng committed
52
53
54
55
56
57
58
59
60
61
62
        if isinstance(p, str):
            input_ids = t.encode(p, return_tensors="pt").cuda()
        else:
            input_ids = torch.tensor([p], device="cuda")

        output_ids = m.generate(
            input_ids, do_sample=False, max_new_tokens=max_new_tokens
        )
        output_str = t.decode(output_ids[0])

        prefill_logits = m.forward(input_ids).logits[0][-1]
63

64
65
        print(f"\n========== Prompt {i} ==========")
        print("prefill logits (final)", prefill_logits)
66
        print(output_str)
Lianmin Zheng's avatar
Lianmin Zheng committed
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107


@torch.inference_mode()
def synthetic_tokens(args):
    m = AutoModelForCausalLM.from_pretrained(
        args.model_path, torch_dtype=torch.float16, low_cpu_mem_usage=True
    )
    m.cuda()
    print(m)

    input_len = 256
    output_len = 8
    prompts = [list(range(5, 5 + input_len))]

    for p in prompts:
        input_ids = p
        for i in range(output_len + 1):
            prefill_logits = m.forward(torch.tensor([input_ids], device="cuda")).logits[
                0
            ][-1]

            if i == 0:
                print("prefill logits", prefill_logits)
            else:
                print("decode", i - 1, prefill_logits)

            input_ids.append(torch.argmax(prefill_logits).item())


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--model-path",
        type=str,
        default="TinyLlama/TinyLlama-1.1B-Chat-v0.4",
        # default="meta-llama/Llama-2-7b-chat-hf",
    )
    args = parser.parse_args()

    normal_text(args)
    # synthetic_tokens(args)